ARKANSAS STATE HIGHWAY AND TRANSPORTATION DEPARTMENT

SUBSURFACE INVESTIGATION

STATE JOB NO. 090376			
FEDERAL AID PROJEC	CT NO	HPP2-9036(20)	
HWY. 62/102 INTCH	NG. IMPVTS. 8	& 8TH STREET WIDENING	(BENTONVILLE) (S)
STATE HIGHWAY	49	SECTION	29
IN		BENTON	COUNTY
LETTING OF	N	OVEMBER 2, 2016	

The information contained herein was obtained by the Department for design and estimating purposes only. It is being furnished with the express understanding that said information does not constitute a part of the Proposal or Contract and represents only the best knowledge of the Department as to the location, character and depth of the materials encountered. The information is only included and made available so that bidders may have access to subsurface information obtained by the Department and is not intended to be a substitute for personal investigation, interpretation and judgment of the bidder. The bidder should be cognizant of the possibility that conditions affecting the cost and/or quantities of work to be performed may differ from those indicated herein.

8th Street Widening Project Proposed Pavements SE 8th Street from SW I Street to Interstate 540 Bentonville, Arkansas

> June 11, 2014 Terracon Project No. 04135111

Prepared for:

Burns & McDonnell Engineering Company, Inc. Kansas City, Missouri

Prepared by:

Terracon Consultants, Inc. Tulsa, Oklahoma

Offices Nationwide Employee-Owned Established in 1965 terracon.com

June 11, 2014

Burns & McDonnell Engineering Company, Inc. 9400 Ward Parkway Kansas City, MO 64114

Attn: Mr. David Hurt, P.E.

P: (816) 822 3426

E: dhurt@burnsmcd.com

Re: Preliminary Geotechnical Engineering Report

8th Street Widening Project – Proposed Pavements SE 8th Street from SW I Street to Interstate 540

Bentonville, Arkansas

Terracon Project No. 04135111

Dear Mr. Hurt:

Terracon Consultants, Inc. (Terracon) has completed the geotechnical engineering services for the above referenced project. This geotechnical study was performed in general accordance with our Proposal No. P04090495 dated February 26, 2010 and the Amendment to Consultant Agreement dated May 21, 2010 between Burns & McDonnell Engineering Company, Inc. and Terracon Consultants, Inc. for Burns & McDonnell Project No. 090218.

This preliminary report presents the findings of the subsurface exploration, laboratory test results, and results of our analyses, and provides geotechnical recommendations concerning earthwork and the design and construction of pavements for the proposed project. We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report, or if we may be of further service, please contact us.

Sincerely,

Terracon Consultants, Inc. Cert. Of Auth. #CA-233 exp. 12/31/15

Jaime E. Granados Staff Geotechnical Engineer Craig K. Denny, Ph.D. Senior Consultant

Michael H. Homan Regional Manager

Copies to: Addressee (1 via email)

TABLE OF CONTENTS

				Page
1.0	INTR	ODUCTION		1
2.0	PRO.	JECT INFORMAT	ION	1
	2.1	Project Descripti	on	1
	2.2	Site Location and	d Description	2
3.0	SUBS	SURFACE CONDI	TIONS	2
	3.1	Existing Paveme	nt Thickness	2
	3.2	Typical Subsurfa	ce Profile	4
	3.3	Groundwater		4
4.0	ANAL	YSIS AND RECO	MMENDATIONS	5
	4.1	Geotechnical Co	nsiderations	5
	4.2	General Earthwo	ork	5
	4.2.1	Site Preparation		5
	4.2.2	Fill Material Type	es	6
	4.2.3	Compaction Red	uirements	7
	4.2.4	Construction Cor	nsiderations for Earthwork	7
	4.3	Pavements		8
	4.3.1	Full-Depth Flexib	ole Pavement	11
	4.3.2	Flexible Paveme	nt with Aggregate Base	11
	4.3.3	Rigid Pavement		12
	4.3.4	Subgrade Improv	vement Recommendations	13
	4.4	Additional Paven	nent Considerations	13
	4.4.1	Pavement Drain	age	13
	4.4.2	Pavement Maint	enance	13
5.0	GENE	RAL COMMENTS	3	14
APPI	ENDIX A	- FIELD EXPLO	RATION	
	Exhibi	t A-1	Site Location Map	
	Exhibi		Boring Location Plans	
	Exhibi		Field Exploration Description	
		t A-4 to A-44	Boring Logs	
		t A-45	Photographic Rock Core Logs	
	Exhibi	t A-46	Approximate Boring Coordinates	
APPI		- LABORATOR		
	Exhibi		Laboratory Test Description	
		t B-2 to B-16	Grain Size Distribution Curves	
		t B-17 to B-20	Moisture-Density Relationship Curves	
	Exhibi	t B-21 to B-44	Resilient Modulus	

TABLE OF CONTENTS (CONTINUED)

APPENDIX C - ADDITIONAL FIELD TESTS

Exhibit C-1 Dynamic Cone Penetration Tests

APPENDIX D - SUPPORTING DOCUMENTS

Exhibit D-2 Unified Soil Classification System

Exhibit D-3 General Notes – Description of Rock Properties

Exhibit D-4 Average Daily Traffic Design Plan

PRELIMINARY GEOTECHNICAL ENGINEERING REPORT 8TH STREET WIDENING PROJECT PROPOSED PAVEMENTS SE 8TH STREET FROM SW I STREET TO INTERSTATE 540 BENTONVILLE, ARKANSAS

Terracon Project No. 04135111 June 11, 2014

1.0 INTRODUCTION

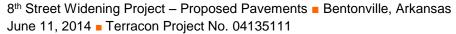
This preliminary engineering report has been completed as a part of the 8th Street widening project in Bentonville, Arkansas. This report addresses our geotechnical recommendations for pavements along SE 8th Street from SW I Street to Interstate 540/Route 71.

A total of 41 borings, designated BR-001 through BR-041, were drilled for the project to depths of approximately 0.5 to 10 feet below the existing ground surface. One boring, BR-011, was not extended deeper than the asphalt pavement bottom due to the presence of underground and overhead utilities and its proximity to the Bentonville City Fire Department. A site location map along with boring location plans and boring logs are included in Appendix A of this report.

The purpose of these services is to provide information and geotechnical engineering recommendations relative to:

subsurface soil conditions

pavement subgrade preparation


groundwater conditions

pavement thicknesses

2.0 PROJECT INFORMATION

2.1 Project Description

Item	Description		
Site layout	See Appendix A, Figure A-2, Boring Location Plan.		
Proposed Structures	This phase of the project will consist of widening 8 th Street from SW I Street to Moberly Lane and extending 8 th Street from Moberly Lane to the intersection of 8 th Street with Interstate 540/Route 71. On and off-ramps and tunnel pavements will also be constructed. The total length of the project is approximately 2.6 miles.		

Item	Description
General Considerations	We understand that the Arkansas Highway Transportation Department (AHTD) will be responsible for widening and extending 8 th Street from SE J Street to Interstate 540/ Route 71 (Section 1) and that the City of Bentonville will be responsible for widening 8 th Street from SW I Street to SE J Street (Section 2).

2.2 Site Location and Description

Item	Description			
Location	SE 8th Street from SW I Street to Interstate 540/Route 71 in Bentonville,			
	Arkansas.			
	Traffic information was provided to us by Burns & McDonnell Engineering			
Traffic Loads	Company, Inc. on September 23 and October 4, 2013. A summary of the traffic			
	is given in section 4.6 Pavements.			
Current Ground	Existing asphalt paved surfaces and grass areas with some concrete paved			
Cover	areas and concrete sidewalks.			
	Based on the preliminary plans provided to us by Burns & McDonnell (file name:			
	J:\Bentonville\8th_Street_Final\Civil\Drawings\I20\PLAN_09_090218_150.dgn)			
Grading	and the elevation of the borings, the proposed road alignment will have slopes			
	between 0.5% and 3.0%. Road alignment slopes in excess of about 3.0% are			
	anticipated for the proposed bridge abutments and ramps.			

3.0 SUBSURFACE CONDITIONS

3.1 Existing Pavement Thickness

The summary of the asphalt thicknesses measured in our borings is provided below. Due to the drilling and coring methods used to extend our borings, we were not able to accurately measure aggregate base thicknesses. Therefore, the aggregate base thicknesses presented below should be considered approximate.

Boring No.	Asphalt Thickness (inches)	Aggregate Base Thickness (inches)
BR-001	9	N/A
BR-002	N/A	N/A
BR-003	11	N/A
BR-004	3 ½	2 ½
BR-005	5 ½	N/A
BR-006	4 3/4	6
BR-007	N/A	N/A
BR-008	6	N/A
BR-009	5	N/A
BR-010	6	N/A

8th Street Widening Project – Proposed Pavements

Bentonville, Arkansas

June 11, 2014

Terracon Project No. 04135111

Boring No.	Asphalt Thickness (inches)	Aggregate Base Thickness (inches)		
BR-011	5	N/A		
BR-012	4 – (concrete parking lot)	N/A		
BR-013	N/A	N/A		
BR-014	4	N/A		
BR-015	N/A	N/A		
BR-016	6 ½	N/A		
BR-017	N/A	N/A		
BR-018	N/A	N/A		
BR-019	5	N/A		
BR-020	9	N/A		
BR-021	8	N/A		
BR-022	5	2		
BR-023	4.5 asphalt over 7 3/4 concrete	N/A		
BR-024	6 3/4	3		
BR-025	6 ½	N/A		
BR-026	7 ½	N/A		
BR-027	5	6		
BR-028	3 1/2	3		
BR-029	2 ½	3		
BR-030	2 ½	3		
BR-031	3 1/2	2		
BR-032	3 ½	2		
BR-033	4	N/A		
BR-034	5	N/A		
BR-035	3 1/2	2		
BR-036	4 1/4	2 ½		
BR-037	N/A	N/A		
BR-038	N/A	N/A		
BR-039	N/A	N/A		
BR-040	N/A	N/A		
BR-041	N/A	N/A		

8th Street Widening Project – Proposed Pavements ■ Bentonville, Arkansas June 11, 2014 ■ Terracon Project No. 04135111

3.2 Typical Subsurface Profile

Based on the results of the borings, subsurface conditions along the project alignment can be generalized as follows:

Stratum	Approximate Depth to Bottom of Stratum	Material Encountered	Consistency/Density
11	1 to 5 feet	Fill: Low to medium plasticity clay with various amounts of sand and gravel and chert or limestone gravel with various amounts of fines	N/A
22	Borings terminated in this stratum at depths of 4.5 to 10 feet	Low to high plasticity clay with various amounts of silt, sand, and chert gravel	Soft to stiff

- The composition of the fill materials encountered during our field exploration varies along the project alignment. Actual fill depths are sometimes difficult to identify due to similarities of the fill with the native soils and preliminary earthwork activities. Fill materials may exist in the vicinity of the construction areas at locations away from our borings. Existing fill materials were encountered in all borings except BR-013/015/017/018/024/039/040.
- All borings terminated in this stratum except BR-007, which was terminated in apparent fill materials; BR-011, which was not extended into the subgrade soils; BR-024, which was terminated in apparent weathered sandstone; BR-025, which was terminated in apparent shale; and BR-040, which was terminated in silty chert gravel.

Conditions encountered at each boring location are indicated on the individual boring logs. Stratification boundaries on the boring logs represent the approximate location of changes in soil and rock types; in-situ, the transition between materials may be gradual.

3.3 Groundwater

The boreholes were observed while drilling and immediately after boring completion for the presence and level of groundwater. Groundwater was only observed in boring BR-041 at depths of about 4 feet and 3 feet while drilling and after boring, respectively. Groundwater was not observed in the other borings during our field exploration.

The groundwater level observations made during our exploration provide an indication of the groundwater conditions at the time the borings were drilled. Longer monitoring in piezometers or cased holes, sealed from the influence of surface water, would be required to evaluate long-term groundwater conditions. During some periods of the year, perched water could be present at various depths. Fluctuations in groundwater levels should be expected throughout the year depending upon variations in the amount of rainfall, runoff, evaporation, and other hydrological factors not apparent at the time the borings were performed.

8th Street Widening Project – Proposed Pavements ■ Bentonville, Arkansas June 11, 2014 ■ Terracon Project No. 04135111

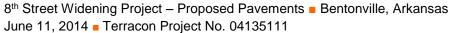
4.0 ANALYSIS AND RECOMMENDATIONS

4.1 Geotechnical Considerations

As described in the Project Information section of this report, we understand that the total length of the project will be approximately 2.6 miles. We also understand that the City of Bentonville will be responsible for widening approximately 1.4 miles of 8th Street from SW I Street to SE J Street (Section 2) and that the Arkansas Highway Transportation Department (AHTD) will be responsible for widening and extending 8th Street from SE J Street to Interstate 540/ Route 71 (Section 1).

Due to the presence of underground and overhead utility lines, most of our borings were drilled through the existing 8th Street pavement. Based on the results of our borings, we determined that the asphalt thicknesses of the existing pavement sections vary between approximately 2 and 11 inches. At this time, we understand that the majority of the existing pavement sections will be replaced full depth with new pavement sections. If a mill and overlay of existing pavements will be considered in lieu of the new pavement sections, we will need to provide additional recommendations.

Traffic information, which included Average Daily Traffic (ADT) and percent trucks estimated for the year 2030, was provided by Burns & McDonnell. Based on the traffic information given to us, the 1993 AASHTO Guide for Design of Pavement Structures, and the City of Bentonville and AHTD specifications for pavement construction, three pavement section alternatives are presented in section **4.3 Pavements**.


Recommendations regarding earthwork and subgrade preparation and the design and construction of pavements are presented in the following sections.

4.2 General Earthwork

4.2.1 Site Preparation

The recommendations presented below apply to general site preparation for pavement areas. Areas to be graded should be stripped and cleared of surface vegetation, topsoil, trees, bushes, debris, and any other deleterious material. Any loose soils at the surface, tree stumps, and major root systems should be removed full-depth and the resultant excavations should be cleaned of all loose material and water and properly backfilled with tested and approved engineered fill. In addition, surface and subsurface features such as existing pavements or underground abandoned utilities should be removed full-depth and the resultant excavations should be properly backfilled with tested and approved engineered fill.

After stripping and completing any required grading cuts, and before placing any new fill, the exposed subgrade should be proofrolled with a fully-loaded dump truck, scraper, or other rubber-

tired construction equipment weighing at least 25 tons to evaluate the presence of any low strength, unstable soils. Any low strength, unstable soils identified by the proofrolling should be overexcavated and replaced with tested and approved fill as indicated in section **4.3 Material Types**, if they cannot be adequately stabilized in-place. Based on the results of our field exploration and experience with similar projects, unstable soils with high moisture content may be encountered directly beneath existing pavements.

After completing a successful proofroll, and before placing any fill, the exposed subgrade should be scarified to a minimum depth of 10 inches, moisture conditioned, and compacted as recommended in section **4.4 Compaction Requirements**.

4.2.2 Fill Material Types

Engineered fill, where required to raise the subgrade elevation and to backfill excavations, should meet the following specifications:

Fill Type ¹ USCS Classification		Acceptable Location for Placement		
"Hillside" Borrow Material ² GC, GM (off-site borrow)		All locations and elevations		
Approved Crushed Stone ² GW, GP (off-site borrow)		All locations and elevations		
Locally Available Crushed Shale and Sandstone ² SC, SP, GC, GP (off-site borrow)		All locations and elevations		
Clay Soils	Low to high plasticity clay ³ (CL, CL-CH, CH, CL-ML)	Should not be placed within 10 inches of final pavement subgrade, unless chemically treated as recommended in section 4.3.4 Subgrade Improvement Recommendations .		
	Existing fill ⁴	Upon approval of the geotechnical engineer		

- Controlled, compacted fill should consist of approved materials that are free of organic matter and debris and contain maximum rock size of 3 inches. Frozen material should not be used, and fill should not be placed on a frozen subgrade. A sample of each material type should be submitted to the geotechnical engineer for evaluation.
- 2. Approved, granular soils having a maximum Liquid Limit (LL) of 40, a maximum Plasticity Index (PI) of 15, and containing at least 15% fines (material passing the No. 200 sieve, based on dry weight). The California Bering Ratio (CBR) and/or Resilient Modulus (MR) values of these soils, when compacted as recommended in section 4.3.2 Compaction Requirements, should be 8 or greater and 9,600 psi or grater, respectively.
- 3. Clay soils could be used as fill within 10 inches of pavement subgrade, only if they are effectively modified with Class "C" fly ash to achieve a CBR value of 8 or greater and/or a MR value of 9,600 psi or greater. Similarly, the maximum LL and PI values should not exceed 40 and 15, respectively. We estimate a minimum of approximately 15 to 17 percent Class "C" fly ash, based on the soil's compacted dry unit weight, would be required to achieve the required CBR and/or MR

8th Street Widening Project – Proposed Pavements ■ Bentonville, Arkansas June 11, 2014 ■ Terracon Project No. 04135111

Continued from page 6

values. The actual amounts of Class "C" fly ash should be determined in the laboratory and verified in the field as the amount required to achieve satisfactory CBR and/or MR values.

4. Because the variable composition and quality of existing fill materials along the project site, we recommend that existing fills be removed within 10 inches of final pavement subgrade and replaced with tested and approved engineered fill materials. However, existing fills could be used if the geotechnical engineer considers that those materials are suitable and meet the CBR and/or MR values and the plasticity required.

4.2.3 Compaction Requirements

The scarified and compacted subgrade and new fills should be moisture conditioned and compacted using the recommendations presented in the following table.

Item	Description		
Subgrade Scarification Depth	10-inches		
Fill Lift Thickness ¹	12-inches or less in loose thickness		
Compaction Requirements ²	At least 95% of the material's maximum dry density based on AASHTO T-99 or AASHTO T-180 standard specifications depending on the content of fines (AHTD Specifications section 210.10).		
Moisture Content	A level within minus 2 to plus 2 of the material's optimum moisture content, determined in accordance with AASHTO T-99/T-180.		

- 1. Thinner lifts are recommended in confined areas or when hand-operated compaction equipment is used.
- 2. The scarified and compacted subgrade and new fills should be tested for moisture content and compaction during placement. Should the results of the in-place density tests indicate the specified moisture or compaction limits have not been met, the area represented by the test should be reworked and retested as required until the specified moisture and compaction requirements are achieved.

The recommended moisture content should be maintained in the scarified and compacted subgrade and new fills, until fills are completed and pavements are constructed.

4.2.4 Construction Considerations for Earthwork

The surficial lean clay soils are moisture sensitive and subject to disturbance and instability when they experience increases in moisture content. If wet conditions exist during construction, equipment mobility will be hindered and it will be necessary to overexcavate and replace or stabilize the full-depth of these soils to develop support for new fills and pavements, and allow construction to proceed.

Upon completion of filling and grading, care should be taken to maintain the subgrade moisture content prior to pavement construction. Construction traffic over the completed subgrade

8th Street Widening Project – Proposed Pavements ■ Bentonville, Arkansas June 11, 2014 ■ Terracon Project No. 04135111

should be avoided to the extent practical. The site should also be graded to prevent ponding of surface water on the prepared subgrades or in excavations. If the subgrade should become frozen, excessively wet or dry, or disturbed, the affected material should be removed or these materials should be scarified, moisture conditioned, and recompacted prior to pavement construction.

The geotechnical engineer should be retained during the construction phase of the project to provide observation and testing during subgrade preparation and earthwork.

4.3 Pavements

Three pavement section alternatives are presented for consideration of Burns & McDonnell, the City of Bentonville, and the Arkansas Highway Transportation Department (AHTD):

- Full-Depth Flexible Pavement
- Flexible Pavement with Aggregate Base
- Rigid Pavement

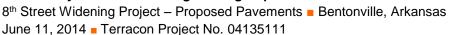
The traffic information provided by Burns & McDonnell included Average Daily Traffic (ADT) and percent trucks estimated for the year 2030. The plan with traffic information for 2030, as provided by Burns & McDonnell, is included in Appendix D-4. The traffic was recalculated for the year 2015 based on an average traffic growth of 2%. The design lane traffic was calculated as per the 1993 AASHTO Guide for Design of Pavement Structures, as follows:

$$W_{18} = D_D \times D_L \times W_{18TOTAL}$$

Where

W₁₈ : Design lane traffic

D_D : Percent of traffic on each direction

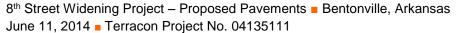

(0.5 for 8th Street and 1.0 for ramps)

D_L : Low factor for 2 lanes in the same direction

(0.5 for 8th Street and 1.0 for ramps)

W_{18TOTAL}: Total ADT

Based on the traffic information provided to us, we divided the pavement design into twelve sections, Section I through XII. A summary of the ADT data and design lane traffic is given as follows.



		Traffic Data		Design Lane Traffic (W ₁₈) ³		
8 th Street Section ^{1, 2, 3}		ADT 2030	ADT 2015	Trucks (%)	Cars	Trucks
I	8th Street from SW I Street to SW A Street	14,600	10,848	5%	4,122	217
II	8th Street from SW A Street to SE J Street	17,500	13,003	5%	4,941	260
III	8th Street from SE J Street to Moberly Lane	20,500	15,232	6%	5,727	366
IV	8th Street from Moberly Lane to I-540	27,500	20,433	6%	7,683	490
V	8th Ramp 1	21,200	15,752	8%	14,492	1,260
VI	8th Ramp 2	5,200	3,864	8%	3,555	309
VII	8th Ramp 3	4,600	3,418	8%	3,144	273
VIII	8th Ramp 4	19,600	14,563	8%	13,398	1,165
IX	102 Ramp 1	12,800	9,511	8%	8,750	761
X	102 Ramp 2	5,700	4,235	8%	3,896	339
XI	102 Ramp 3	6,700	4,978	8%	4,580	398
XII	102 Ramp 4	13,900	10,328	8%	9,502	826

- 1. Sections I and II are to be designed and constructed as per the City of Bentonville Standard Specifications for Streets (2006 or latest edition).
- 2. Sections III through XII are to be designed and constructed as per AHTD Roadway Design Plan Development Guidelines (2006 or latest edition).
- 3. See Appendix D-4 for location of sections I through XII.

Our analyses were performed based on the 1993 AASHTO Guide for Design of Pavement Structures. The pavement sections are based on the Average Daily Traffic (ADT) and design lane traffic (W_{18}) given in the above-table starting in 2015. A summary of our design considerations is given below.

 Annual Traffic Growth Rate 	2%
 Minimum Subgrade California Bearing Ration (CBR) 	8
 Minimum Subgrade Resilient Modulus (M_R) 	9,600 psi
 Reliability Primary: 8th Street 	90%
 Reliability Interstate: Ramps 	95%
Standard Deviation (flexible pavement)	0.45
Standard Deviation (rigid pavement)	0.35
Initial Serviceability	4.5
Terminal Serviceability	2.5
Design Serviceability Loss	2
Design Life	20 years
Load Transfer "J" (for tied Portland Cement Concrete)	2.8
 Drainage Coefficient (for aggregate base material) 	1.0

Additional pavement design and construction considerations are given as follows:

Asphalt Performance Grade
 ACHM Surface course
 PG 76-22 (Used on North of I-40)
 12.5 mm - 1/2' (Granular texture)

ACHM Binder course
 ACHM Base course
 37.5 mm - 1 1/2"

Aggregate Base course
 AHTD – Class 7

Structural layer coefficients of 0.44 were used for asphaltic concrete surface and binder, 0.36 for asphaltic concrete base, and 0.14 for the aggregate base material. For analysis purposes, the truck traffic was considered to consist of semi-tractor trailer combinations with 5+ axles having a gross weight of 80,000 pounds or equivalent traffic loading. Periodic maintenance should be expected to realize the anticipated design life.

Our calculations were developed based on a subgrade Resilient Modulus (MR) of 9,600 psi or approximate equivalent California Bearing Ration (CBR) of 8. Four composite soil samples compacted at their Optimum Moisture Content (OMC) and OMC+2% were tested in our laboratory to determine their MR values. The samples were selected from different boring locations to represent the general subgrade soil conditions along the project alignment.

Our laboratory test results indicated that the on-site lean clay soils encountered at the site (i.e. bulk samples 1 through 3) generally do not meet the MR or CBR requirements for moisture contents within the above mentioned moisture content range and anticipated field confining pressures, which we anticipate will vary between approximately 2 and 4 pounds per square inch (psi).

On the other hand, our laboratory results indicated that the granular soils encountered at this site, which generally corresponded to imported fill materials (i.e. bulk sample 4, which was classified as clayey/silty chert gravel), will probably meet the desired MR value and that similar materials can be used to improve the subgrade as described in section **4.3.4 Subgrade Improvement Recommendations**.

Recommended pavement sections for the three alternatives are provided in the following sections. Other pavement sections could be considered.

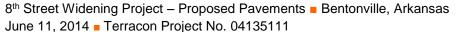
8th Street Widening Project – Proposed Pavements ■ Bentonville, Arkansas June 11, 2014 ■ Terracon Project No. 04135111

4.3.1 Full-Depth Flexible Pavement

The table below shows the full-depth flexible pavement design for each section of the project. A typical full-depth flexible pavement section should include the following layers:

- Asphalt Concrete Hot Mix (ACHM) Surface Course
- over ACHM Binder Course
- over ACHM Base Course
- over geotextile fabric
- over improved subgrade

Minimum Full-Depth Asphalt Pavement Sections							
(inches)							
	8th Street Section 1, 2	ESALs (million)	ACHM Surface	ACHM Binder	ACHM Base		
	8th Street from SW I Street to SW A Street	4.7	3.0	2.0	5.0		
II	8th Street from SW A Street to SE J Street	5.6	3.0	2.0	5.5		
III	8th Street from SE J Street to Moberly Lane	7.9	2.0	3.0	8.0		
IV	8th Street from Moberly Lane to I-540	10.6	2.0	3.0	8.0		
V	8th Ramp 1	26.5	2.0	3.0	9.0		
VI	8th Ramp 2	6.7	2.0	3.0	8.0		
VII	8th Ramp 3	5.9	2.0	3.0	8.0		
VIII	8th Ramp 4	24.5	2.0	3.0	8.5		
IX	102 Ramp 1	16.0	2.0	3.0	8.0		
X	102 Ramp 2	7.3	2.0	3.0	8.0		
XI	102 Ramp 3	8.6	2.0	3.0	8.0		
XII	102 Ramp 4	17.8	2.0	3.0	8.0		


^{1.} A geotextile fabric is recommended beneath the pavement section to prevent intrusion of fines into the aggregate base.

4.3.2 Flexible Pavement with Aggregate Base

The table below shows the flexible pavement design with aggregate base for each section of the project. A typical flexible pavement with aggregate base section should include the following layers:

- Asphalt Concrete Hot Mix (ACHM) Surface Course
- over ACHM Binder Course
- over ACHM Base Course
- over aggregate base
- over geotextile fabric
- over improved subgrade

^{2.} For subgrade improvement, see section 4.3.4 Subgrade Improvement Recommendations.

Minimum Asphalt Pavement with Aggregate Base Sections (inches)						
8th Street Section ^{1, 2, 3}		ESALs (million)	ACHM Surface	ACHM Binder	ACHM Base	Aggregate Base
	8th Street from SW I Street to SW A Street	4.7	3.0	2.0	4.0	6.0
II	8th Street from SW A Street to SE J Street	5.6	3.0	2.0	4.0	6.0
III	8th Street from SE J Street to Moberly Lane	7.9	2.0	3.0	4.0	6.0
IV	8th Street from Moberly Lane to I-540	10.6	2.0	3.0	4.0	8.0
V	8th Ramp 1	26.5	2.0	3.0	5.0	10.0
VI	8th Ramp 2	6.7	2.0	3.0	4.0	6.0
VII	8th Ramp 3	5.9	2.0	3.0	4.0	6.0
VIII	8th Ramp 4	24.5	2.0	3.0	5.0	10.0
IX	102 Ramp 1	16.0	2.0	3.0	4.0	10.0
Х	102 Ramp 2	7.3	2.0	3.0	4.0	6.0
XI	102 Ramp 3	8.6	2.0	3.0	4.0	8.0
XII	102 Ramp 4	17.8	2.0	3.0	4.0	10.0

^{1.} A geotextile fabric is recommended beneath the pavement section to prevent intrusion of fines into the aggregate base.

4.3.3 Rigid Pavement

The table below shows the rigid pavement design for each section of the project. A typical rigid pavement section should include the following layers:

- 3,500 psi air entrained doweled joint Portland Cement Concrete (PCC)
- over aggregate base
- over geotextile fabric
- over improved subgrade

Minimum Rigid Pavement Sections (inches)					
•	8th Street Section 1	ESALs (million)	PCC Concrete	Aggregate Base	
ı	8th Street from SW I Street to SW A Street	7.8	10.0	6.0	
П	8th Street from SW A Street to SE J Street	9.4	10.5	6.0	
III	8th Street from SE J Street to Moberly Lane	13.2	11.0	6.0	
IV	8th Street from Moberly Lane to I-540	17.7	11.5	6.0	
V	8th Ramp 1	45.5	13.5	10.0	
VI	8th Ramp 2	11.2	11.0	6.0	
VII	8th Ramp 3	9.9	11.0	6.0	
VIII	8th Ramp 4	42.0	13.5	10.0	
IX	102 Ramp 1	27.5	12.5	8.0	
X	102 Ramp 2	12.2	11.5	6.0	
XI	102 Ramp 3	14.4	11.5	6.0	
XII	102 Ramp 4	29.8	13.0	8.0	

^{2.} For subgrade improvement, see section **4.3.4 Subgrade Improvement Recommendations**.

8th Street Widening Project – Proposed Pavements ■ Bentonville, Arkansas June 11, 2014 ■ Terracon Project No. 04135111

Continued from page 12

- 1. A geotextile fabric is recommended beneath the pavement section to prevent intrusion of fines into the aggregate base.
- 2. For subgrade improvement, see section **4.3.4 Subgrade Improvement Recommendations**.

4.3.4 Subgrade Improvement Recommendations

In order to achieve a MR of approximately 9,600 psi, we recommend that clay soils within 10 inches of pavement subgrade be removed and replaced with imported engineered fill materials as recommended in section **4.2.2 Fill Material Types**. We understand that "hillside" materials consisting of clayey chert gravel and/or low plasticity cherty clay have been used in similar projects near the vicinity of this project site with satisfactory results.

The City of Bentonville recommends that as a minimum, the upper 24 inches of pavement subgrade should be treated or removed and replaced if the California Bearing Ratio (CBR) is less than 8 and/or if the subgrade soils are susceptible to frost action. Based on our laboratory results, correlations between CBR and MR values, and our experience with similar materials; the clay soils encountered along 8th Street have CBR values of less than 8. Furthermore, the on-site clay soils are susceptible to frost action. Thus, subgrade soils within 24 inches of final pavement subgrade between SW I Street to SW A Street and SW A Street to SE J Street should be removed and replaced with tested and approved engineered fill.

As an alternative to removing and replacing the upper 10 or 24 inches of the subgrade soils and importing "off-site borrow" materials, the on-site clay soils could be used as fill within 10 inches of pavement subgrade, if they are effectively modified with Class "C" fly ash to achieve a California Bering Ratio (CBR) value of 8 or greater and/or a Resilient Modulus (MR) value of 9,600 psi or greater. We estimate a minimum of approximately 15 to 17 percent Class "C" fly ash, based on the soil's compacted dry weight, would be required to achieve the required CBR and/or MR values. The actual amounts of Class "C" fly ash should be determined in the laboratory and verified in the field as the amount required to achieve satisfactory CBR and/or MR values. Treating the on-site clay soils with Class "C" fly ash would also be a positive means to resist frost action.

4.4 Additional Pavement Considerations

4.4.1 Pavement Drainage

Pavements should be sloped to provide rapid drainage of surface water. Water allowed to pond on or adjacent to the pavements could saturate the subgrade and contribute to premature pavement deterioration.

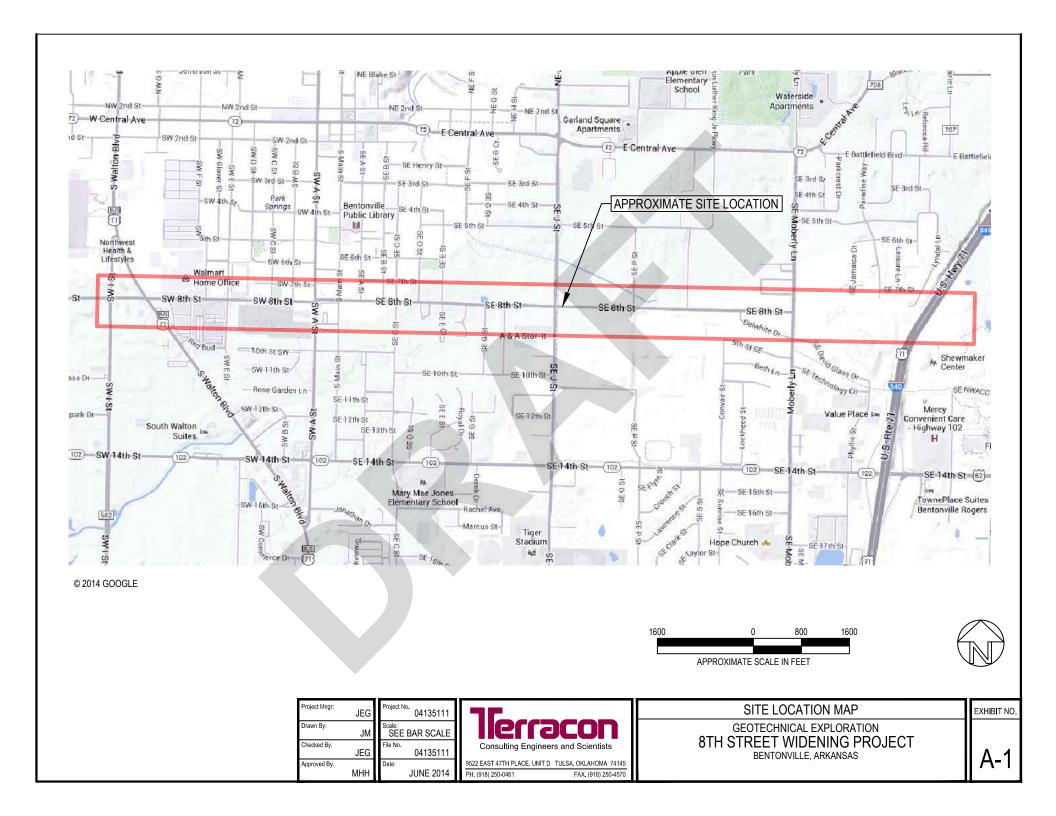
4.4.2 Pavement Maintenance

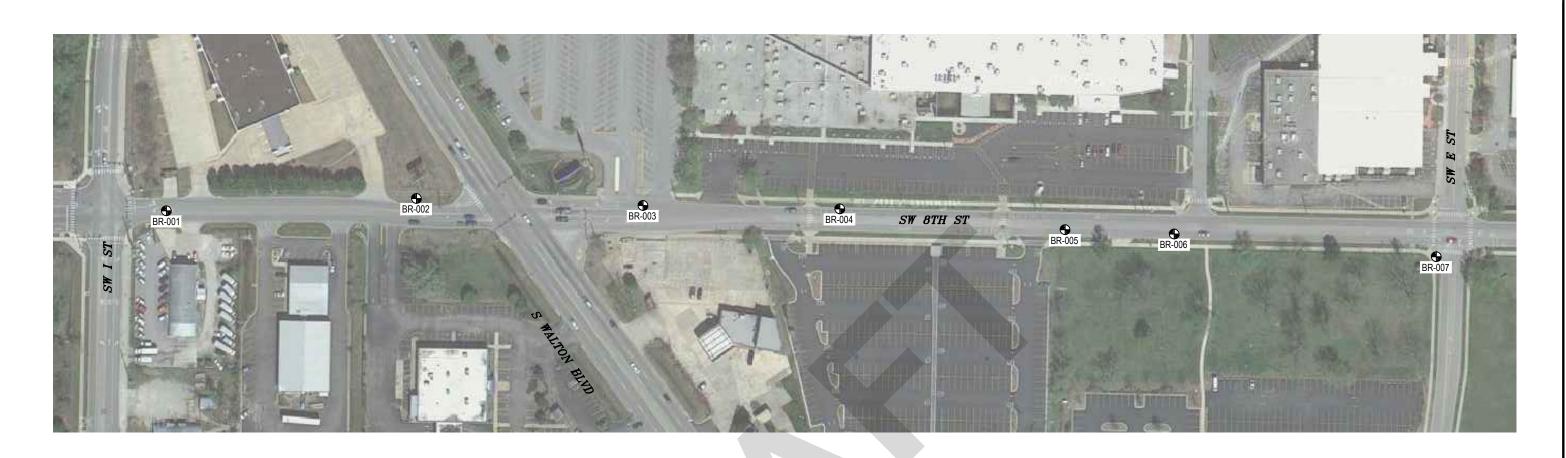
The pavement sections provided in this report represent minimum recommended thicknesses and, as such, periodic maintenance including crack and joint sealing, patching, and surface

8th Street Widening Project – Proposed Pavements ■ Bentonville, Arkansas June 11, 2014 ■ Terracon Project No. 04135111

sealing should be performed. Prior to implementing any maintenance, additional engineering observation is recommended to determine the type and extent of preventive maintenance.

5.0 GENERAL COMMENTS


Terracon should be retained to review the final design plans and specifications so comments can be made regarding interpretation and implementation of our geotechnical recommendations in the design and specifications. Terracon also should be retained to provide testing and observation during excavation, grading, foundation and construction phases of the project.


The analysis and recommendations presented in this report are based upon the data obtained from the borings performed at the indicated locations and from other information discussed in this report. This report does not reflect variations that may occur between the borings, across the site, or due to the modifying effects of weather. The nature and extent of such variations may not become evident until during or after construction. If variations appear, we should be immediately notified so that further evaluation and supplemental recommendations can be provided.

The scope of services for this project does not include either specifically or by implication any environmental assessment of the site or identification or prevention of pollutants, hazardous materials or conditions. If the owner is concerned about the potential for such contamination or pollution, other studies should be undertaken.

This report has been prepared for the exclusive use of our client for specific application to the project discussed and has been prepared in accordance with generally accepted geotechnical engineering practices. No warranties, either express or implied, are intended or made. Site safety, excavation support, and dewatering requirements are the responsibility of others. In the event that changes in the nature, design, or location of the project as outlined in this report are planned, the conclusions and recommendations contained in this report shall not be considered valid unless Terracon reviews the changes and either verifies or modifies the conclusions of this report in writing.

APPENDIX A FIELD EXPLORATION

LEGEND

BORING LOCATION

Project Mngr:	JEG	Project No. 04135111	5
Orawn By:	JM	Scale: SEE BAR SCALE	
Checked By:	JEG	File No. 04135111	С
Approved By:		Date:	9522 E
	MHH	JUNE 2014	PH. (91

TIEFFECON
Consulting Engineers and Scientists

9522 EAST 47TH PLACE, UNIT D TULSA, OKLAHOMA 74145
PH. (918) 250-0461 FAX. (918) 250-4570

BORING LOCATION PLAN

GEOTECHNICAL EXPLORATION

8TH STREET WIDENING PROJECT

BENTONVILLE, ARKANSAS

EXHIBIT NO.

DIAGRAM IS FOR GENERAL LOCATION ONLY,
AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES

LEGEND

■ BORING LOCATION

			=
Project Mngr:	JEG	Project No. 04135111	Г
Drawn By:	JM	Scale: SEE BAR SCALE	l
Checked By:	JEG	File No. 04135111	l
Approved By:	МНН	Date: JUNE 2014	95 Ph

TIEFFECON
Consulting Engineers and Scientists

9522 EAST 47TH PLACE, UNIT D TULSA, OKLAHOMA 74145
PH. (918) 250-0461 FAX. (918) 250-4570

BORING LOCATION PLAN

GEOTECHNICAL EXPLORATION

8TH STREET WIDENING PROJECT
BENTONVILLE, ARKANSAS

EXHIBIT NO.

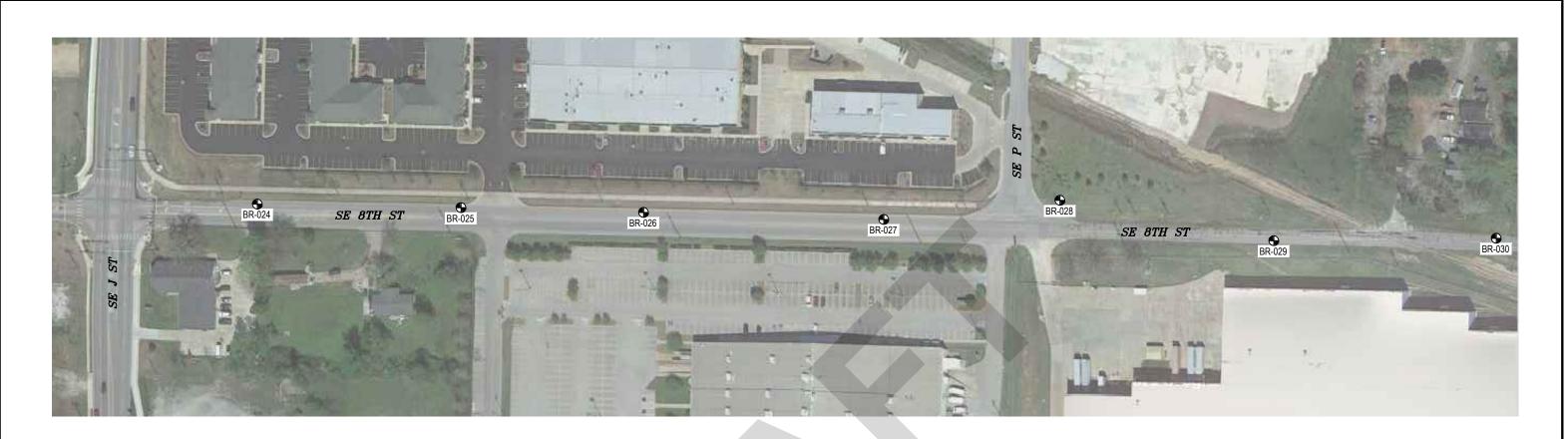
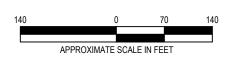



DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES

Project Mngr:	JEG	Project No. 04135111	
Drawn By:	JM	Scale: SEE BAR SCALE	
Checked By:	JEG	File No. 04135111	
Approved By:	МНН	Date: JUNE 2014	9522 PH.

1	75	Ī
4	Consulting Engineers and Scientists	l
1	9522 EAST 47TH PLACE, UNIT D TULSA, OKLAHOMA 74145 PH. (918) 250-0461 FAX. (918) 250-4570	

BORING LOCATION PLAN

GEOTECHNICAL EXPLORATION

8TH STREET WIDENING PROJECT
BENTONVILLE, ARKANSAS

EXHIBIT NO.

PAGE 3 OF 4

BORING LOCATION PLAN

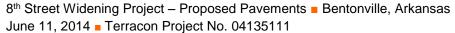
GEOTECHNICAL EXPLORATION

8TH STREET WIDENING PROJECT
BENTONVILLE, ARKANSAS

EXHIBIT NO.

8th Street Widening Project – Proposed Pavements ■ Bentonville, Arkansas June 11, 2014 ■ Terracon Project No. 04135111

Field Exploration Description


The boring locations and elevations were established in the field by B & F Engineering, Inc. prior to commencement of our field activities. The majority of the borings located along sidewalks were offset to the road due to the presence of underground and overhead utility lines. Actual boring locations are shown on the boring location plan in Appendix A. Ground elevations at the boring locations and boring coordinates were estimated based on the distances measured in the field by our drill crew. Elevations shown on the logs have been rounded to the nearest 0.5 feet. The boring locations and elevations should be considered accurate only to the degree implied by the methods used to define them.

We drilled the borings with ATV-mounted rotary drill rigs using continuous flight augers and rotary cutting bits to advance the boreholes. Representative samples were obtained by the split-barrel sampling procedure. In the split-barrel sampling procedure, the number of blows required to advance a standard 2-inch O.D. split-barrel sampler the last 12 inches of the typical total 18-inch penetration by means of a 140-pound auto-hammer with a free fall of 30 inches, is the standard penetration resistance value (SPT-N). The N-value is used to estimate the in-situ relative density of cohesionless soils, and to a lesser degree of accuracy, the consistency of cohesive soils and hardness of weathered bedrock.

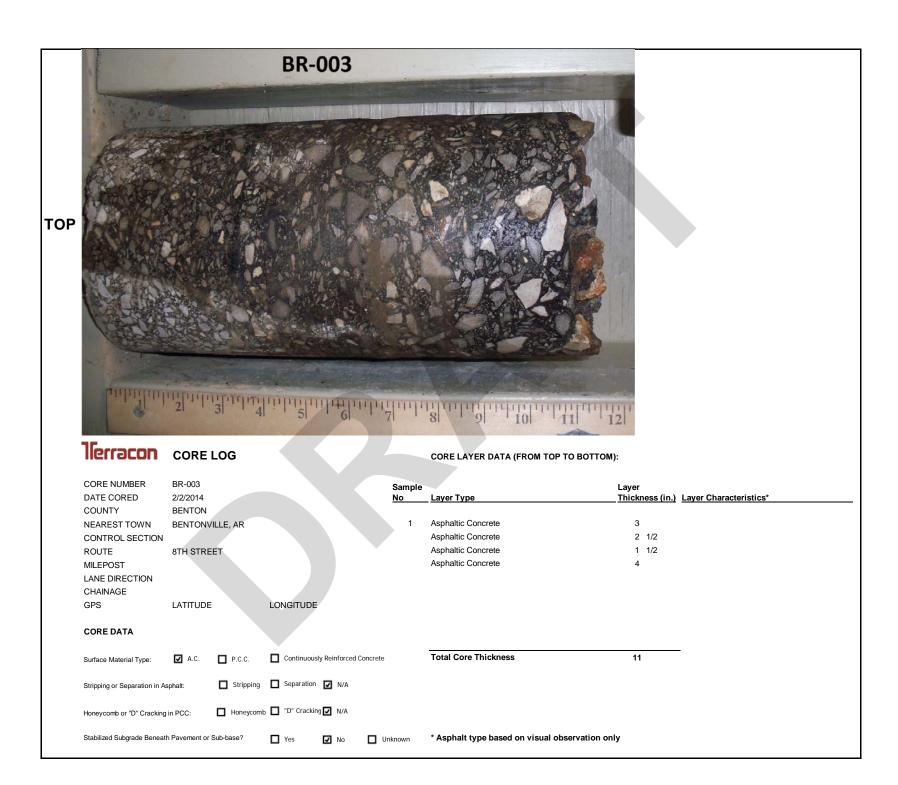
An automatic SPT hammer was used to advance the split-barrel sampler in the borings. Generally, a greater efficiency is achieved with the automatic hammer compared to the conventional safety hammer operated with a cathead and rope. The effect of the automatic hammer's efficiency has been considered in the interpretation and analysis of the subsurface information for this report. The sampling depths, penetration distances, and N-values are reported on the boring logs. The samples were tagged for identification, sealed to reduce moisture loss and returned to the laboratory for further examination, testing and classification. In addition to split-barrel samples, bulk samples were obtained from the subgrade soils from different locations.

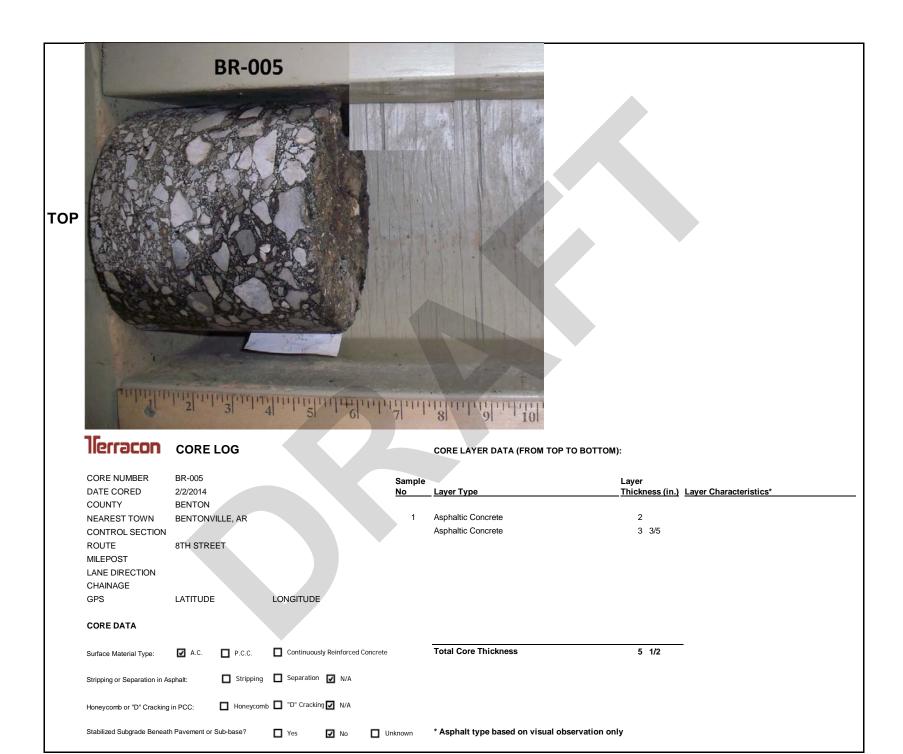
We cored the existing pavement at select boring locations using an approximate 6-inch diameter, diamond-bit core barrel. After pavement coring, the thickness of the pavement was measured at each location and the pavement cores brought to our laboratory for observation. Photographic logs of the pavement cores are provided in Appendix A.

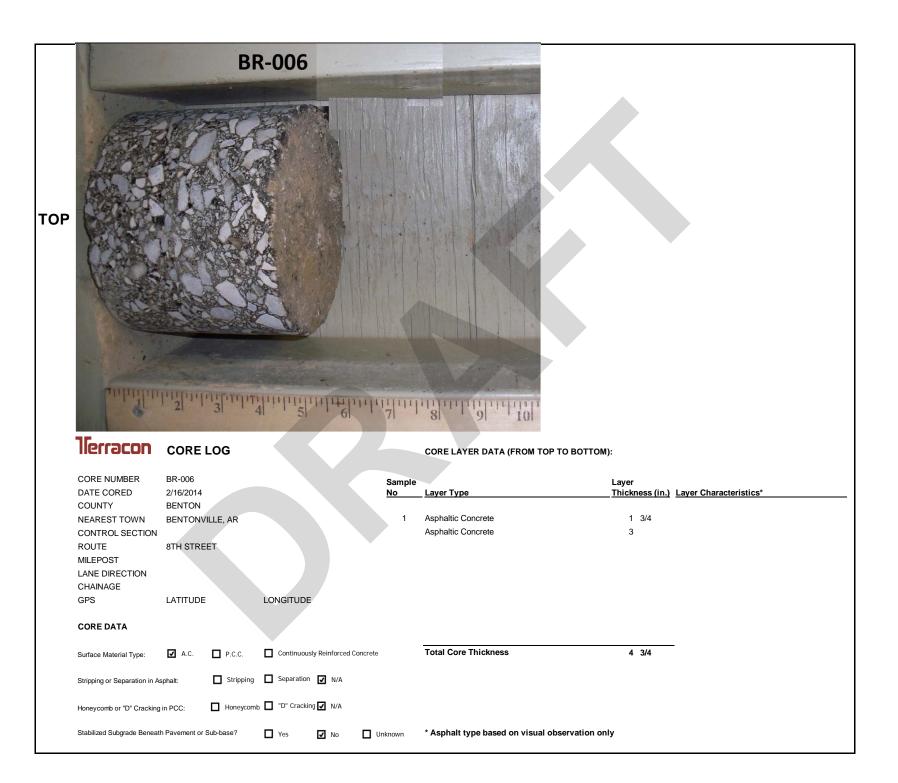
Dynamic Cone Penetration (DCP) tests were also performed on the subgrade soils at the majority of our boring locations, right beneath pavement and aggregate base, if any. The DCP test consists of driving a steel cone, by means of a 10.1-pound weight with a free fall of 22.5 inches, into the subgrade materials. The penetration depth and number of blows are used to calculate the DCP Penetration Index, which is in turns used to correlate the California Bearing Ratio (CBR) of the subgrade soils. Our DCP tests realized refusal at several locations due to the presence of gravel materials. Results of our DCP tests are provided in Appendix C.

Field Exploration Description (Continued)

A field log of each boring was prepared by the drill crew along with the DCP tests. The logs included visual classifications of the materials encountered during drilling as well as the driller's interpretation of the subsurface conditions between samples. Final boring logs included with this report represent the engineer's interpretation of the subsurface conditions at the borings based on field and laboratory data and observation of the samples.


BORING LOG NO. BR-011 Page 1 of 1												
PR	OJECT:	8th Street Widening Project Pavements	- Proposed	CLIENT: E	Burns	& N	lcD	one	II Engineer			
SIT	E:											
(1)		Bentonville, Arkansas N See Exhibit A-2				, σ	ш	÷			ATTERBERG	S 0
GRAPHIC LOG		.364183° Longitude: -94.210965°			1 (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	TEST	WATER CONTENT (%)	LIMITS	PERCENT FINES
RAPH			Surface	Elev.: 1288 (Ft.)	DEPTH (Ft.)	ATER	MPLE	COVE	FIELD TEST RESULTS	WAT	LL-PL-PI	RCEN
	DEPTH 5" As	nhalt		ELEVATION (Ft.)		>8	/S	뿝	_	0		뮙
	0.5 Borin	g was not extended below asphalt du ground utilities	e to the presence of	1287.5								
		ng Terminated at 0.5 Foot										
	Stratification	on lines are approximate. In-situ, the transition	may be gradual.			Ham	nmer	Type:	Automatic			
	dvancement Method: Pavement Core Bit See Exhibit A-3 for desc procedures.				on of field Notes:							
			See Appendix B for des procedures and addition	cription of laboratonal data (if anv).	ory							
	onment Meth	od: nt patched upon completion.	See Appendix C for exp abbreviations.		ls and							
Jui 10			<u> </u>						-			
WATER LEVEL OBSERVATIONS			Boring Started: 2/23/2014 Drill Rig: ATV#945				Boring Completed: 2/23/2014					
9522 East 47th				h Place, Unit D	Drill Rig: ATV#945				Driller: TJ			
Tulsa, Oki				klahoma	Project No.: 04135111				Exhibit: A-14			


Terracon core log


CORE LAYER DATA (FROM TOP TO BOTTOM):

CORE NUMBER	BR-001		Sample						
DATE CORED	2/22/2014		No	Layer Type	Layer Thickness (in.)	Layer Characteristics*			
COUNTY	BENTON								
NEAREST TOWN	BENTONVILLE, AR		1	Asphaltic Concrete	1 3/4				
CONTROL SECTION				Asphaltic Concrete	1 1/4				
ROUTE	8TH STREET			Asphaltic Concrete	2				
MILEPOST				Asphaltic Concrete	2				
LANE DIRECTION				Asphaltic Concrete	2				
CHAINAGE									
GPS	LATITUDE	LONGITUDE							
CORE DATA									
Surface Material Type:	✓ A.C. □ P.C.C.	Continuously Reinforced Concrete		Total Core Thickness	9				
Stripping or Separation in A	sphalt: Strippin	g 🗌 Separation 🗸 N/A							
Honeycomb or "D" Cracking in PCC: Honeycomb "D" Cracking N/A									
Stabilized Subgrade Beneath Pavement or Sub-base? Yes No Unknown * Asphalt type based on visual observation only									

Terracon CORE LOG

CORE NUMBER BR-008 DATE CORED 2/16/2014 COUNTY BENTON BENTONVILLE, AR NEAREST TOWN

CONTROL SECTION

ROUTE 8TH STREET

MILEPOST LANE DIRECTION

CHAINAGE

LATITUDE LONGITUDE GPS

CORE DATA

■ Continuously Reinforced Concrete ✓ A.C. Surface Material Type:

Total Core Thickness

Layer

1

1 1/4

1 1/4

2 1/2

Thickness (in.) Layer Characteristics*

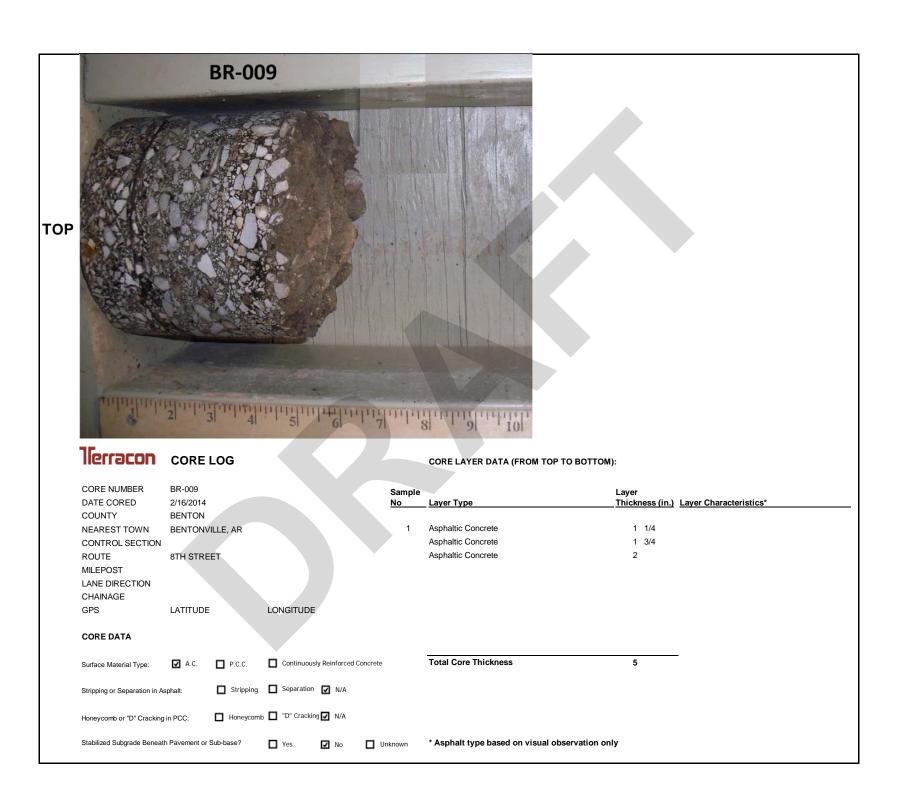
Stripping or Separation in Asphalt: Honeycomb or "D" Cracking in PCC: ☐ Stripping ☐ Separation ☑ N/A

☐ Honeycomb ☐ "D" Cracking ☑ N/A

Stabilized Subgrade Beneath Pavement or Sub-base?

Unknown

Sample


Layer Type

Asphaltic Concrete

Asphaltic Concrete

Asphaltic Concrete Asphaltic Concrete

* Asphalt type based on visual observation only

Terracon CORE LOG

 CORE NUMBER
 BR-010

 DATE CORED
 2/22/2014

 COUNTY
 BENTON

 NEAREST TOWN
 BENTONVILLE, AR

CONTROL SECTION

ROUTE 8TH STREET

MILEPOST LANE DIRECTION CHAINAGE

GPS LATITUDE LONGITUDE

CORE DATA

Surface Material Type: A.C. P.C.C. Continuously Reinforced Concrete Total Core Thickness

Sample

Layer Type

Asphaltic Concrete

Asphaltic Concrete

Asphaltic Concrete

Stripping or Separation in Asphalt: Stripping Separation N/A

Honeycomb or "D" Cracking in PCC: ☐ Honeycomb ☐ "D" Cracking ☑ N/A

Stabilized Subgrade Beneath Pavement or Sub-base? Yes Inknown *Asphalt type based on visual observation only

CORE LAYER DATA (FROM TOP TO BOTTOM):

Layer

1 1/2

1 1/2

3

Thickness (in.) Layer Characteristics*

CORE NUMBER BR-011 DATE CORED 2/23/2014 COUNTY BENTON NEAREST TOWN BENTONVILLE, AR

CONTROL SECTION

ROUTE 8TH STREET

MILEPOST LANE DIRECTION CHAINAGE

LATITUDE GPS

CORE LAYER DATA (FROM TOP TO BOTTOM):

<u>'</u>	Layer Type	Thickness (in.)	Layer Characteristics*
1	Asphaltic Concrete	1 1/2	
	Asphaltic Concrete	2 1/4	
	Asphaltic Concrete	1 1/4	
	Total Core Thickness	5	•
	* Asphalt type based on visual obs	servation only	

Layer

CORE DATA

Surface Material Type:

☑ A.C. □ P.C.C.

■ Continuously Reinforced Concrete

LONGITUDE

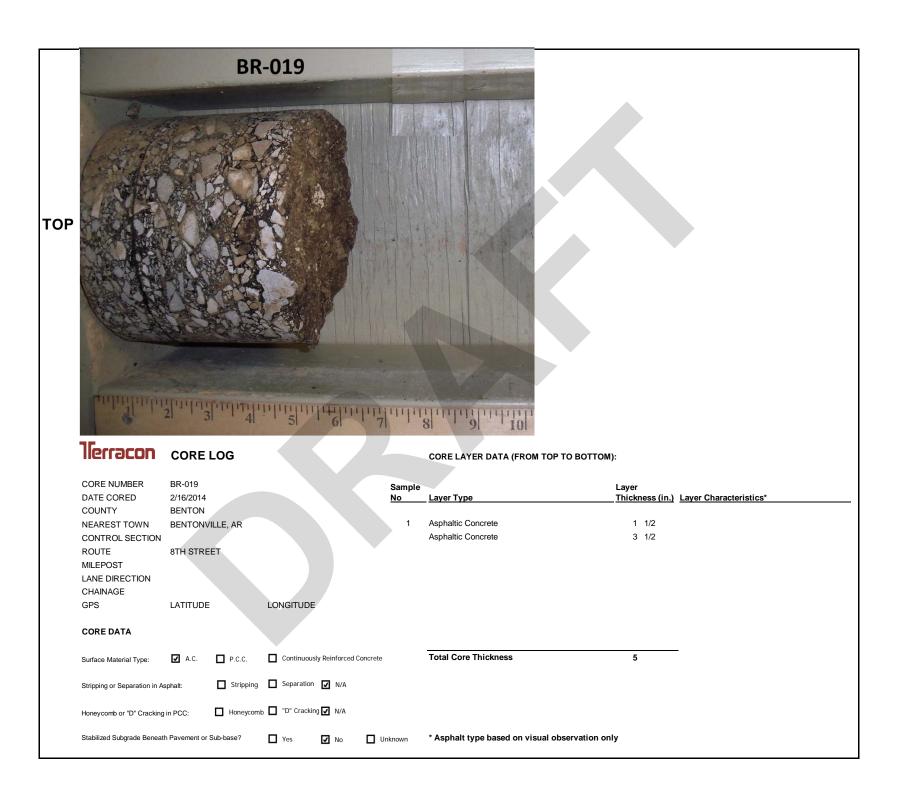
Stripping or Separation in Asphalt:

Honeycomb or "D" Cracking in PCC:

☐ Stripping ☐ Separation ☑ N/A

☐ Honeycomb ☐ "D" Cracking ☑ N/A

Stabilized Subgrade Beneath Pavement or Sub-base?

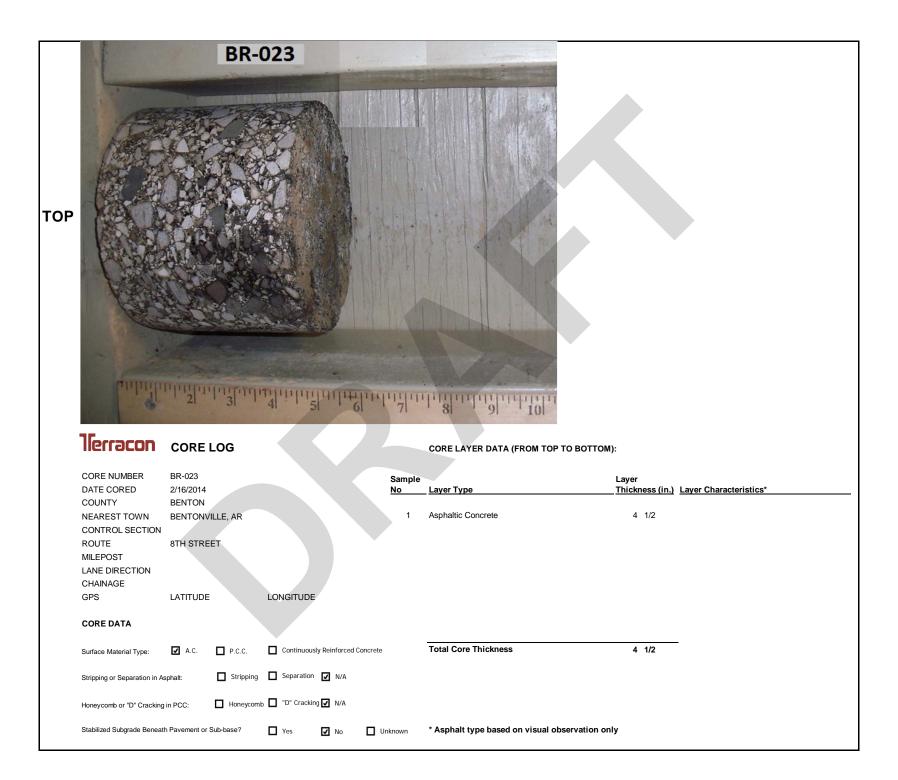

Sample

Terracon CORE LOG

CORE NUMBER DATE CORED COUNTY	BR-016 2/1/2014 BENTON			Sample <u>No</u>		Layer Thickness (in.)	Layer Characteristics*
NEAREST TOWN	BENTON	IIIE AR		1	Asphaltic Concrete	1 1/4	
CONTROL SECTION	BEITTOIT	ILLE, AIX			Asphaltic Concrete	2 1/4	
ROUTE	8TH STRE	EΤ			Asphaltic Concrete	3/4	
MILEPOST					Asphaltic Concrete	3/4	
LANE DIRECTION					Asphaltic Concrete	3/4	
CHAINAGE					Asphaltic Concrete	3/4	
GPS	LATITUDE		LONGITUDE				
CORE DATA							
Surface Material Type:	✓ A.C.	P.C.C.	Continuously Reinford	ced Concrete	Total Core Thickness	6 1/2	-
Stripping or Separation in As	sphalt:	Stripping	Separation N/A				
Honeycomb or "D" Cracking	in PCC:	☐ Honeycomb	"D" Cracking N/A				
Stabilized Subgrade Beneat	h Pavement or	Sub-base?	☐ Yes ✓ No	Unknown	* Asphalt type based on visual observation only	′	

Terracon core log

BR-021


CORE NUMBER

CORE NUMBER	BR-021				Sample		Layer	
DATE CORED	2/16/2014				No .	Layer Type	Thickness (in.) Layer Characteristics*	
COUNTY	BENTON							
NEAREST TOWN	BENTONV	ILLE, AR			1	Asphaltic Concrete	1 1/2	
CONTROL SECTION						Asphaltic Concrete	2 1/4	
ROUTE	8TH STRE	ET				Asphaltic Concrete	1	
MILEPOST						Asphaltic Concrete	1 1/4	
LANE DIRECTION						Asphaltic Concrete	1	ļ
CHAINAGE						Asphaltic Concrete	1	
GPS	LATITUDE		LONGITUDE					
CORE DATA								
Surface Material Type:	✓ A.C.	P.C.C.	Continuous	y Reinforced Cond	crete	Total Core Thickness	8	
Stripping or Separation in As	sphalt:	■ Stripping	☐ Separation	☑ N/A				
Honeycomb or "D" Cracking	in PCC:	☐ Honeycomb	"D" Crackin	J N/A				
Stabilized Subgrade Beneatl	h Pavement or	Sub-base?	Yes	☑ No ☐	Unknown	* Asphalt type based on visual observati	ion only	

lerracon core log

CORE NUMBER DATE CORED COUNTY	BR-022 2/16/2014 BENTON				Sample No		.ayer hickness (in.)	Layer Characteristics*
NEAREST TOWN CONTROL SECTION ROUTE MILEPOST LANE DIRECTION	BENTONV 8TH STRE				1	Asphaltic Concrete Asphaltic Concrete Asphaltic Concrete Asphaltic Concrete Asphaltic Concrete	1 1/4 3 3/4	
CHAINAGE GPS CORE DATA	LATITUDE		LONGITUDE			Asphaltic Concrete		
Surface Material Type:	A.C.	P.C.C.	Continuous	y Reinforced Concre	te	Total Core Thickness	5	-
Stripping or Separation in A	sphalt:	■ Stripping	☐ Separation	☑ N/A				
Honeycomb or "D" Cracking	in PCC:	☐ Honeycomb	☐ "D" Crackin	J N/A				
Stabilized Subgrade Beneat	h Pavement or	Sub-base?	Yes	☑ No	Unknown	* Asphalt type based on visual observation only		

Terracon core log

CORE NUMBER BR-025 DATE CORED 2/16/2014 COUNTY BENTON BENTONVILLE, AR NEAREST TOWN

CONTROL SECTION

ROUTE 8TH STREET

MILEPOST

LANE DIRECTION CHAINAGE

GPS LATITUDE

CORE LAYER DATA (FROM TOP TO BOTTOM):

pie		∟ayer	
	Layer Type	Thickness (in.)	Layer Characteristics*
1	Asphaltic Concrete	1 1/2	
	Asphaltic Concrete	2	
	Asphaltic Concrete	3	
			<u></u>
	Total Core Thickness	6 1/2	
	* Asnhalt type hased on visual observ	vation only	

CORE DATA

Surface Material Type:

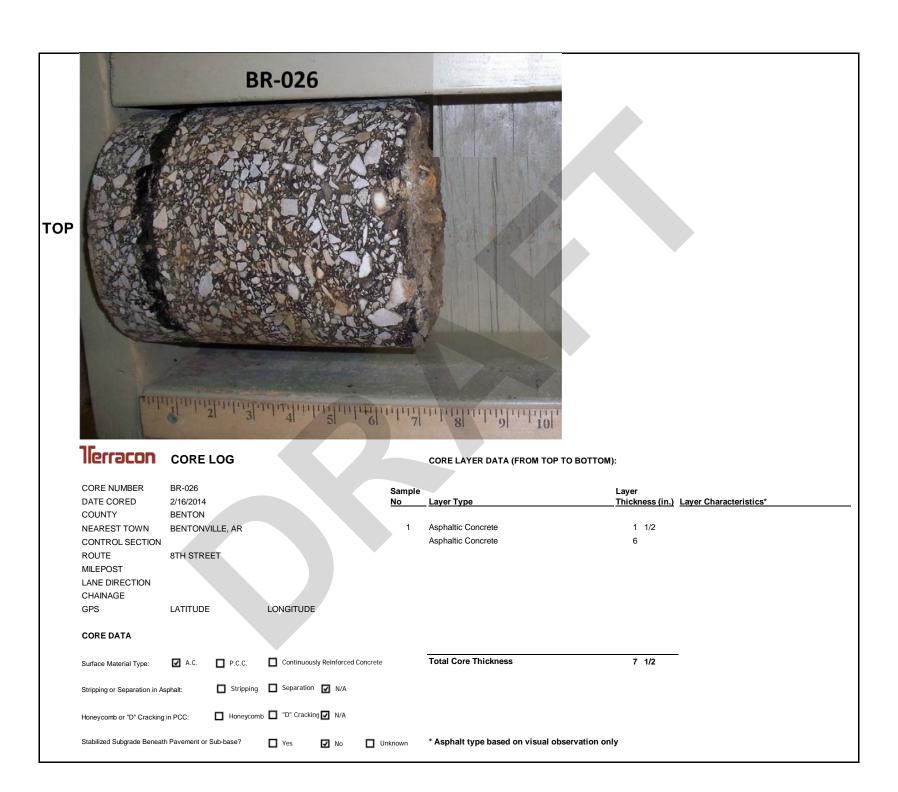
☑ A.C. □ P.C.C.

■ Continuously Reinforced Concrete

LONGITUDE

Stripping or Separation in Asphalt:

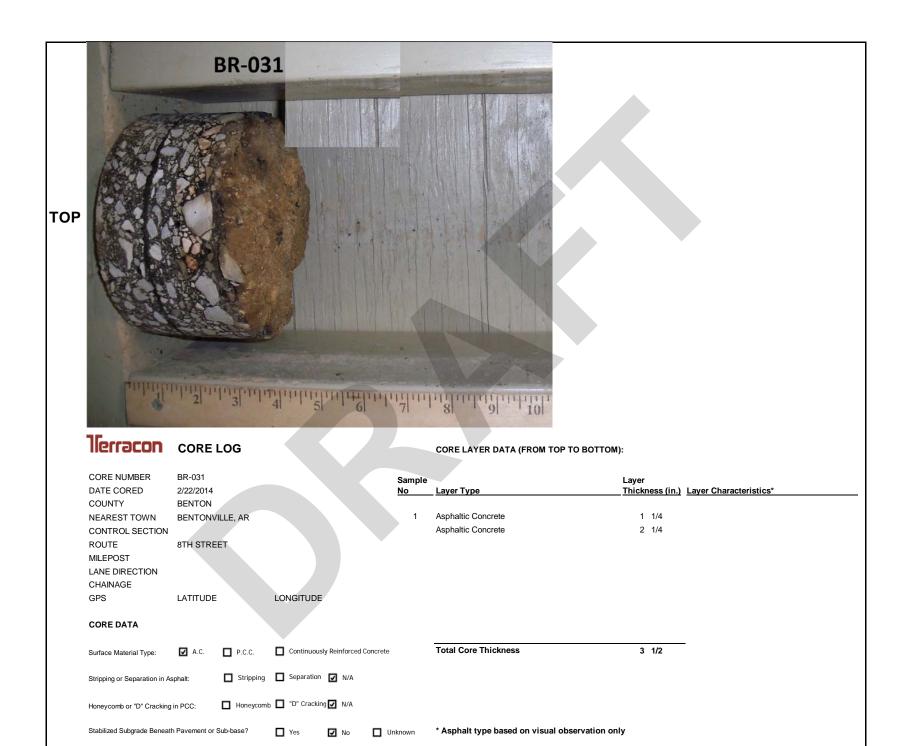
Honeycomb or "D" Cracking in PCC:


☐ Stripping ☐ Separation ☑ N/A


☐ Honeycomb ☐ "D" Cracking ☑ N/A

Stabilized Subgrade Beneath Pavement or Sub-base?

Unknown


` Aspnait type based on visual observation only

				Sample		_ayer	
DATE CORED 2	2/1/2014			No	Layer Type	Thickness (in.)	Layer Characteristics*
COUNTY B	BENTON						
NEAREST TOWN B	BENTONVII	LLE, AR		1	Asphaltic Concrete	1 1/4	
CONTROL SECTION					Asphaltic Concrete	1 1/4	
ROUTE 8	TH STREE	Т			Asphaltic Concrete	1	
MILEPOST							
LANE DIRECTION							
CHAINAGE							
	ATITUDE		LONGITUDE				
CORE DATA							
							_
Surface Material Type:	A.C.	P.C.C.	Continuously Reinforced Concret	е	Total Core Thickness	3 1/2	
Stripping or Separation in Aspha	nalt:	■ Stripping	☑ Separation □ N/A				
Honeycomb or "D" Cracking in I	PCC:	■ Honeycomb	□ "D" Cracking ▼ N/A				
Stabilized Subgrade Beneath Pa	avement or S	ub-base?	☐ Yes ☑ No ☐	Unknown	* Asphalt type based on visual observation only		

Terracon CORE LOG

CORE NUMBER BR-033
DATE CORED 2/22/2014
COUNTY BENTON

NEAREST TOWN BENTONVILLE, AR

CONTROL SECTION

ROUTE 8TH STREET

MILEPOST LANE DIRECTION CHAINAGE

GPS LATITUDE LONGITUDE

CORE DATA

Surface Material Type:
A.C.
P.C.C.
Continuously Reinforced Concrete

Total Core Thickness

Sample

Layer Type

Asphaltic Concrete

Asphaltic Concrete

Asphaltic Concrete

Stripping or Separation in Asphalt: Stripping Separation N/A

Honeycomb or "D" Cracking in PCC: ☐ Honeycomb ☐ "D" Cracking ☑ N/A

CORE LAYER DATA (FROM TOP TO BOTTOM):

Layer

1 1/2

1 1/2

Thickness (in.) Layer Characteristics*

Terracon core log

CORE LAYER DATA (FROM TOP TO BOTTOM):

* Asphalt type based on visual observation only

CORE NUMBER	BR-034	
DATE CORED	2/1/2014	
COUNTY	BENTON	
NEAREST TOWN	BENTONVILLE, AR	
CONTROL SECTION		
ROUTE	8TH STREET	
MILEPOST		
LANE DIRECTION		
CHAINAGE		
GPS	LATITUDE	LONGITUDE
CORE DATA		

☐ Stripping ☐ Separation ☑ N/A

☐ Honeycomb ☐ "D" Cracking ☑ N/A

✓ No

Unknown

BR-034	Sample		Layer	
2/1/2014	No	Layer Type	Thickness (in.) Layer Characteristics*	
BENTON				
BENTONVILLE, AR	1	Asphaltic Concrete	1 1/2	
		Asphaltic Concrete	1	
8TH STREET		Asphaltic Concrete	1	
		Asphaltic Concrete	1 1/2	
LATITUDE LONGITUDE				
✓ A.C. □ P.C.C. □ Continuously Reinforced Concrete		Total Core Thickness	5	

Surface Material Type:

Stripping or Separation in Asphalt:

Honeycomb or "D" Cracking in PCC:

Stabilized Subgrade Beneath Pavement or Sub-base?

CORE LAYER DATA (FROM TOP TO BOTTOM):

CORE NUMBER	BR-035	
DATE CORED	2/22/2014	
COUNTY	BENTON	
NEAREST TOWN	BENTONVILLE, AR	
CONTROL SECTION		
ROUTE	8TH STREET	
MILEPOST		
LANE DIRECTION		
CHAINAGE		
GPS	LATITUDE	LONGITUDE

N	0	Layer Type	Thickness (in.) Layer Characteristic
	1	Asphaltic Concrete	1 1/4
		Asphaltic Concrete	1 1/2
		Asphaltic Concrete	3/4

Layer

CORE DATA

Surface Material Type:	✓ A.C.	P.C.C.	Continuously Reinforced Concrete	Total Core Thickness	3 1/2

Sample

☐ Stripping ☐ Separation ☑ N/A Stripping or Separation in Asphalt:

☐ Honeycomb ☐ "D" Cracking ☑ N/A Honeycomb or "D" Cracking in PCC:

Stabilized Subgrade Beneath Pavement or Sub-base? * Asphalt type based on visual observation only ✓ No Unknown

Yes

✓ No

Unknown

Terracon CORE LOG

Stabilized Subgrade Beneath Pavement or Sub-base?

CORE NUMBER

CORE LAYER DATA (FROM TOP TO BOTTOM):

* Asphalt type based on visual observation only

CORE NUMBER	BR-036			Sample		Layer	
DATE CORED	2/1/2014			No	Layer Type	Thickness (in.)	Layer Characteristics*
COUNTY	BENTON						
NEAREST TOWN	BENTONV	ILLE, AR		1	Asphaltic Concrete	1 1/2	
CONTROL SECTION					Asphaltic Concrete	1 1/4	
ROUTE	8TH STRE	ET			Asphaltic Concrete	1 1/2	
MILEPOST							
LANE DIRECTION							
CHAINAGE							
GPS	LATITUDE		LONGITUDE				
CORE DATA							
Surface Material Type:	A.C.	P.C.C.	Continuously Reinforced Concrete		Total Core Thickness	4 1/4	_
Stripping or Separation in Asp	phalt:	■ Stripping	✓ Separation				
Honeycomb or "D" Cracking i	in PCC:	Honeycomb	☐ "D" Cracking ✓ N/A				

Approximate boring coordinates and elevations

	Approximate	ate Approximate Coordinates				
Boring	Elevation	Latitude Longitude Northing Easting				
BR-001	1279	36.36433391	-94.22157012	746680	658258	
BR-002	1285	36.36439033	-94.2203197	746692	658627	
BR-003	1287.5	36.36436747	-94.2192277	746677	658949	
BR-004	1288.5	36.36434448	-94.21826447	746662	659232	
BR-005	1290	36.36426007	-94.21713939	746624	659562	
BR-006	1290	36.36424306	-94.21663313	746614	659711	
BR-007	1287.5	36.36415162	-94.21534115	746572	660090	
BR-007	1286	36.36421341	-94.21428342	746588	660402	
BR-009	1285.5	36.36418129	-94.21325161	746570	660705	
BR-010	1286.5	36.36416649	-94.21217996	746570	661020	
BR-011	1288	36.364183	-94.21217990	746527	661380	
BR-012	1289.5	36.36427081	-94.2104741	746583	661524	
BR-013	1209.5		-94.2088613	746531	661998	
BR-014	1291	36.36415788 36.36423202	-94.20788526	746552	662285	
			-94.207662564			
BR-015	1293.5	36.36414265		746512	662656	
BR-016	1298	36.36434465	-94.20574375	746579	662917	
BR-017	1301.5	36.3642379	-94.2043806	746531	663318	
BR-018	1300.5	36.36428172	-94.20327869	746539	663642	
BR-019	1295.5	36.36406477	-94.20215958	746454	663971	
BR-020	1291.5	36.36399523	-94.200852	746420	664354	
BR-021	1290	36.36399264	-94.19973959	746411	664683	
BR-022	1292.5	36.36399031	-94.19859746	746403	665019	
BR-023	1304	36.3639326	-94.19727447	746373	665407	
BR-024	1309	36.36398608	-94.19608908	746385	665757	
BR-025	1314.5	36.36396537	-94.1950879	746371	666052	
BR-026	1318.5	36.36394386	-94.19419173	746357	666315	
BR-027	1320.5	36.36392428	-94.1930245	746342	666659	
BR-028	1317.5	36.36399932	-94.19214895	746364	666917	
BR-029	1315	36.36383552	-94.19108345	746297	667229	
BR-030	1314.5	36.36385149	-94.19000222	746296	667548	
BR-031	1313	36.3638189	-94.18900365	746277	667842	
BR-032	1310	36.36380607	-94.18791965	746266	668161	
BR-033	1308	36.36376817	-94.18705516	746246	668415	
BR-034	1311	36.36376052	-94.18589578	746236	668756	
BR-035	1316	36.36373215	-94.1849849	746220	669023	
BR-036	1319	36.36372987	-94.18399196	746212	669316	
BR-037	1321	36.36387086	-94.18299681	746257	669610	
BR-038	1323.5	36.36379009	-94.18190021	746221	669931	
BR-039	1327	36.36372825	-94.18045492	746190	670357	
BR-040	1324	36.3638271	-94.17944946	746218	670654	
BR-041	1322.5	36.36382327	-94.17881456	746213	670841	

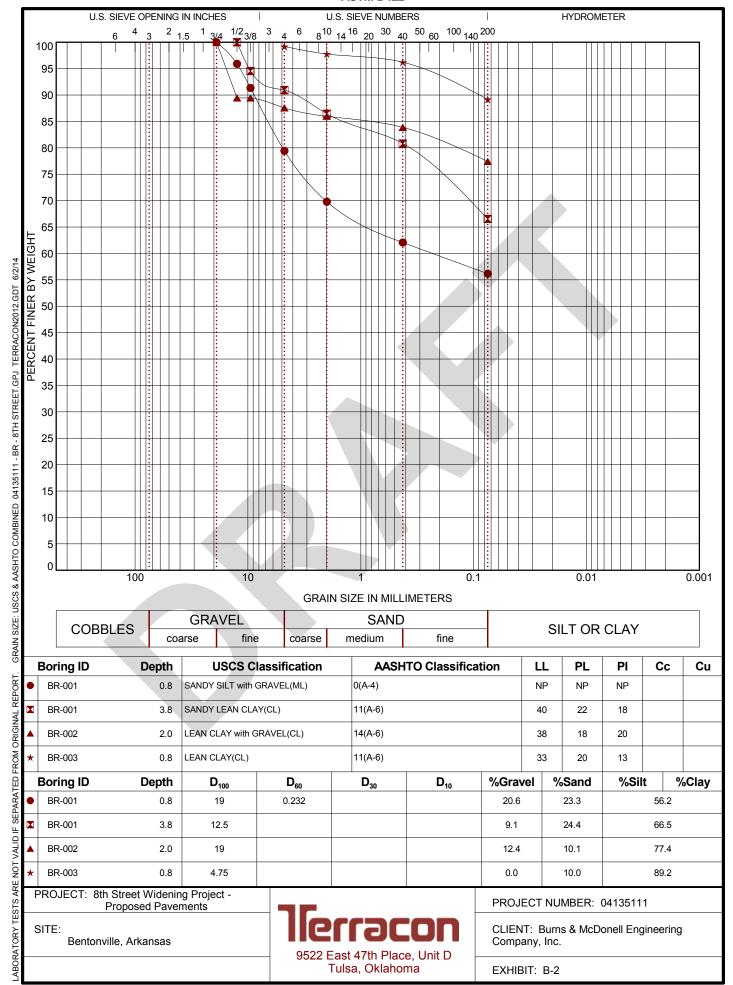
APPENDIX B LABORATORY TESTS

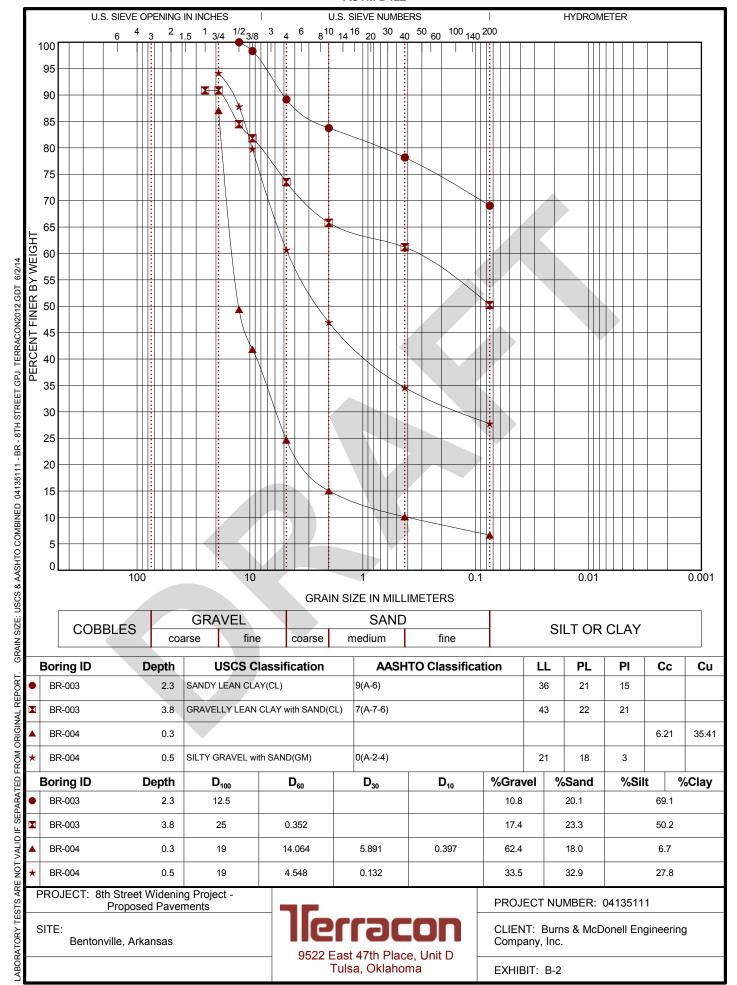
Preliminary Geotechnical Engineering Report

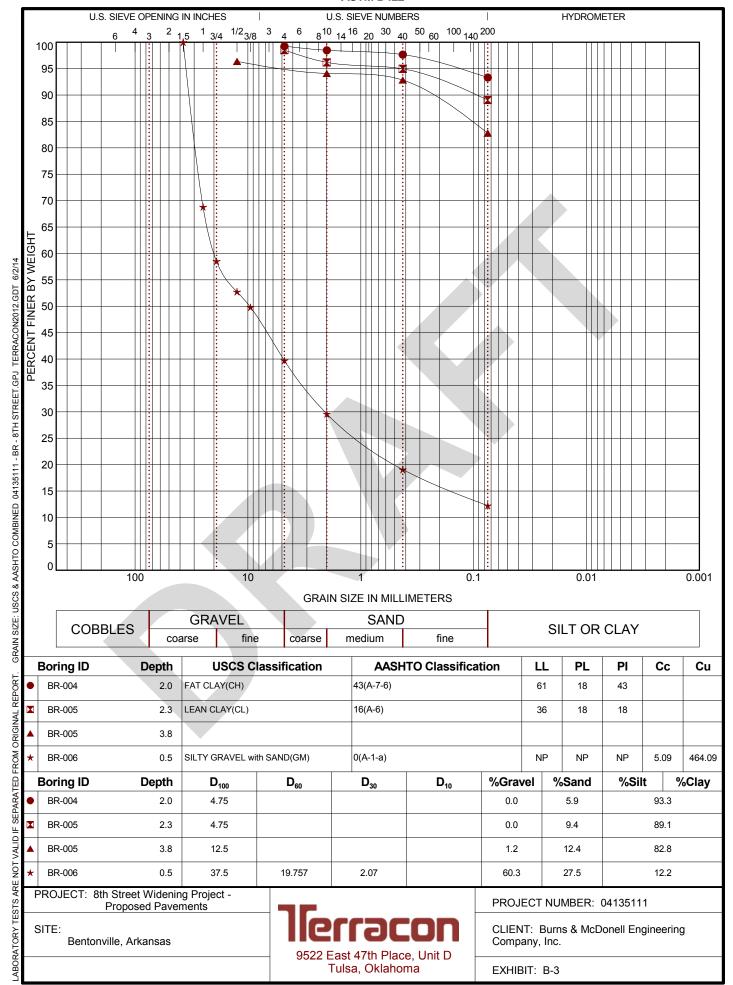
8th Street Widening Project – Proposed Pavements ■ Bentonville, Arkansas June 11, 2014 ■ Terracon Project No. 04135111

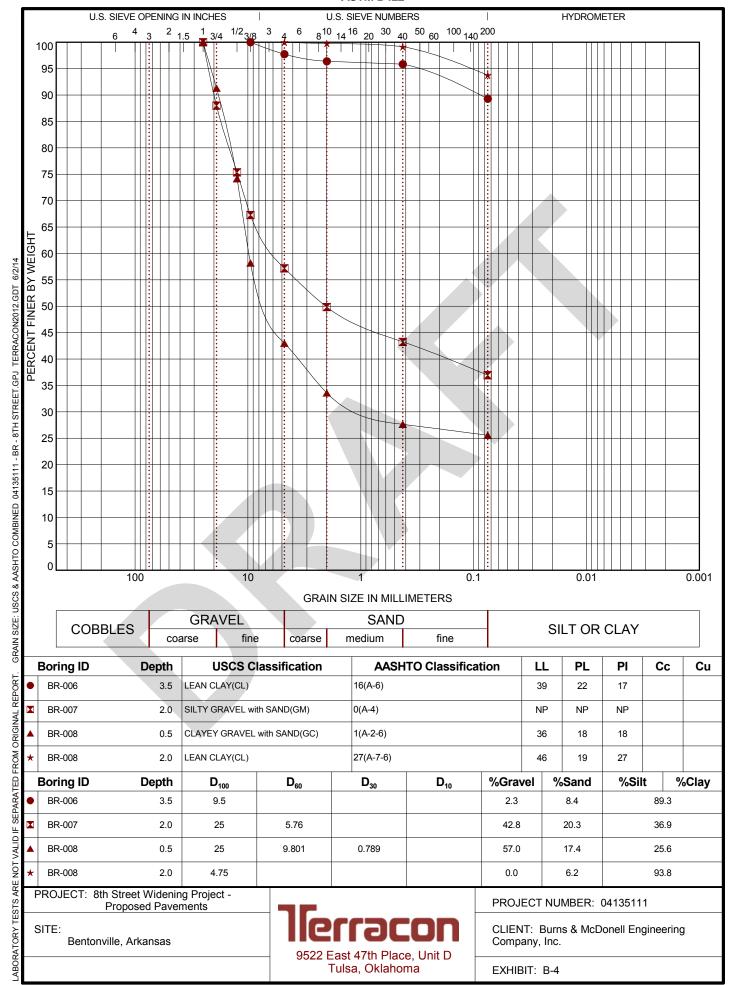
Laboratory Tests

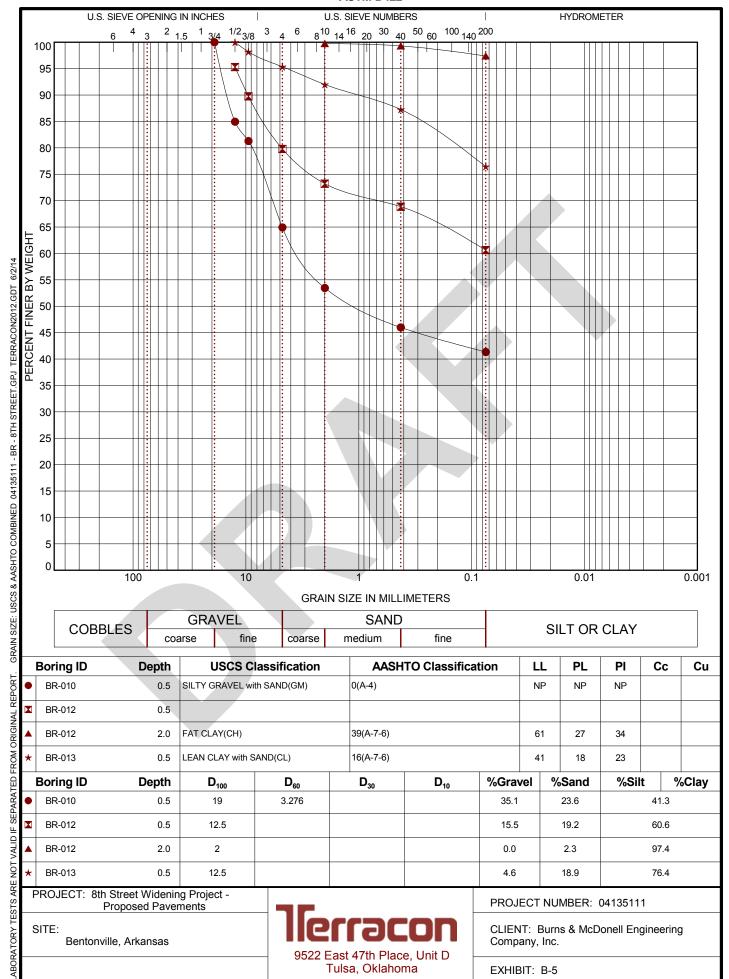
Samples retrieved during the field exploration were taken to the laboratory for further observation by the project geotechnical engineer and were classified in accordance with the Unified Soil Classification System (USCS) described in Appendix A. Bedrock materials were classified according to the General Notes and described using commonly accepted geotechnical terminology. The field descriptions were modified as necessary and an applicable laboratory testing program was formulated to determine engineering properties of the subsurface materials.

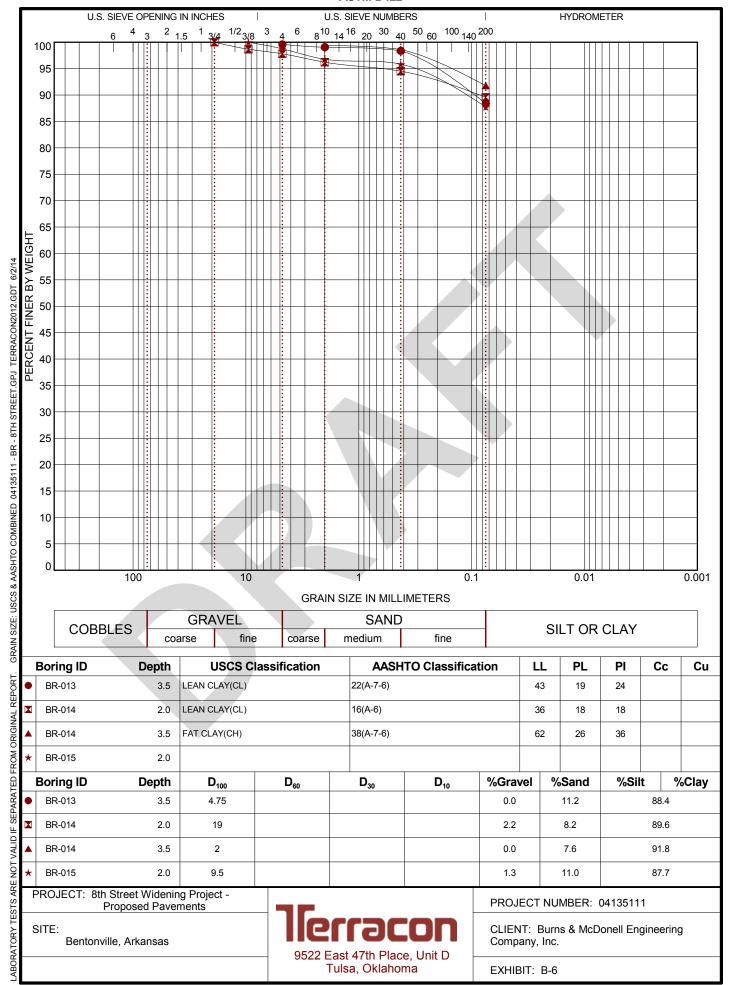

Laboratory tests were conducted on selected soil and rock samples. The laboratory test results are presented on the boring logs next to the respective samples and attached to this appendix. Laboratory tests were performed in general accordance with the applicable ASTM, AASHTO, local or other accepted standards.

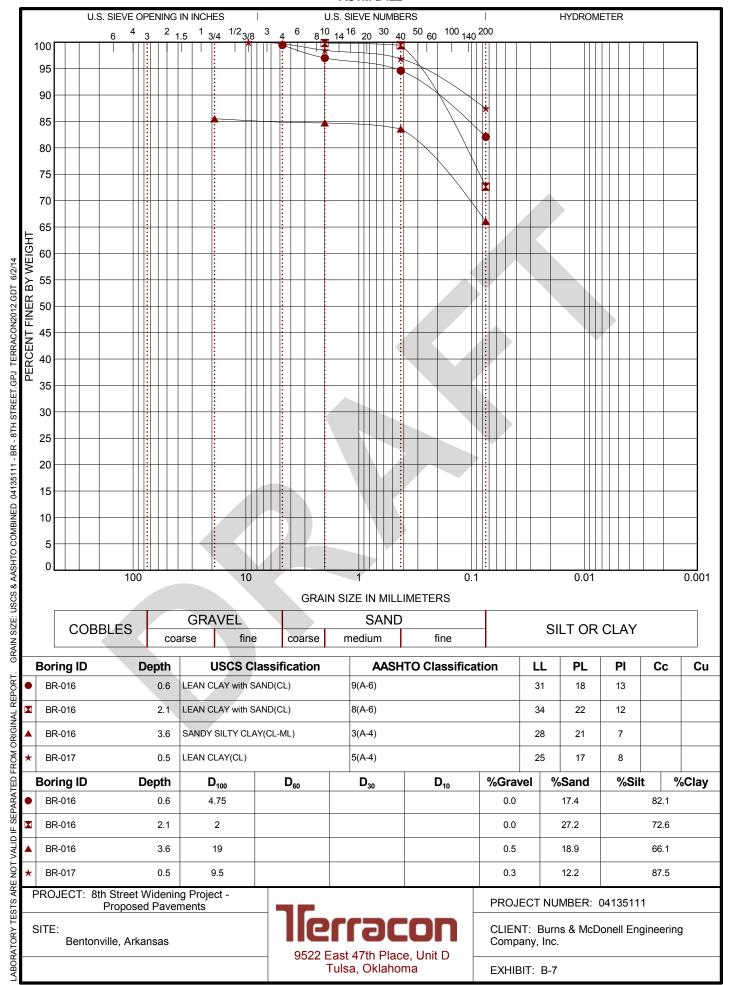

The following tests were performed on selected soil and rock samples:

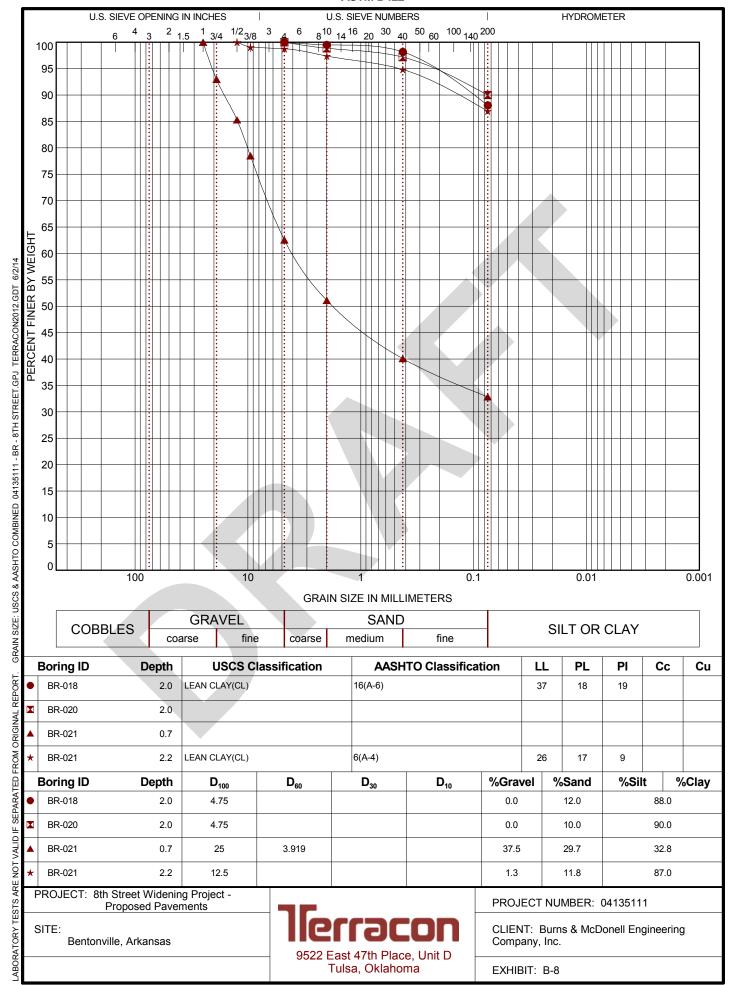

- Water content
- Atterberg limits
- Percent passing the No. 200 sieve
- Particle size distribution
- Moisture-Density relationships
- Resilient Modulus (MR)

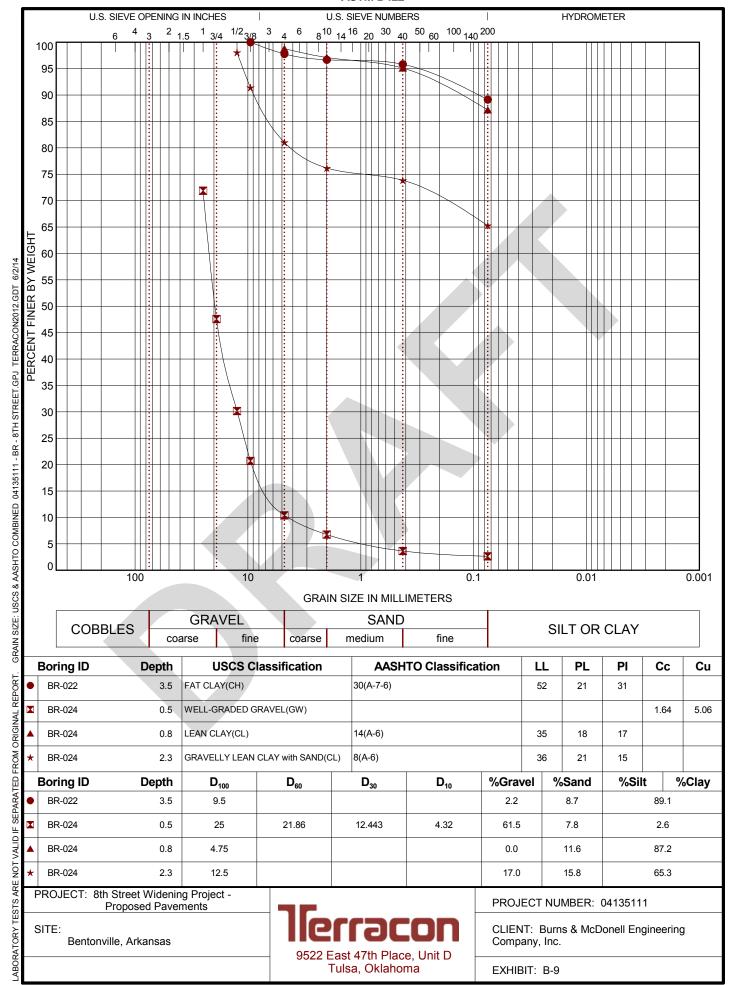

Four soil composite samples were prepared for Resilient Modulus tests. The samples were taken from the subgrade soils from depths of about 1 to 3 feet below existing ground surface.

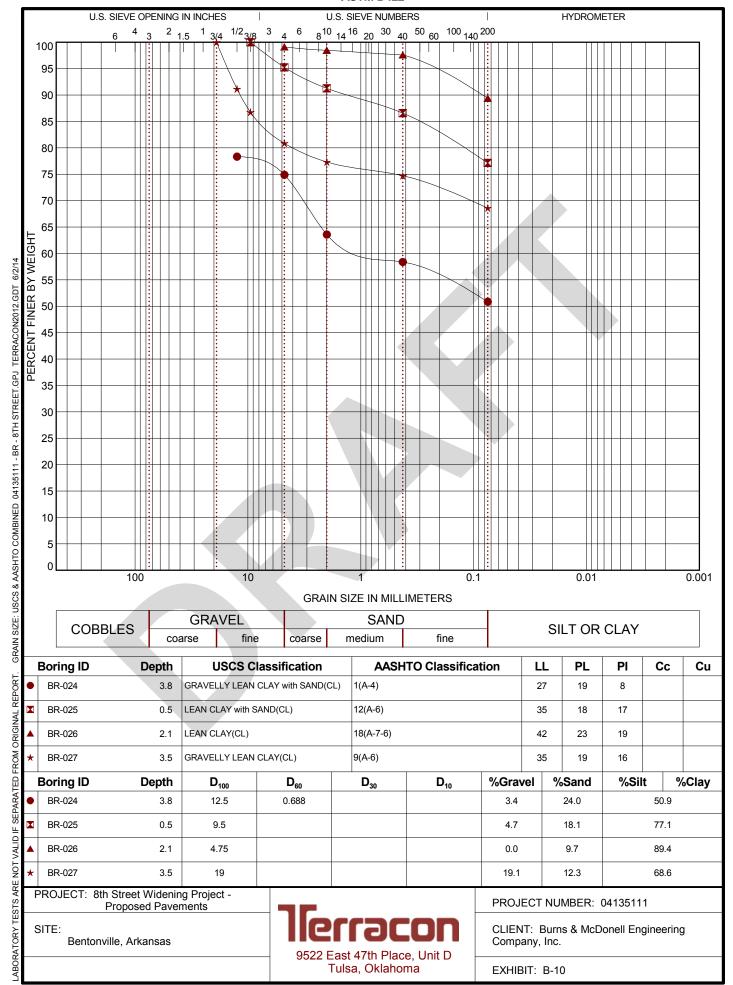

Composite Sample	Borings	Soil Type	
Bulk 1	BR-004/9/12/14	Lean clay	
Dulk I	DIX-004/9/12/14	PI = 17	
Bulk 2	BR-017/19/21	Lean Clay	
Duik 2	DIX-017/19/21	PI = 10	
Bulk 3	BR-030/35/36	Lean Clay	
Duik 3	DIX-030/33/30	PI = 25	
Bulk 4	BR-003/4/5/12	Silty Clayey	
Duik 4	DIX-003/4/3/12	Gravel	

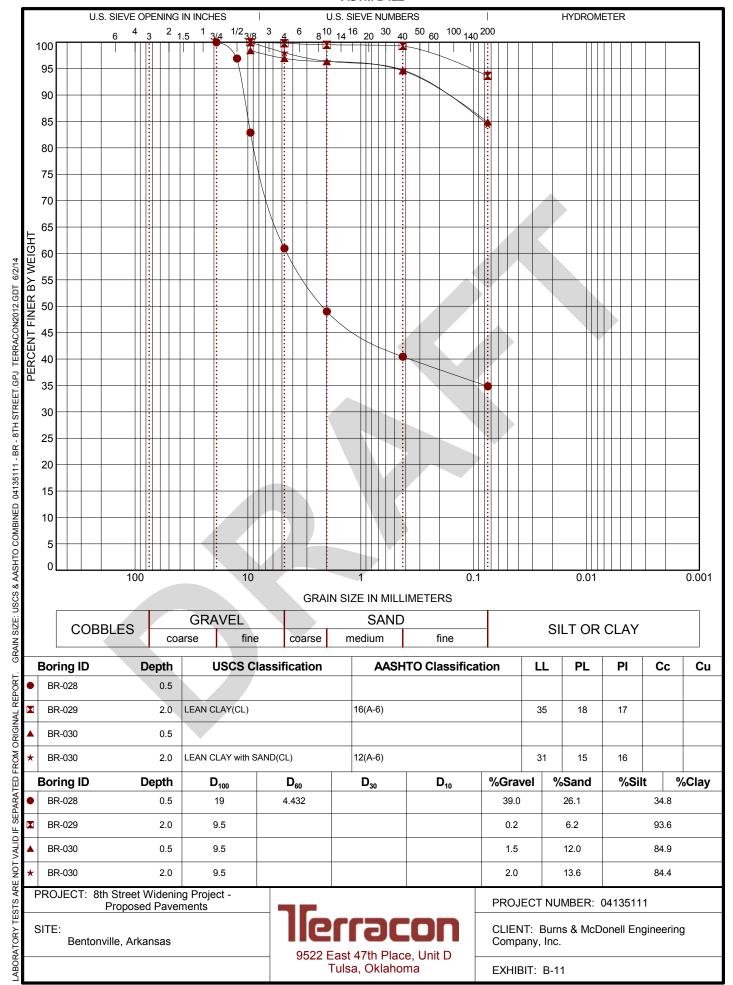


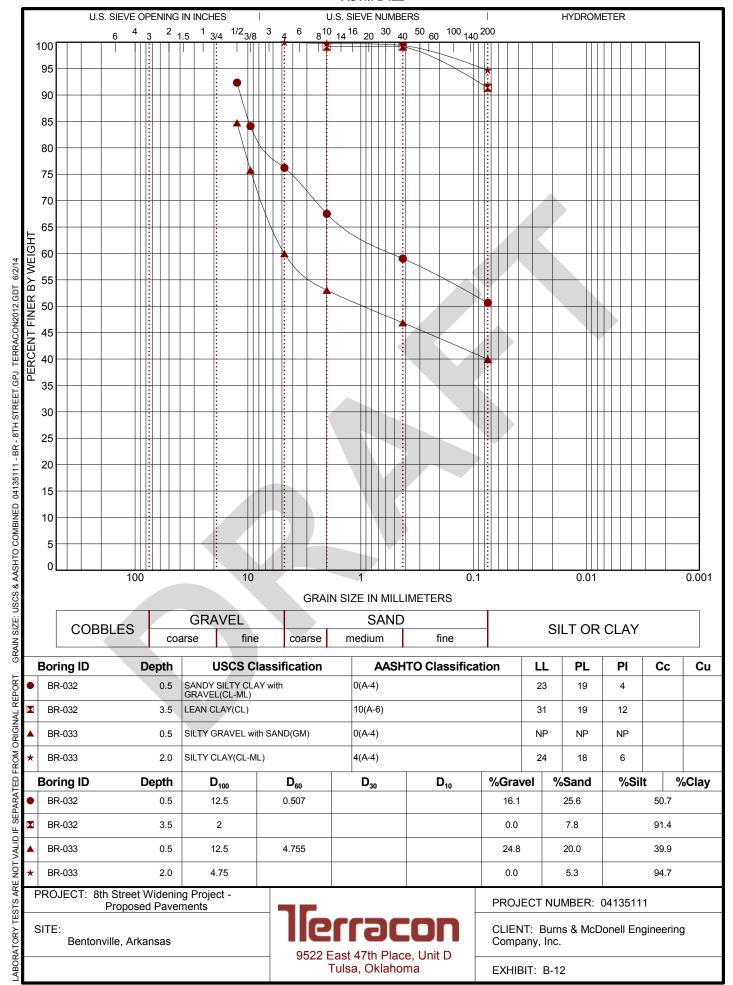


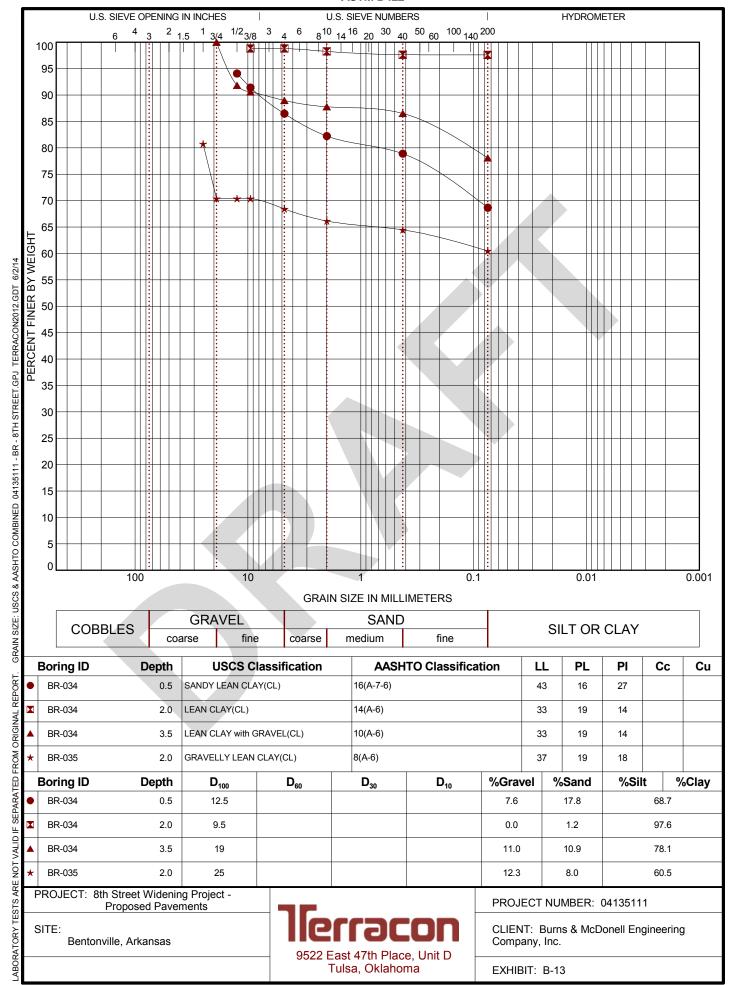


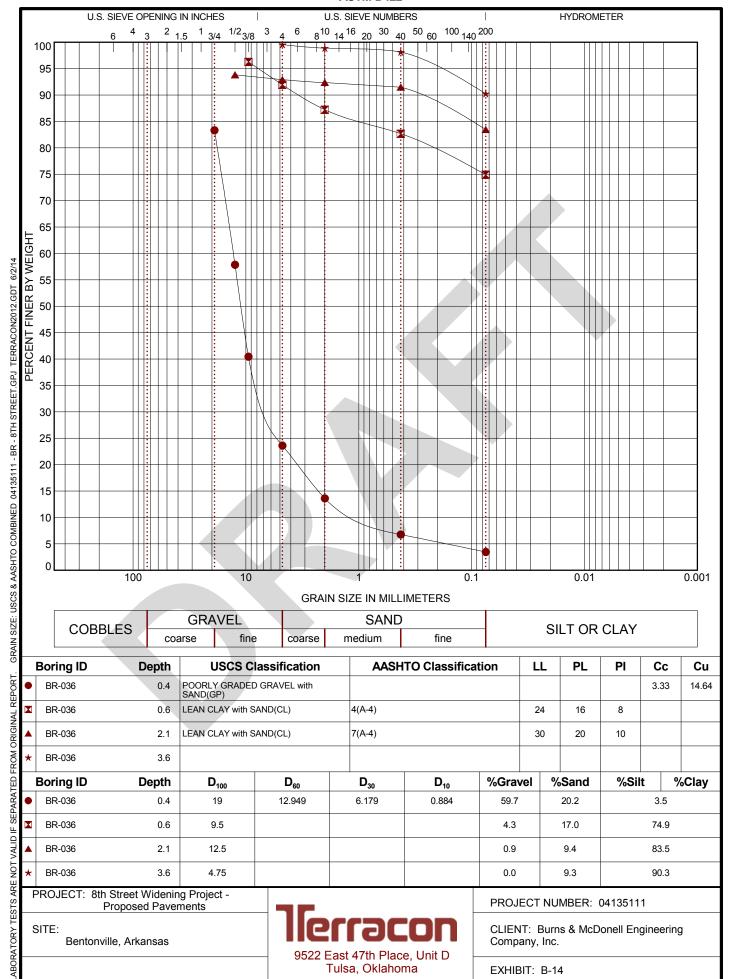


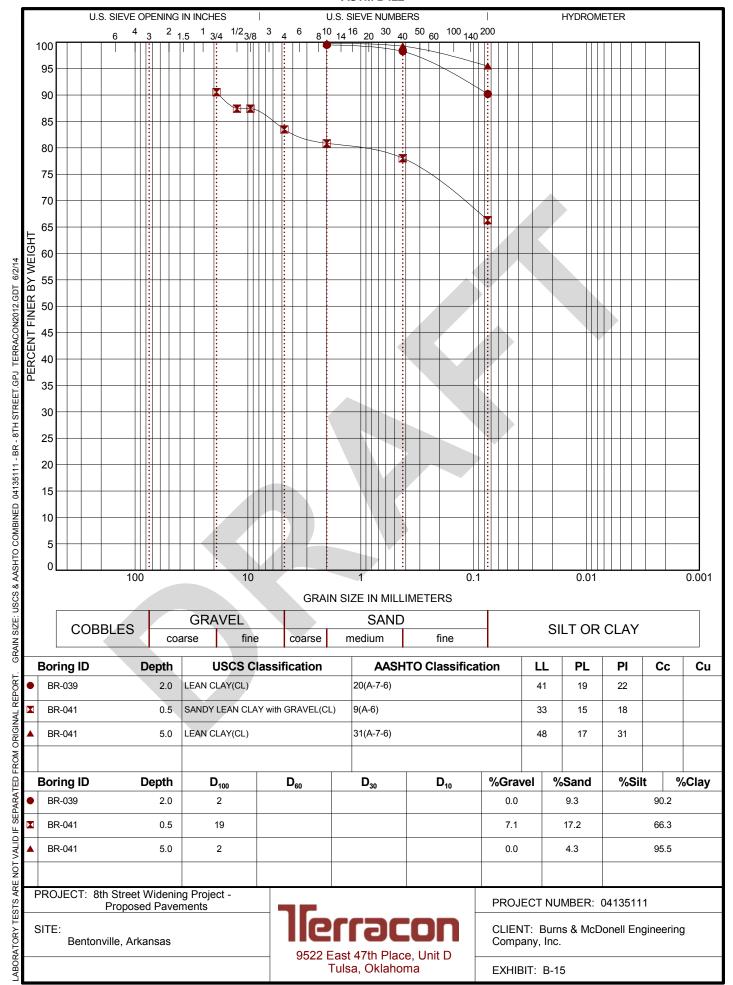


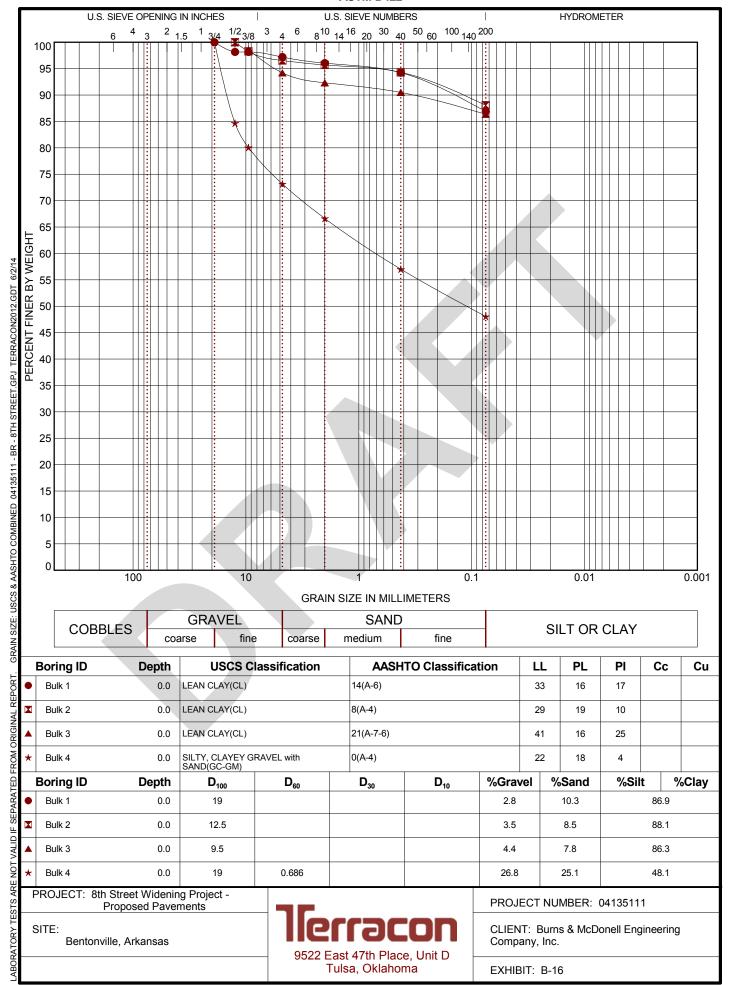


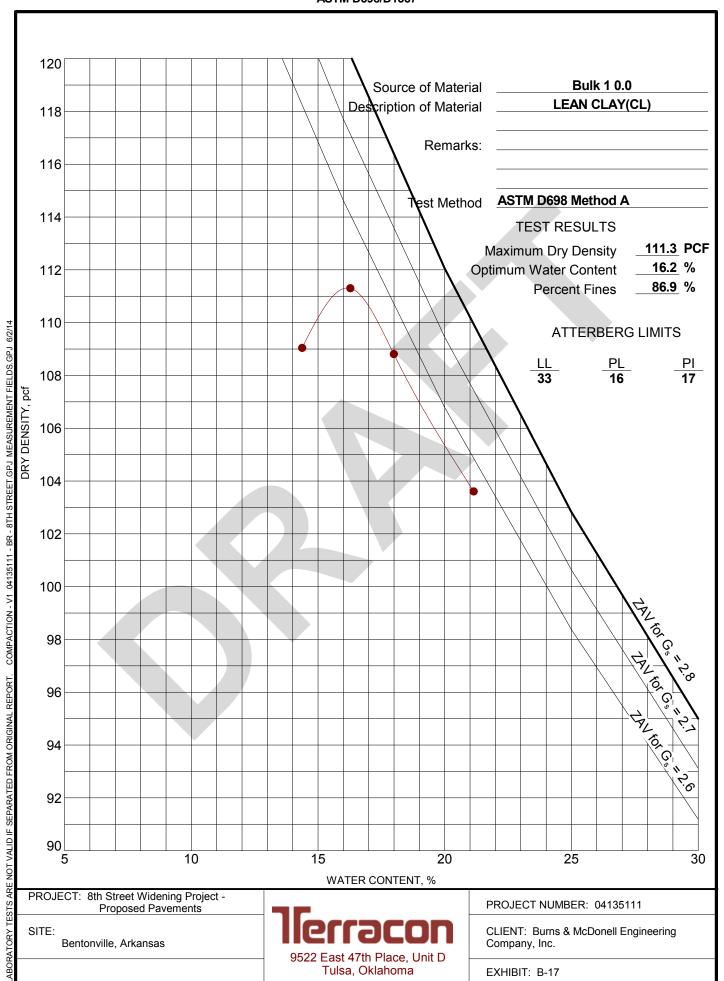


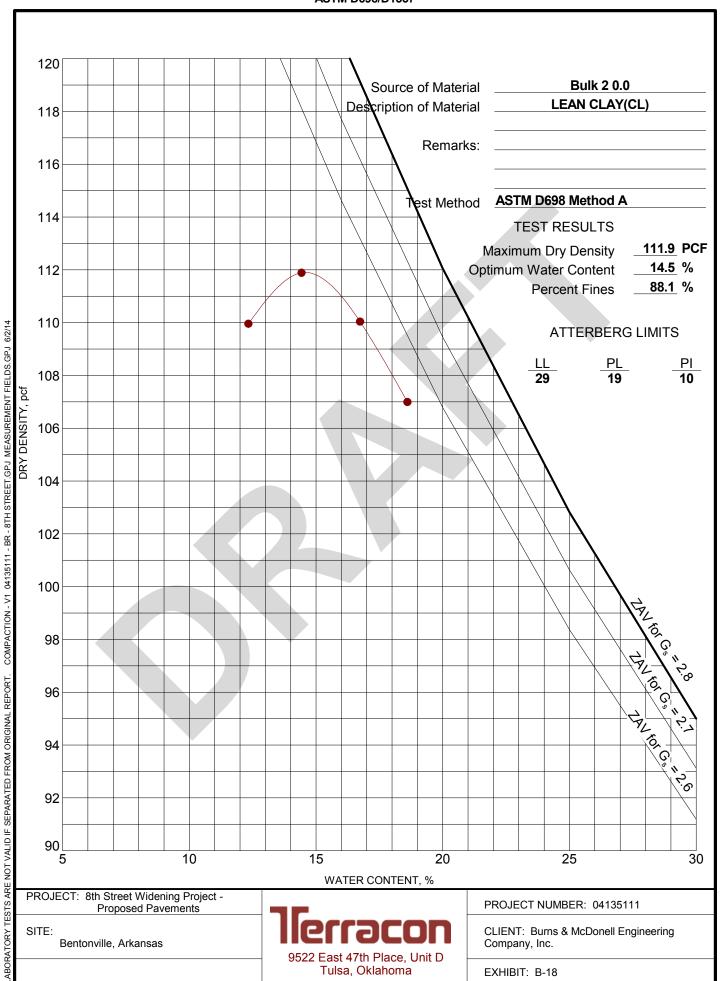


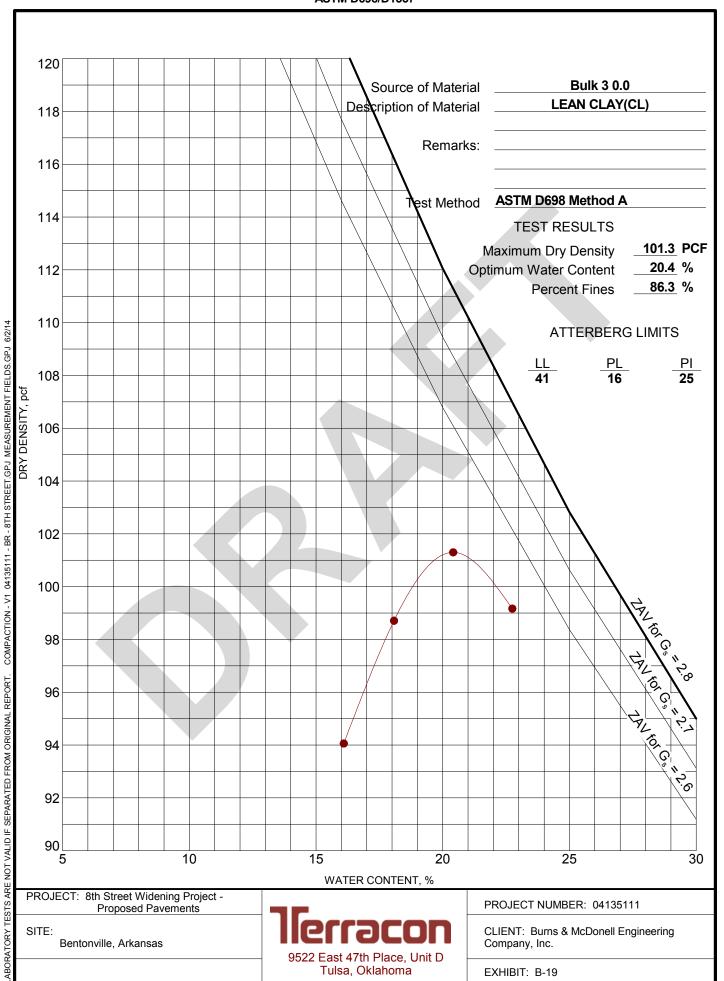


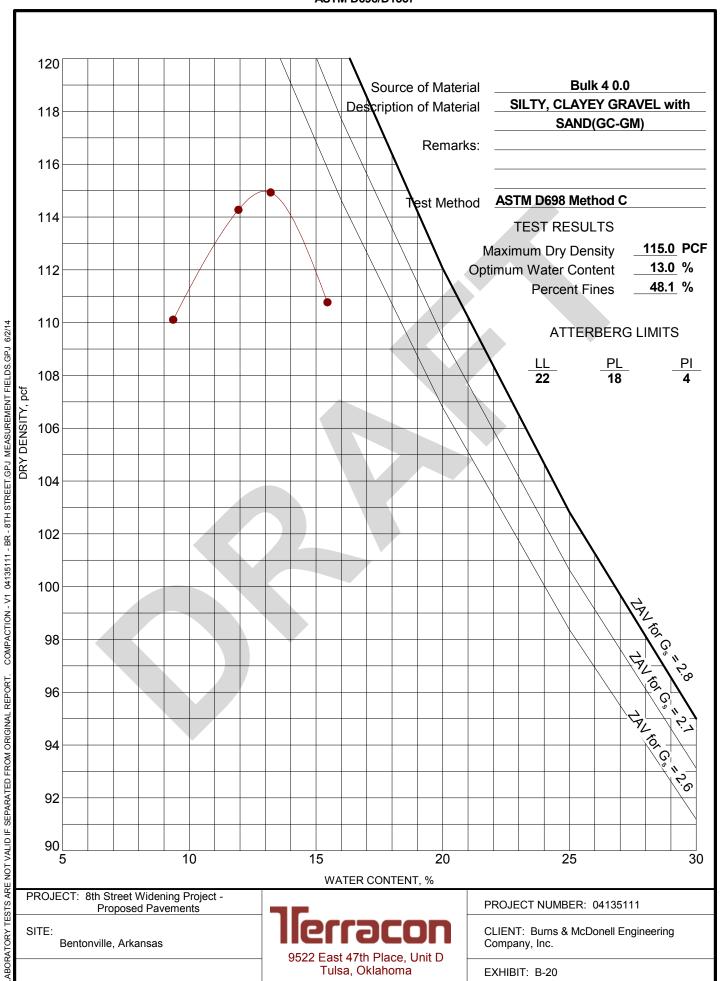












 Soil Map Unit:
 0

 Soil Symbol:
 CL

 Depth (in.)
 6 to 36

 Compaction Method
 Static

 Max. Dry Density (pcf)
 111.3

 Opt. Moisture Content (%)
 16.2

 Inside Mold Diameter (in)
 3.94

Weight of Wet Soil (lb) 6.61 Initial Sample Diameter (in) 3.94 Initial Sample Height (in) 7.87 Initial Sample Area (in²) 12.17 Sample Volume (in³) 95.86 Compacted Moisture Content(%) 16.7 Wet Density (pcf) 119.2 Dry Density (pcf) 102.1

 Report Date:
 27-May-14

 Lab No.:
 Bulk 1_OMC

 Project No.:
 04135111

Test Date: March 22, 2014

Final Sample Height (in) 7.9

Final Sample Wet Weight (lb) 6.61

Final Moisture Content (%) 16.7

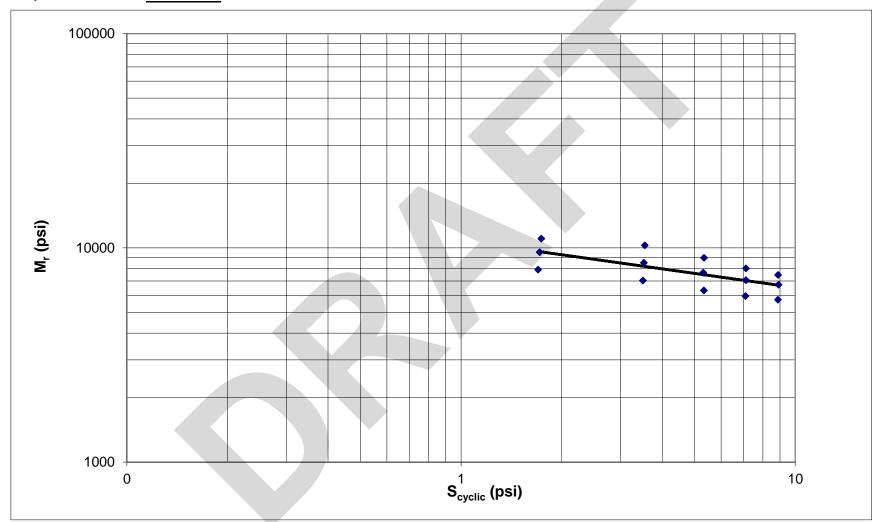
Accumulated Strain (%) 0.28

 Percent Passing No. 10
 3

 Percent Passing No. 200
 87.0

 Liquid Limit
 33

 Plasticity Index
 17

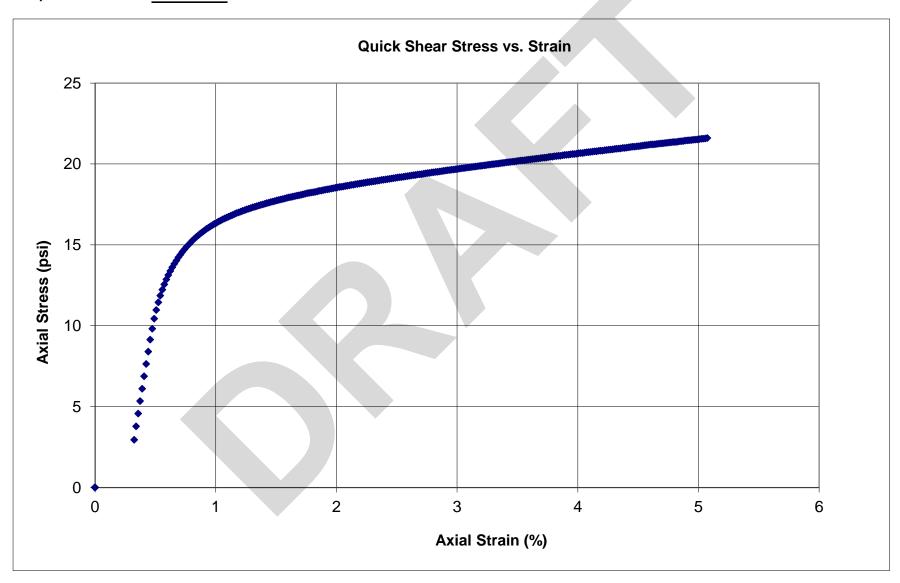

Chambar	Nominal	A atual	Actual	Actual	Actual	Actual	Actual	Daggy Dof	Recov.	Average		
Chamber	Maximum		Applied	Applied	Applied	Applied		Recov. Def.		Recov.		Desilient
Confining		Applied Max.	Cyclic	Contact	Max. Axial	,	Contact	LVDT #1		Def. LVDT		Resilient
Pressure	Stress	Axial Load	Load	Load	Stress	Stress	Stress	Reading	Reading	1 and 2	Resilient Strain	Modulus
(S ₃)	(S _{cyclic})	(P _{max})	(P _{cyclic})	(P _{contact})	(S _{max})	(S _{cyclic})	(S _{contact})	(H₁)	(H_2)	(H _{avg})	(€ _r)	(M_r)
psi	psi	lb	lb	lb	psi	psi	psi	in	in	in	in/in	psi
6.00	2.00	24.5	21.2	3.4	2.02	1.74	0.276	0.0013	0.0012	0.0012	0.000158	11,038
6.00	4.00	48.9	43.2	5.7	4.01	3.55	0.468	0.0028	0.0026	0.0027	0.000345	10,269
6.00	6.00	73.3	65.0	8.3	6.02	5.34	0.684	0.0050	0.0043	0.0047	0.000595	8,974
6.00	8.00	97.6	86.7	10.9	8.02	7.12	0.897	0.0074	0.0066	0.0070	0.000889	8,013
6.01	10.00	121.8	108.2	13.6	10.01	8.89	1.115	0.0097	0.0090	0.0094	0.001190	7,473
4.01	2.00	24.5	20.9	3.5	2.01	1.72	0.291	0.0014	0.0014	0.0014	0.000181	9,530
4.01	4.00	49.0	42.9	6.1	4.02	3.53	0.499	0.0034	0.0031	0.0033	0.000414	8,511
4.01	6.00	73.2	64.6	8.6	6.01	5.30	0.710	0.0058	0.0052	0.0055	0.000693	7,654
4.01	8.00	97.6	86.7	10.9	8.02	7.12	0.893	0.0082	0.0077	0.0079	0.001009	7,057
4.01	10.00	121.9	108.5	13.4	10.02	8.91	1.102	0.0106	0.0102	0.0104	0.001325	6,729
2.00	2.00	24.2	20.7	3.5	1.99	1.70	0.291	0.0017	0.0017	0.0017	0.000215	7,913
2.00	4.00	48.6	42.6	6.0	3.99	3.50	0.491	0.0040	0.0039	0.0039	0.000498	7,033
2.00	6.00	73.3	64.9	8.4	6.02	5.33	0.694	0.0069	0.0064	0.0066	0.000843	6,326
2.00	8.00	97.3	86.4	10.9	7.99	7.10	0.897	0.0095	0.0093	0.0094	0.001192	5,951
2.00	10.00	121.5	108.0	13.5	9.98	8.88	1.106	0.0123	0.0121	0.0122	0.001551	5,722

Terracon

Date Reported: Terracon Lab No. 5/27/2014 Bulk 1_OMC 0.00

Project No.

04135111



 $Mr = K1 \times S_{cylic}^{k2}$

S3 (psi)	K 1	K2	R ²
6	13164.8	-0.245	0.93
4	10885.8	-0.216	0.99
2	8881.2	-0.201	0.99
All	10810.6	-0.219	0.47

5/27/2014 Bulk 1_OMC 04135111

 Soil Map Unit:
 0

 Soil Symbol:
 CL

 Depth (in.)
 6 to 36

 Compaction Method
 Static

 Max. Dry Density (pcf)
 111.3

 Opt. Moisture Content (%)
 16.2

 Inside Mold Diameter (in)
 3.94

Weight of Wet Soil (lb) 6.72 Initial Sample Diameter (in) 3.94 Initial Sample Height (in) 7.88 Initial Sample Area (in²) 12.17 Sample Volume (in³) 95.96 Compacted Moisture Content(%) 18.7 Wet Density (pcf) 121.0 Dry Density (pcf) 102.0
 Report Date:
 27-May-14

 Lab No.:
 Bulk 1_OMC+2

 Project No.:
 04135111

Test Date: March 22, 2014

Final Sample Height (in) 7.8

Final Sample Wet Weight (lb) 6.72

Final Moisture Content (%) 18.7

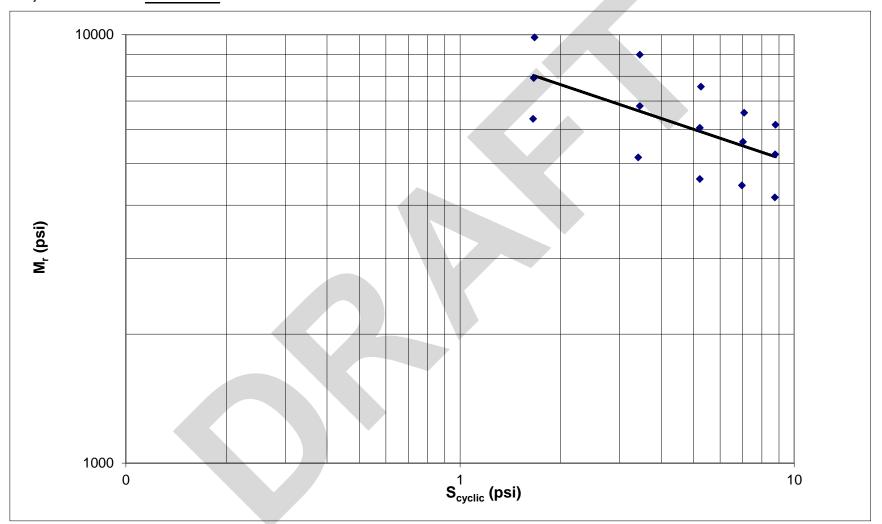
Accumulated Strain (%) 0.81

 Percent Passing No. 10
 3

 Percent Passing No. 200
 87.0

 Liquid Limit
 33

 Plasticity Index
 17


Chamber	Nominal Maximum	Actual	Actual Applied	Actual Applied	Actual Applied	Actual Applied	Actual Applied	Recov. Def.	Recov.	Average Recov.		
Confining								LVDT #1		Def. LVDT		Positiont
		Applied Max.	Cyclic	Contact	Max. Axial	,	Contact					Resilient
Pressure	Stress	Axial Load	Load	Load	Stress	Stress	Stress	Reading	Reading	1 and 2	Resilient Strain	Modulus
(S ₃)	(S _{cyclic})	(P _{max})	(P _{cyclic})	(P _{contact})	(S _{max})	(S _{cyclic})	(S _{contact})	(H₁)	(H_2)	(H _{avg})	(€ _r)	(M_r)
psi	psi	lb	lb	lb	psi	psi	psi	in	in	in	in/in	psi
6.00	2.00	24.5	20.3	4.1	2.01	1.67	0.339	0.0014	0.0012	0.0013	0.000170	9,856
6.01	4.00	48.7	42.0	6.7	4.00	3.45	0.551	0.0033	0.0027	0.0030	0.000384	8,979
6.00	6.00	72.9	64.0	8.9	5.99	5.26	0.734	0.0059	0.0051	0.0055	0.000696	7,559
6.00	8.00	97.5	86.2	11.2	8.01	7.09	0.924	0.0092	0.0078	0.0085	0.001079	6,569
6.00	10.00	121.5	107.0	14.5	9.98	8.79	1.188	0.0114	0.0111	0.0112	0.001427	6,164
4.01	2.00	24.1	20.2	3.9	1.98	1.66	0.319	0.0018	0.0015	0.0017	0.000210	7,923
4.00	4.00	48.6	42.0	6.5	3.99	3.45	0.537	0.0042	0.0038	0.0040	0.000507	6,814
4.00	6.00	72.7	63.5	9.2	5.97	5.22	0.752	0.0069	0.0067	0.0068	0.000861	6,063
4.00	8.00	97.1	85.6	11.5	7.98	7.03	0.948	0.0100	0.0097	0.0099	0.001251	5,621
4.00	10.00	120.9	106.8	14.1	9.94	8.77	1.162	0.0132	0.0131	0.0132	0.001670	5,253
2.00	2.00	23.8	20.1	3.7	1.96	1.66	0.304	0.0022	0.0019	0.0021	0.000260	6,360
2.00	4.00	48.2	41.6	6.7	3.96	3.42	0.547	0.0053	0.0052	0.0052	0.000661	5,169
2.00	6.00	72.4	63.5	8.9	5.95	5.22	0.730	0.0090	0.0089	0.0089	0.001134	4,601
2.00	8.00	96.5	84.9	11.6	7.93	6.97	0.953	0.0124	0.0123	0.0124	0.001568	4,446
2.00	10.00	120.7	106.5	14.2	9.92	8.75	1.163	0.0166	0.0165	0.0165	0.002099	4,170

Date Reported: Terracon Lab No. 5/27/2014 Bulk 1_OMC+2 0.00

Project No.

04135111



 $Mr = K1 \times S_{cylic}^{k2}$

S3 (psi)	K1	K2	R ²
6	12007.6	-0.294	0.94
4	9084.2	-0.247	0.99
2	7128.0	-0.251	0.99
All	9165.2	-0.262	0.40

5/27/2014 Bulk 1_OMC+2 04135111

 Soil Map Unit:
 0

 Soil Symbol:
 CL

 Depth (in.)
 6 to 36

 Compaction Method
 Static

 Max. Dry Density (pcf)
 111.9

 Opt. Moisture Content (%)
 14.5

 Inside Mold Diameter (in)
 3.94

Weight of Wet Soil (lb) 6.55 Initial Sample Diameter (in) 3.94 Initial Sample Height (in) 7.87 Initial Sample Area (in²) 12.17 Sample Volume (in³) 95.86 Compacted Moisture Content(%) 15.0 Wet Density (pcf) 118.0 Dry Density (pcf) 102.6
 Report Date:
 27-May-14

 Lab No.:
 Bulk 2_OMC

 Project No.:
 04135111

Test Date: March 22, 2014

Final Sample Height (in) 7.9

Final Sample Wet Weight (lb) 6.55

Final Moisture Content (%) 15.0

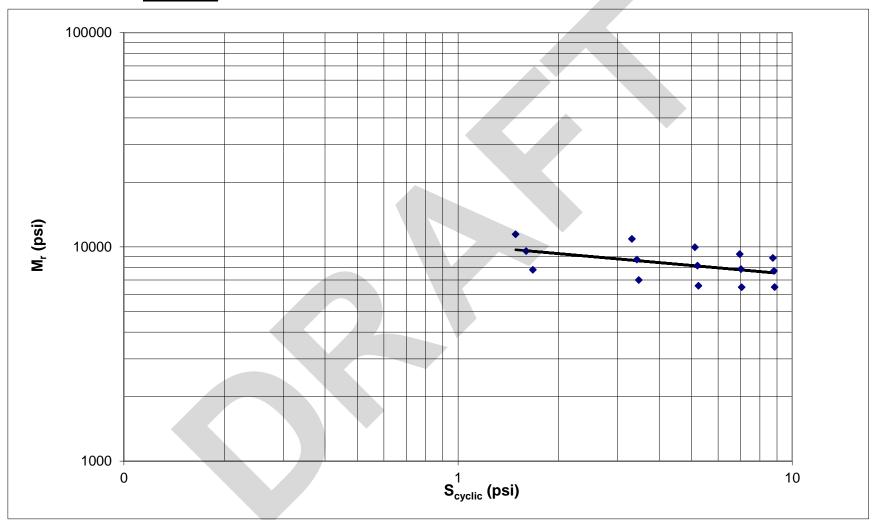
Accumulated Strain (%) 0.20

 Percent Passing No. 10
 4

 Percent Passing No. 200
 88.0

 Liquid Limit
 29

 Plasticity Index
 10

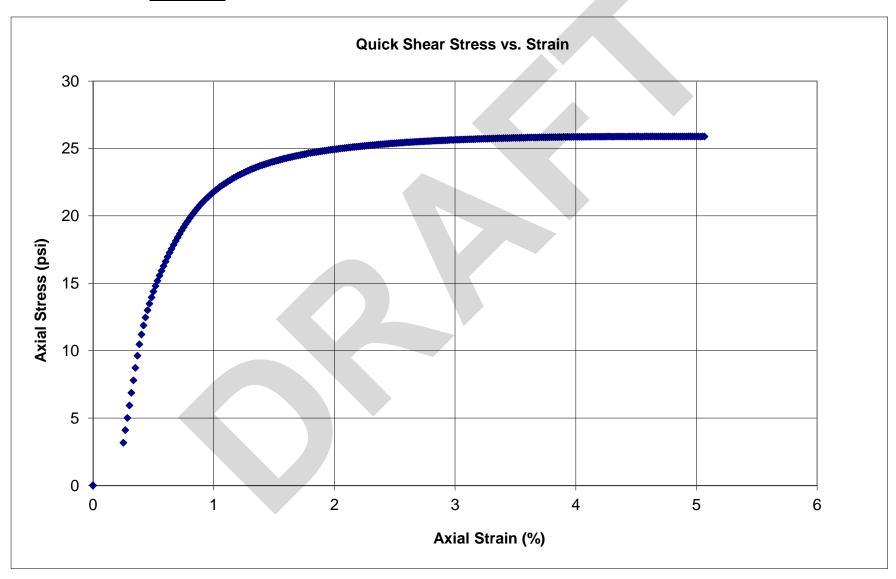

	Nominal		Actual	Actual	Actual	Actual	Actual		Recov.	Average		
Chamber	Maximum	Actual	Applied	Applied	Applied	Applied	Applied	Recov. Def.	Def. LVDT	Recov.		
Confining	Axial	Applied Max.	Cyclic	Contact	Max. Axial	Cyclic	Contact	LVDT #1	#2	Def. LVDT		Resilient
Pressure	Stress	Axial Load	Load	Load	Stress	Stress	Stress	Reading	Reading	1 and 2	Resilient Strain	Modulus
(S ₃)	(S _{cyclic})	(P _{max})	(P _{cyclic})	(P _{contact})	(S _{max})	(S _{cyclic})	(S _{contact})	(H ₁)	(H ₂)	(H_{avg})	(€ _r)	(M_r)
psi	psi	lb	lb	lb	psi	psi	psi	in	in	in	in/in	psi
6.00	2.00	23.1	18.1	5.0	1.90	1.49	0.412	0.0010	0.0010	0.0010	0.000130	11,448
5.99	4.00	47.5	40.4	7.2	3.90	3.31	0.589	0.0024	0.0024	0.0024	0.000304	10,893
6.00	6.00	72.4	62.3	10.1	5.94	5.12	0.827	0.0041	0.0040	0.0040	0.000514	9,952
6.00	8.00	97.1	84.8	12.3	7.98	6.96	1.014	0.0058	0.0061	0.0059	0.000753	9,247
6.00	10.00	121.4	106.6	14.8	9.97	8.75	1.214	0.0076	0.0080	0.0078	0.000986	8,875
4.01	2.00	23.9	19.5	4.5	1.97	1.60	0.367	0.0013	0.0013	0.0013	0.000167	9,561
4.00	4.00	48.6	41.7	6.9	3.99	3.43	0.567	0.0030	0.0032	0.0031	0.000393	8,717
4.01	6.00	73.0	63.4	9.6	6.00	5.21	0.785	0.0051	0.0050	0.0050	0.000638	8,167
4.01	8.00	97.5	85.6	11.9	8.01	7.03	0.980	0.0070	0.0071	0.0070	0.000893	7,872
4.00	10.00	121.6	107.4	14.2	9.99	8.82	1.167	0.0088	0.0092	0.0090	0.001142	7,721
2.00	2.00	24.3	20.4	3.9	1.99	1.67	0.319	0.0017	0.0017	0.0017	0.000214	7,807
2.00	4.00	48.7	42.3	6.4	4.00	3.48	0.523	0.0038	0.0040	0.0039	0.000496	7,001
2.00	6.00	72.9	63.9	9.1	5.99	5.24	0.743	0.0063	0.0062	0.0063	0.000797	6,577
2.00	8.00	97.5	86.0	11.5	8.01	7.06	0.947	0.0084	0.0088	0.0086	0.001090	6,479
2.00	10.00	121.7	107.8	13.9	9.99	8.86	1.139	0.0105	0.0110	0.0107	0.001365	6,488

Tierracon

Date Reported: Terracon Lab No. 5/27/2014 Bulk 2_OMC 0.00

Project No.

04135111



 $Mr = K1 \times S_{cylic}^{k2}$

S3 (psi)	K 1	K2	R ²
6	12462.4	-0.148	0.93
4	10160.9	-0.129	1.00
2	8182.7	-0.117	0.94
All	10242.2	-0.139	0.23

5/27/2014 Bulk 2_OMC 04135111

 Soil Map Unit:
 0

 Soil Symbol:
 CL

 Depth (in.)
 6 to 36

 Compaction Method
 Static

 Max. Dry Density (pcf)
 111.9

 Opt. Moisture Content (%)
 14.5

 Inside Mold Diameter (in)
 3.94

Weight of Wet Soil (lb) 6.67 Initial Sample Diameter (in) 3.94 Initial Sample Height (in) 7.87 Initial Sample Area (in²) 12.17 Sample Volume (in³) 95.87 Compacted Moisture Content(%) 16.9 Wet Density (pcf) 120.2 Dry Density (pcf) 102.8
 Report Date:
 27-May-14

 Lab No.:
 Bulk 2_OMC+2%

 Project No.:
 04135111

Test Date: March 22, 2014

Final Sample Height (in)

Final Sample Wet Weight (lb) 6.67

Final Moisture Content (%) 17.0

Accumulated Strain (%) 0.50

Percent Passing No. 10 4

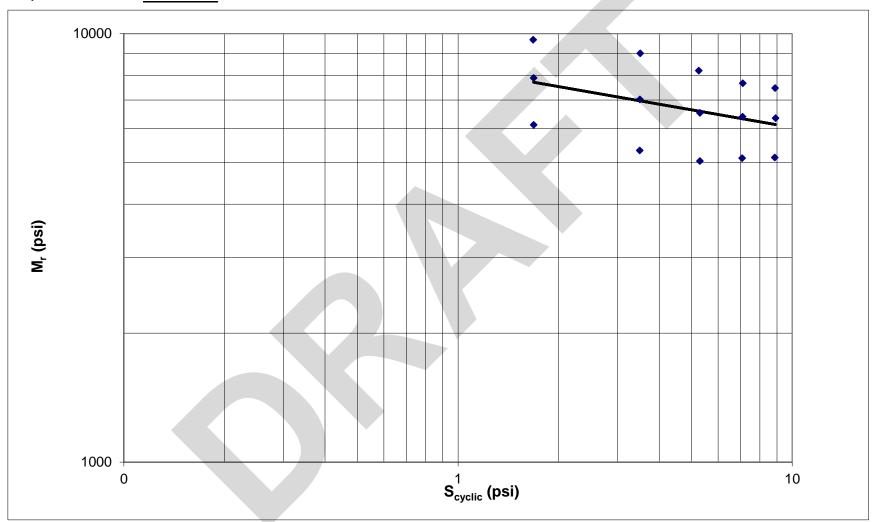
Percent Passing No. 200 81.0

7.8

 Percent Passing No. 200
 81.0

 Liquid Limit
 29

 Plasticity Index
 10

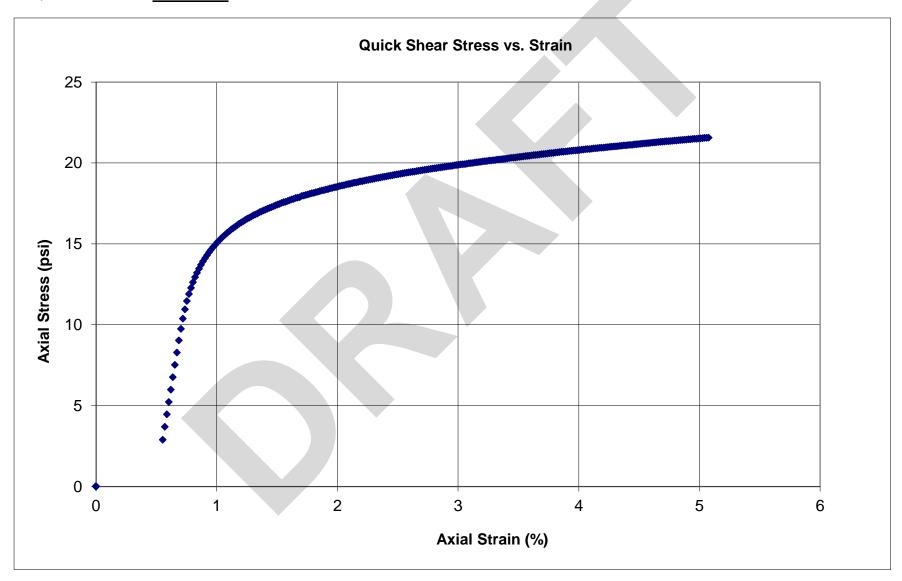

	Nominal		Actual	Actual	Actual	Actual	Actual		Recov.	Average		
Chamber	Maximum	Actual	Applied	Applied	Applied	Applied	Applied	Recov. Def.	Def. LVDT	Recov.		
Confining	Axial	Applied Max.	Cyclic	Contact	Max. Axial	Cyclic	Contact	LVDT #1	#2	Def. LVDT		Resilient
Pressure	Stress	Axial Load	Load	Load	Stress	Stress	Stress	Reading	Reading	1 and 2	Resilient Strain	Modulus
(S ₃)	(S _{cyclic})	(P _{max})	(P _{cyclic})	(P _{contact})	(S _{max})	(S _{cyclic})	(S _{contact})	(H₁)	(H ₂)	(H_{avg})	(\mathfrak{S}_{r})	(M_r)
psi	psi	lb	lb	lb	psi	psi	psi	in	in	in	in/in	psi
5.99	2.00	24.4	20.4	4.0	2.01	1.68	0.328	0.0014	0.0013	0.0014	0.000173	9,681
5.99	4.00	49.1	42.8	6.3	4.03	3.51	0.518	0.0031	0.0030	0.0031	0.000390	8,999
6.00	6.00	73.5	64.0	9.5	6.04	5.25	0.781	0.0052	0.0049	0.0050	0.000641	8,199
6.01	8.00	97.9	86.6	11.4	8.04	7.11	0.932	0.0077	0.0069	0.0073	0.000928	7,658
6.01	10.00	122.1	108.2	13.9	10.03	8.88	1.142	0.0098	0.0089	0.0094	0.001191	7,462
4.00	2.00	24.4	20.5	3.9	2.00	1.68	0.317	0.0018	0.0016	0.0017	0.000214	7,882
4.01	4.00	48.9	42.6	6.3	4.01	3.50	0.515	0.0041	0.0038	0.0039	0.000498	7,024
4.01	6.00	73.4	64.5	8.9	6.03	5.30	0.732	0.0069	0.0059	0.0064	0.000810	6,534
4.01	8.00	97.8	86.5	11.2	8.03	7.11	0.923	0.0092	0.0083	0.0087	0.001110	6,399
4.01	10.00	122.3	108.6	13.7	10.04	8.91	1.124	0.0116	0.0105	0.0111	0.001404	6,348
1.99	2.00	24.2	20.5	3.7	1.99	1.68	0.303	0.0023	0.0021	0.0022	0.000275	6,126
2.00	4.00	48.7	42.6	6.1	4.00	3.50	0.504	0.0055	0.0049	0.0052	0.000656	5,335
2.00	6.00	73.0	64.5	8.5	6.00	5.29	0.702	0.0088	0.0077	0.0083	0.001050	5,043
2.00	8.00	97.5	86.2	11.3	8.01	7.08	0.924	0.0115	0.0103	0.0109	0.001383	5,122
2.00	10.00	121.8	108.0	13.7	10.00	8.87	1.126	0.0143	0.0129	0.0136	0.001726	5,140

Tierracon

Date Reported: Terracon Lab No. 5/27/2014 Bulk 2_OMC+2% 0.00

Project No.

04135111



 $Mr = K1 \times S_{cylic}^{k2}$

S3 (psi)	K 1	K2	R ²
6	10716.5	-0.164	0.97
4	8371.3	-0.136	0.97
2	6305.6	-0.110	0.82
All	8271.3	-0.136	0.16

5/27/2014 Bulk 2_OMC+2% 04135111

 Soil Map Unit:
 0

 Soil Symbol:
 CL

 Depth (in.)
 6 to 36

 Compaction Method
 Static

 Max. Dry Density (pcf)
 101.3

 Opt. Moisture Content (%)
 20.4

 Inside Mold Diameter (in)
 3.94

Weight of Wet Soil (lb) 6.24 Initial Sample Diameter (in) 3.94 Initial Sample Height (in) 7.90 Initial Sample Area (in²) 12.17 Sample Volume (in³) 96.16 Compacted Moisture Content(%) 20.9 Wet Density (pcf) 112.1 Dry Density (pcf) 92.7

 Report Date:
 27-May-14

 Lab No.:
 Bulk 3_OMC

 Project No.:
 04135111

Test Date: March 24, 2014

Final Sample Height (in)

Final Sample Wet Weight (lb)

Final Moisture Content (%)

Accumulated Strain (%)

7.9

6.24

7.9

7.9

6.24

7.9

6.24

7.9

6.24

7.9

6.24

7.9

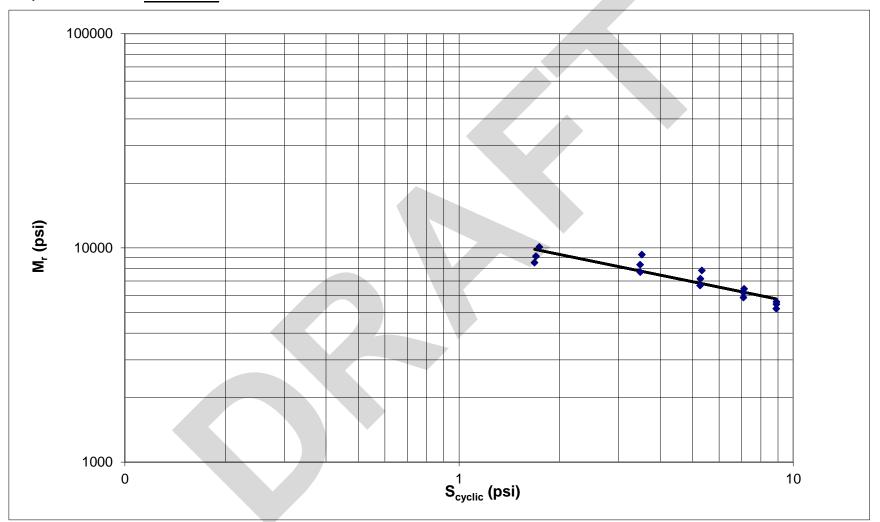
6.24

 Percent Passing No. 10
 8

 Percent Passing No. 200
 86.0

 Liquid Limit
 41

 Plasticity Index
 25

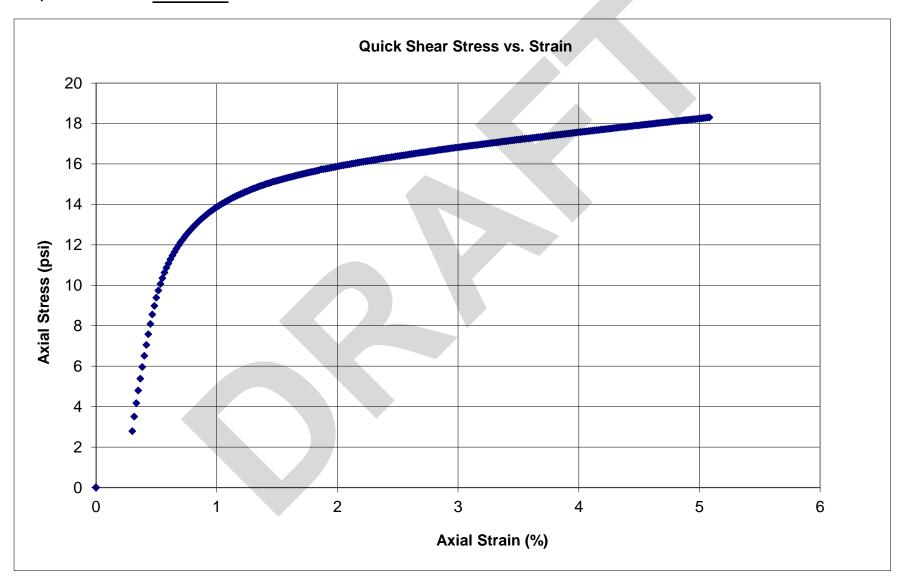

Chambar	Nominal	A otuol	Actual	Actual	Actual	Actual	Actual	Pagey Def	Recov.	Average		
Chamber	Maximum		Applied	Applied	Applied	Applied		Recov. Def.		Recov.		Desilient
Confining		Applied Max.	Cyclic	Contact	Max. Axial	,	Contact	LVDT #1		Def. LVDT		Resilient
Pressure	Stress	Axial Load	Load	Load	Stress	Stress	Stress	Reading	Reading	1 and 2	Resilient Strain	Modulus
(S ₃)	(S _{cyclic})	(P _{max})	(P _{cyclic})	(P _{contact})	(S _{max})	(S _{cyclic})	(S _{contact})	(H₁)	(H_2)	(H _{avg})	(€ _r)	(M_r)
psi	psi	lb	lb	lb	psi	psi	psi	in	in	in	in/in	psi
6.01	2.00	24.0	21.2	2.8	1.97	1.74	0.232	0.0015	0.0012	0.0014	0.000172	10,095
6.00	4.00	48.2	42.9	5.3	3.96	3.53	0.437	0.0032	0.0027	0.0030	0.000379	9,291
6.01	6.00	72.8	64.9	8.0	5.98	5.33	0.654	0.0055	0.0052	0.0054	0.000680	7,837
6.00	8.00	97.4	86.8	10.6	8.00	7.13	0.869	0.0094	0.0081	0.0088	0.001108	6,437
6.01	10.00	121.8	108.4	13.4	10.01	8.90	1.102	0.0133	0.0118	0.0126	0.001591	5,596
4.02	2.00	24.0	20.7	3.3	1.97	1.70	0.269	0.0016	0.0013	0.0015	0.000186	9,144
4.00	4.00	48.2	42.4	5.8	3.96	3.48	0.479	0.0037	0.0029	0.0033	0.000417	8,345
4.00	6.00	72.9	64.2	8.7	5.99	5.28	0.715	0.0064	0.0052	0.0058	0.000736	7,169
4.01	8.00	97.4	86.5	10.9	8.00	7.10	0.895	0.0098	0.0083	0.0091	0.001148	6,188
4.00	10.00	121.6	108.4	13.2	9.99	8.91	1.085	0.0137	0.0121	0.0129	0.001632	5,455
2.00	2.00	23.7	20.5	3.2	1.95	1.68	0.264	0.0017	0.0014	0.0016	0.000197	8,533
2.02	4.00	48.3	42.4	5.9	3.97	3.48	0.484	0.0040	0.0032	0.0036	0.000452	7,707
2.02	6.00	72.7	64.1	8.6	5.97	5.26	0.710	0.0069	0.0056	0.0062	0.000790	6,666
2.02	8.00	97.2	86.4	10.7	7.98	7.10	0.883	0.0102	0.0089	0.0096	0.001211	5,864
1.99	10.00	121.4	108.3	13.1	9.97	8.90	1.075	0.0142	0.0128	0.0135	0.001711	5,201

Terracon

Date Reported: Terracon Lab No. 5/27/2014 Bulk 3_OMC 0.00

Project No.

04135111



 $Mr = K1 \times S_{cylic}^{k2}$

S3 (psi)	K1	K2	R ²
6	13284.4	-0.360	0.89
4	11399.7	-0.309	0.92
2	10430.3	-0.293	0.93
All	11620.9	-0.319	0.83

5/27/2014 Bulk 3_OMC 04135111

 Soil Map Unit:
 0

 Soil Symbol:
 CL

 Depth (in.)
 6 to 36

 Compaction Method
 Static

 Max. Dry Density (pcf)
 101.3

 Opt. Moisture Content (%)
 20.4

 Inside Mold Diameter (in)
 3.94

Weight of Wet Soil (lb) 6.34 Initial Sample Diameter (in) 3.94 Initial Sample Height (in) 7.87 Initial Sample Area (in²) 12.17 Sample Volume (in³) 95.86 Compacted Moisture Content(%) 22.9 114.2 Wet Density (pcf) Dry Density (pcf) 92.9

 Report Date:
 27-May-14

 Lab No.:
 Bulk 3_OMC+2%

 Project No.:
 04135111

Test Date: March 24, 2014

Final Sample Height (in)

Final Sample Wet Weight (lb)

Final Moisture Content (%)

Accumulated Strain (%)

7.8

6.34

22.7

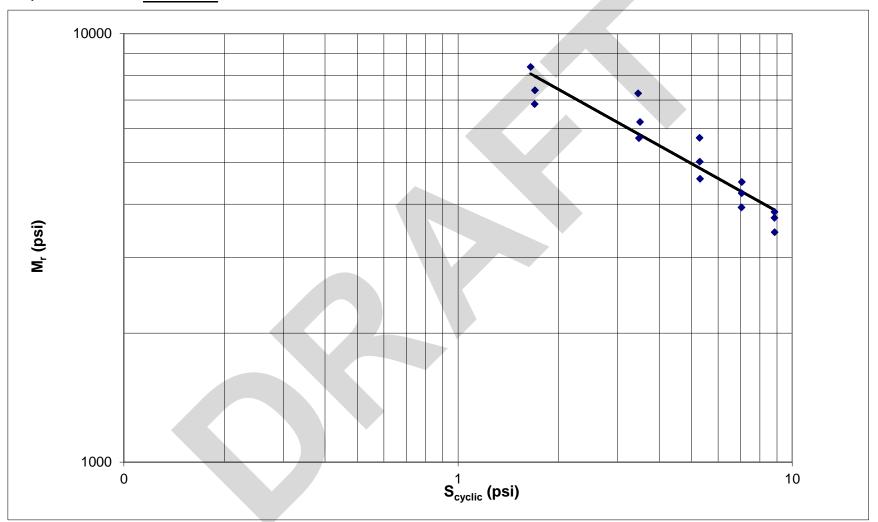
Accumulated Strain (%)

 Percent Passing No. 10
 8

 Percent Passing No. 200
 86.0

 Liquid Limit
 41

 Plasticity Index
 25


Chamber	Nominal Maximum	Actual	Actual Applied	Actual Applied	Actual Applied	Actual Applied	Actual Applied	Recov. Def.	Recov.	Average Recov.		
								LVDT #1		Def. LVDT		Positiont
Confining		Applied Max.	Cyclic	Contact	Max. Axial	,	Contact					Resilient
Pressure	Stress	Axial Load	Load	Load	Stress	Stress	Stress	Reading	Reading	1 and 2	Resilient Strain	Modulus
(S ₃)	(S_{cyclic})	(P _{max})	(P _{cyclic})	(P _{contact})	(S _{max})	(S _{cyclic})	(S _{contact})	(H₁)	(H_2)	(H _{avg})	(€ _r)	(M_r)
psi	psi	lb	lb	lb	psi	psi	psi	in	in	in	in/in	psi
6.00	2.00	24.2	20.1	4.1	1.99	1.65	0.337	0.0016	0.0015	0.0016	0.000197	8,360
6.00	4.00	48.7	42.1	6.5	4.00	3.46	0.537	0.0039	0.0036	0.0038	0.000477	7,255
6.01	6.00	73.4	64.3	9.1	6.02	5.28	0.745	0.0076	0.0070	0.0073	0.000924	5,713
6.00	8.00	97.7	86.1	11.6	8.02	7.07	0.951	0.0130	0.0117	0.0124	0.001569	4,505
6.00	10.00	121.8	107.8	14.0	10.00	8.85	1.148	0.0189	0.0175	0.0182	0.002307	3,835
4.03	2.00	24.7	20.7	4.0	2.02	1.70	0.327	0.0020	0.0016	0.0018	0.000230	7,377
4.02	4.00	49.1	42.7	6.4	4.03	3.51	0.525	0.0049	0.0039	0.0044	0.000563	6,222
4.01	6.00	73.3	64.4	8.9	6.02	5.29	0.732	0.0089	0.0077	0.0083	0.001052	5,026
4.02	8.00	97.5	86.0	11.5	8.00	7.06	0.946	0.0142	0.0120	0.0131	0.001664	4,241
4.00	10.00	121.7	107.8	13.9	9.99	8.85	1.143	0.0196	0.0179	0.0188	0.002381	3,715
2.00	2.00	24.5	20.6	3.8	2.01	1.69	0.315	0.0021	0.0018	0.0019	0.000248	6,846
1.99	4.00	48.8	42.4	6.4	4.01	3.48	0.527	0.0053	0.0043	0.0048	0.000610	5,702
1.99	6.00	73.4	64.6	8.8	6.02	5.30	0.722	0.0099	0.0083	0.0091	0.001157	4,582
1.99	8.00	97.1	85.9	11.3	7.97	7.05	0.925	0.0152	0.0131	0.0141	0.001794	3,928
2.01	10.00	121.7	107.9	13.8	9.99	8.86	1.132	0.0212	0.0194	0.0203	0.002578	3,438

Date Reported: Terracon Lab No. 5/27/2014 Bulk 3_OMC+2% 0.00

Project No.

04135111



 $Mr = K1 \times S_{cylic}^{k2}$

S3 (psi)	K1	K2	R ²
6	11498.6	-0.466	0.92
4	9716.6	-0.418	0.96
2	8953.4	-0.418	0.97
All	10017.4	-0.435	0.87

5/27/2014 Bulk 3_OMC+2% 04135111

 Soil Map Unit:
 0

 Soil Symbol:
 A-4 / GC-GM

 Depth (in.)
 0

 Compaction Method
 Static

 Max. Dry Density (pcf)
 115.0

 Opt. Moisture Content (%)
 13.0

 Inside Mold Diameter (in)
 3.94

Weight of Wet Soil (lb) 6.85 Initial Sample Diameter (in) 3.94 Initial Sample Height (in) 7.87 Initial Sample Area (in²) 12.17 Sample Volume (in³) 95.86 Compacted Moisture Content(%) 12.5 Wet Density (pcf) 123.4 Dry Density (pcf) 109.7
 Report Date:
 27-May-14

 Lab No.:
 Bulk 4_OMC

 Project No.:
 04135111

Test Date: April 1, 2014

Final Sample Height (in)

Final Sample Wet Weight (lb)

Final Moisture Content (%)

Accumulated Strain (%)

7.9

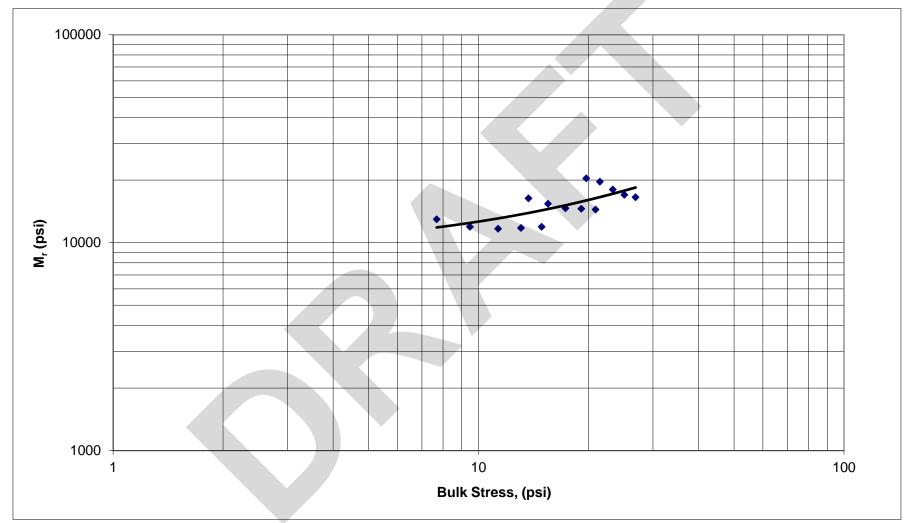
6.84

12.5

0.17

 Percent Passing No. 10
 0

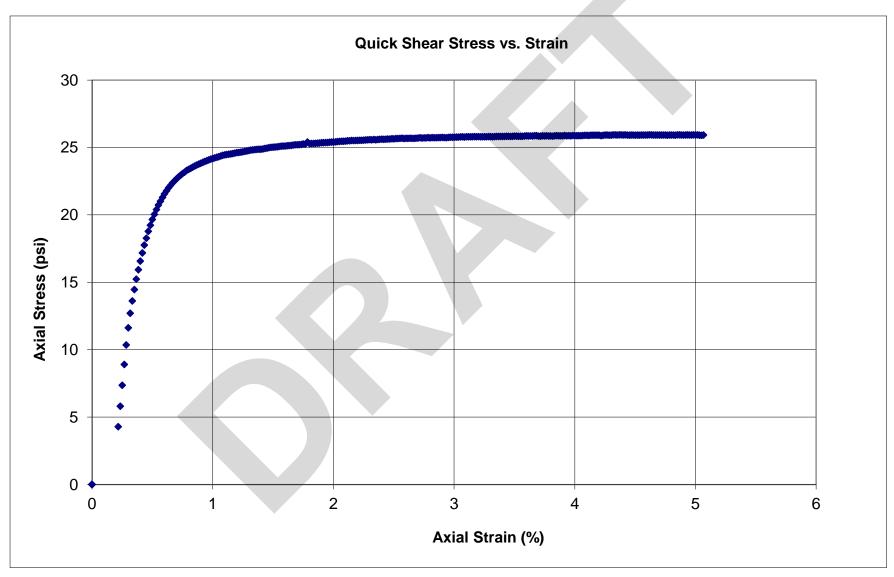
 Percent Passing No. 200
 0.0


 Liquid Limit
 22

 Plasticity Index
 4

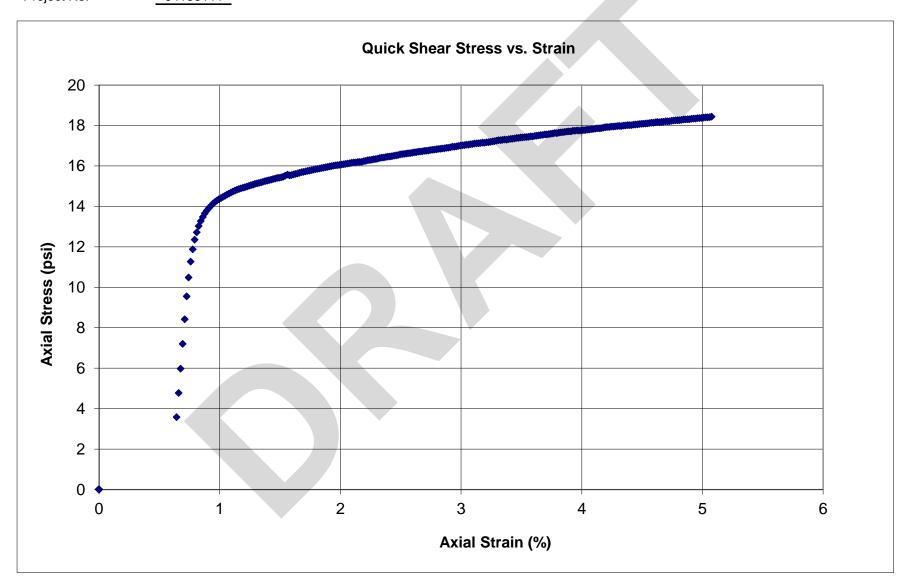
Chamber	Nominal Maximum	Actual	Actual Applied	Actual Applied	Actual Applied	Actual	Actual Applied	Recov. Def.	Recov. Def. LVDT	Average Recov.		
Confining		Applied Max.	Cyclic	Contact	Max. Axial	Applied Cyclic	Contact	LVDT #1		Def. LVDT		Resilient
Pressure	Stress	Axial Load	Load	Load	Stress	Stress	Stress	Reading	Reading	1 and 2	Resilient Strain	
(S ₃)	(S _{cyclic})	(P _{max})	(P _{cyclic})	(P _{contact})	(S _{max})	(S _{cyclic})	(S _{contact})	(H ₁)	(H ₂)	(H _{avg})	(\mathfrak{E}_{r})	(M _r)
1				4.0								
psi	psi	lb	lb	lb	psi	psi	psi	in	in	in	in/in	psi
6.00	2.00	24.2	20.8	3.4	1.99	1.71	0.281	0.0007	0.0006	0.0007	0.000084	20,369
5.99	4.00	48.5	42.8	5.7	3.99	3.52	0.472	0.0014	0.0014	0.0014	0.000179	19,618
6.00	6.00	73.0	64.6	8.4	5.99	5.31	0.687	0.0025	0.0022	0.0023	0.000295	17,993
6.00	8.00	97.4	86.1	11.3	8.00	7.07	0.925	0.0034	0.0031	0.0033	0.000417	16,971
6.00	10.00	121.8	108.2	13.6	10.01	8.89	1.114	0.0044	0.0041	0.0042	0.000538	16,520
4.00	2.00	24.2	20.7	3.5	1.99	1.70	0.291	0.0009	0.0007	0.0008	0.000104	16,337
4.00	4.00	48.5	42.5	6.0	3.98	3.49	0.492	0.0019	0.0017	0.0018	0.000227	15,369
4.00	6.00	73.0	64.5	8.5	6.00	5.30	0.701	0.0031	0.0026	0.0029	0.000362	14,633
4.01	8.00	97.5	86.2	11.2	8.01	7.08	0.924	0.0041	0.0035	0.0038	0.000487	14,547
4.00	10.00	121.7	108.2	13.5	10.00	8.89	1.106	0.0051	0.0046	0.0049	0.000617	14,414
2.01	2.00	24.0	20.3	3.7	1.97	1.67	0.306	0.0011	0.0009	0.0010	0.000129	12,953
2.00	4.00	48.6	42.4	6.2	3.99	3.48	0.506	0.0024	0.0022	0.0023	0.000292	11,920
2.00	6.00	73.0	64.6	8.4	6.00	5.31	0.692	0.0039	0.0033	0.0036	0.000456	11,651
2.00	8.00	97.3	86.2	11.1	7.99	7.08	0.909	0.0051	0.0044	0.0047	0.000603	11,755
2.00	10.00	121.6	108.1	13.5	9.99	8.89	1.108	0.0062	0.0056	0.0059	0.000746	11,905

5/27/2014 Bulk 4_OMC 04135111


$$Mr = K1 \times \Theta^{k2}$$

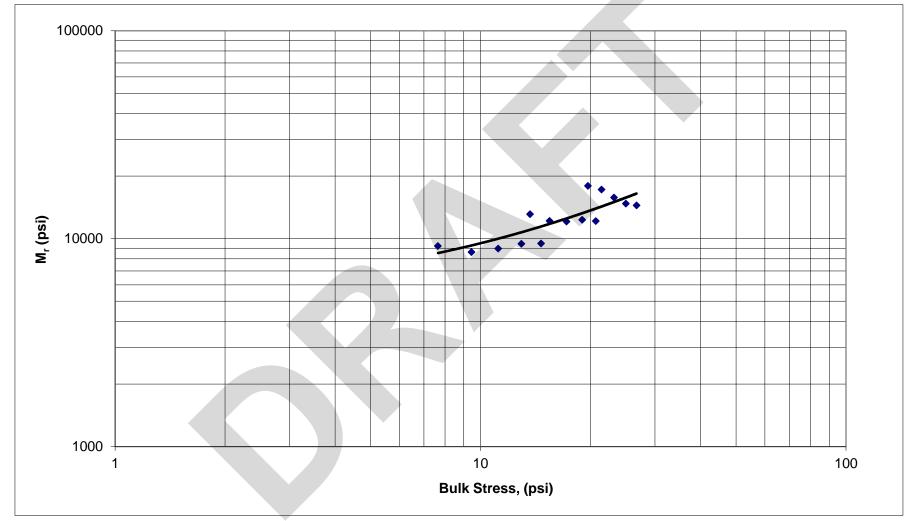
$$[\Theta = S_{cyclic} + 3 (S3)]$$

S3 (psi)	K1	K2	R ²		
6	179639.9	-0.728	0.98		
4	34888.8	-0.296	0.89		
2	16096.9	-0.122	0.56		
All	5424.1	0.361	0.50		



5/27/2014 Bulk 4_OMC 04135111

5/27/2014 Bulk 4_OMC+2% 04135111



Date Reported: Terracon Lab No. 5/27/2014

Bulk 4_OMC+2%

Project No.

04135111

$$Mr = K1 \times \Theta^{k2}$$

$$[\Theta = S_{cyclic} + 3 (S3)]$$

S3 (psi)	K1	K2	R ²		
6	180051.2	-0.772	0.97		
4	18431.2	-0.141	0.48		
2	7516.4	0.082	0.28		
All	2650.1	0.547	0.67		

 Soil Map Unit:
 0

 Soil Symbol:
 A-4 / GC-GM

 Depth (in.)
 0

 Compaction Method
 Static

 Max. Dry Density (pcf)
 115.0

 Opt. Moisture Content (%)
 13.0

 Inside Mold Diameter (in)
 3.94

Weight of Wet Soil (lb) 6.97 Initial Sample Diameter (in) 3.94 Initial Sample Height (in) 7.87 Initial Sample Area (in²) 12.17 Sample Volume (in³) 95.86 Compacted Moisture Content(%) 14.5 125.6 Wet Density (pcf) Dry Density (pcf) 109.7
 Report Date:
 27-May-14

 Lab No.:
 Bulk 4_OMC+2%

 Project No.:
 04135111

Test Date: April 1, 2014

Final Sample Height (in)

Final Sample Wet Weight (lb)

Final Moisture Content (%)

Accumulated Strain (%)

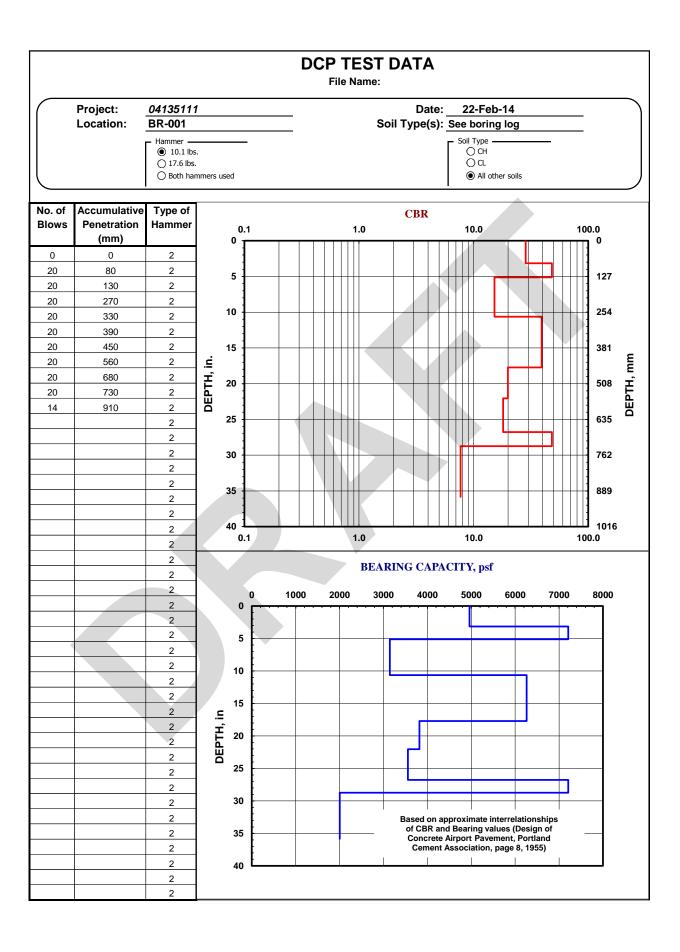
7.8

6.96

14.5

0.60

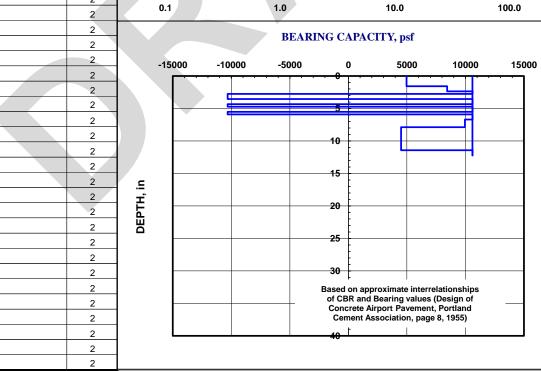
 Percent Passing No. 10
 0

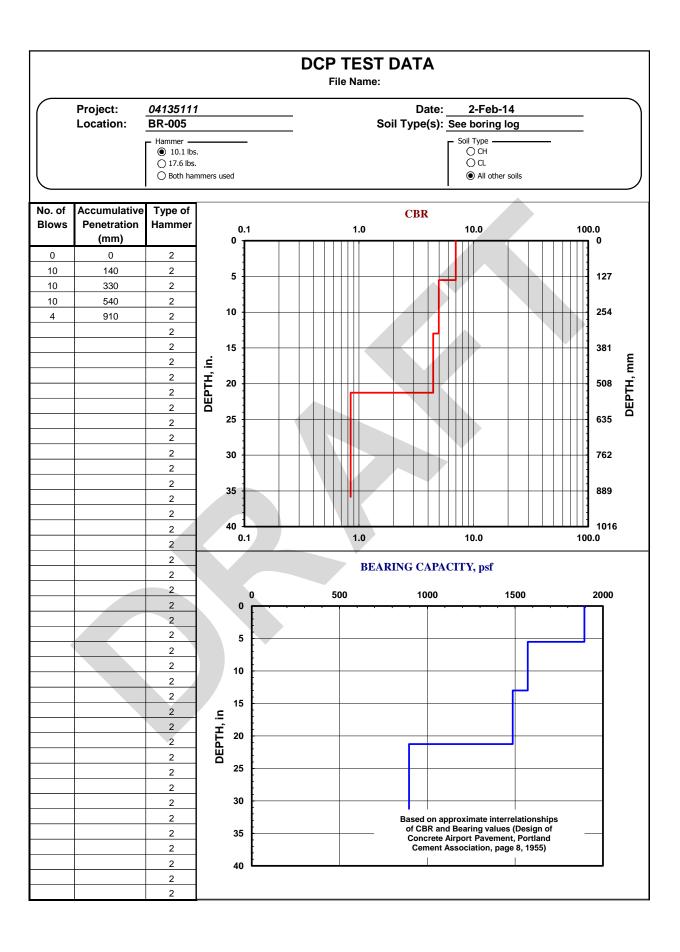

 Percent Passing No. 200
 0.0

 Liquid Limit
 22

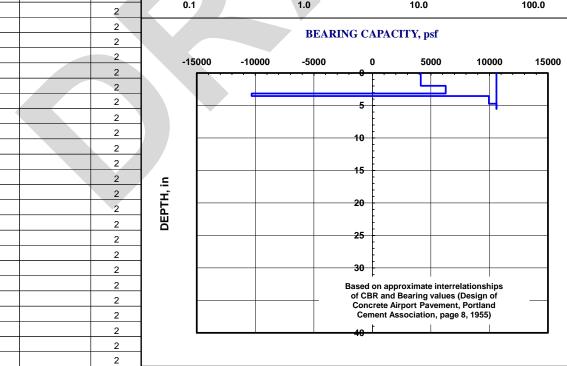
 Plasticity Index
 4

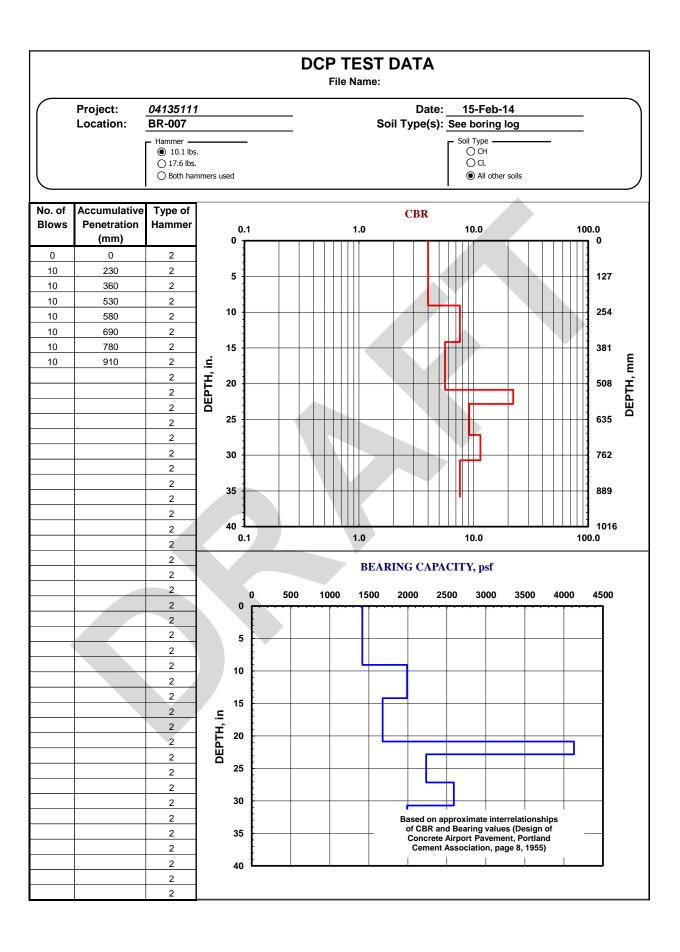
Chamber	Nominal Maximum	Actual	Actual Applied	Actual Applied	Actual Applied	Actual Applied	Actual Applied	Recov. Def.	Recov. Def. LVDT	Average Recov.		
Confining	Axial	Applied Max.	Cyclic		Max. Axial		Contact	LVDT #1		Def. LVDT		Resilient
Pressure	Stress	Axial Load	Load	Load	Stress	Stress	Stress	Reading	Reading		Resilient Strain	
(S ₃)	(S _{cyclic})	(P _{max})	(P _{cyclic})	(P _{contact})	(S _{max})	(S _{cyclic})	(S _{contact})	(H₁) Š	(H ₂)	(H _{avg})	(€ _r)	(M_r)
psi	psi	lb	lb	lb	psi	psi	psi	in	in	in	in/in	psi
6.01	2.00	23.6	20.0	3.6	1.94	1.64	0.299	0.0007	0.0007	0.0007	0.000091	17,943
6.01	4.00	47.5	41.4	6.1	3.90	3.40	0.498	0.0016	0.0015	0.0016	0.000197	17,232
6.00	6.00	71.9	63.2	8.7	5.91	5.19	0.715	0.0027	0.0025	0.0026	0.000330	15,754
6.00	8.00	96.4	85.1	11.4	7.92	6.99	0.934	0.0038	0.0037	0.0037	0.000474	14,745
6.00	10.00	120.3	106.3	14.0	9.88	8.73	1.151	0.0048	0.0048	0.0048	0.000605	14,438
4.00	2.00	23.8	20.3	3.4	1.95	1.67	0.283	0.0010	0.0010	0.0010	0.000127	13,096
4.01	4.00	47.7	41.7	6.0	3.92	3.43	0.492	0.0022	0.0022	0.0022	0.000282	12,173
4.00	6.00	71.9	63.3	8.6	5.91	5.20	0.705	0.0034	0.0033	0.0034	0.000431	12,071
4.01	8.00	96.1	84.9	11.2	7.89	6.97	0.924	0.0045	0.0044	0.0045	0.000566	12,312
4.00	10.00	119.6	105.6	14.0	9.82	8.67	1.153	0.0056	0.0056	0.0056	0.000713	12,155
2.00	2.00	23.8	20.1	3.7	1.95	1.65	0.301	0.0014	0.0015	0.0014	0.000180	9,208
2.00	4.00	47.9	42.0	5.9	3.93	3.45	0.485	0.0031	0.0032	0.0032	0.000401	8,610
2.00	6.00	71.9	63.0	8.9	5.91	5.18	0.732	0.0046	0.0045	0.0046	0.000578	8,956
2.00	8.00	95.7	84.5	11.2	7.86	6.94	0.921	0.0058	0.0057	0.0058	0.000735	9,437
2.00	10.00	119.2	105.2	14.0	9.79	8.64	1.151	0.0072	0.0072	0.0072	0.000912	9,474

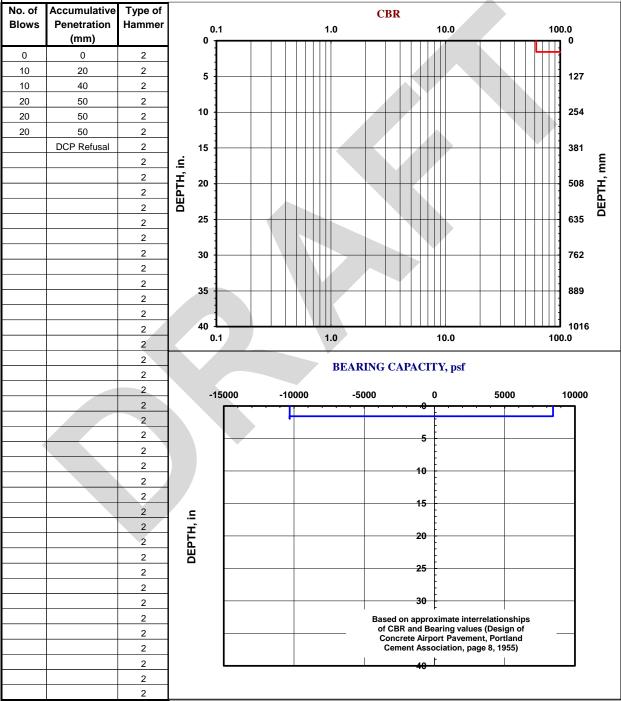

APPENDIX C DYNAMIC CONE PENETRATION TEST RESULTS

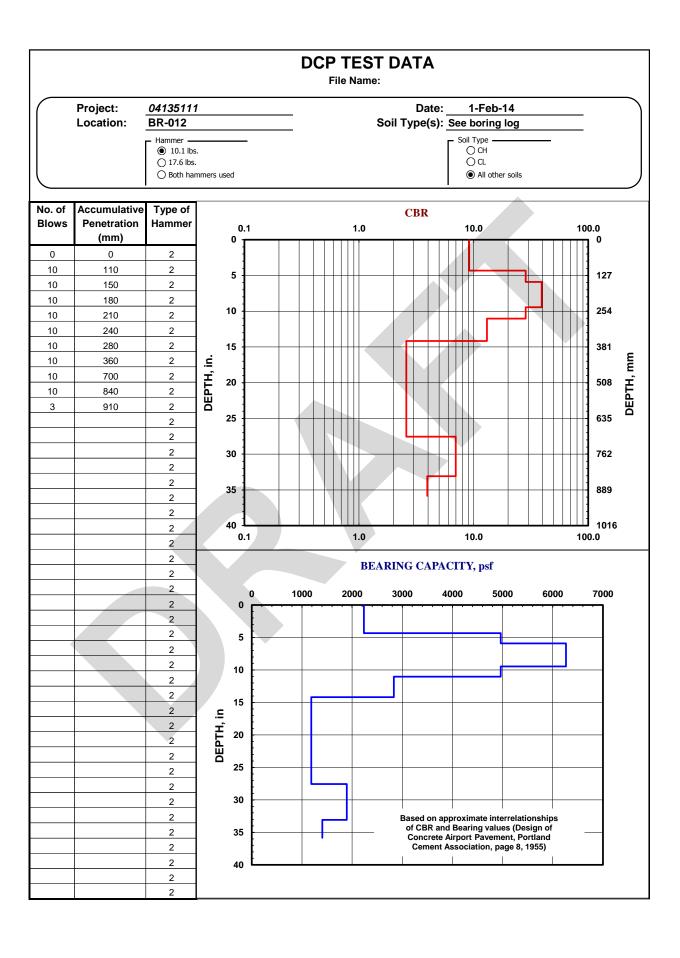


DCP TEST DATA File Name: Project: Date: 22-Feb-14 Location: Soil Type(s): See boring log **BR-002** Hammer -Soil Type • 10.1 lbs. \bigcirc CH ○ 17.6 lbs. Ō CL \bigcirc Both hammers used All other soils Accumulative No. of Type of **CBR** Blows Penetration Hammer 10.0 100.0 0.1 1.0 (mm) DEPTH, mm DEPTH, in. 1.0 10.0 100.0 0.1 **BEARING CAPACITY, psf** Based on approximate interrelationships of CBR and Bearing values (Design of Concrete Airport Pavement, Portland Cement Association, page 8, 1955)


DCP TEST DATA File Name: Project: Date: 2-Feb-14 Location: BR-003 Soil Type(s): See boring log Hammer -Soil Type • 10.1 lbs. \bigcirc CH ○ 17.6 lbs. Ō CL O Both hammers used All other soils Accumulative No. of Type of **CBR Blows** Penetration Hammer 100.0 0.1 1.0 10.0 (mm) DEPTH, mm DEPTH, in. 0.1 1.0 10.0 100.0 **BEARING CAPACITY, psf** Based on approximate interrelationships of CBR and Bearing values (Design of Concrete Airport Pavement, Portland Cement Association, page 8, 1955)

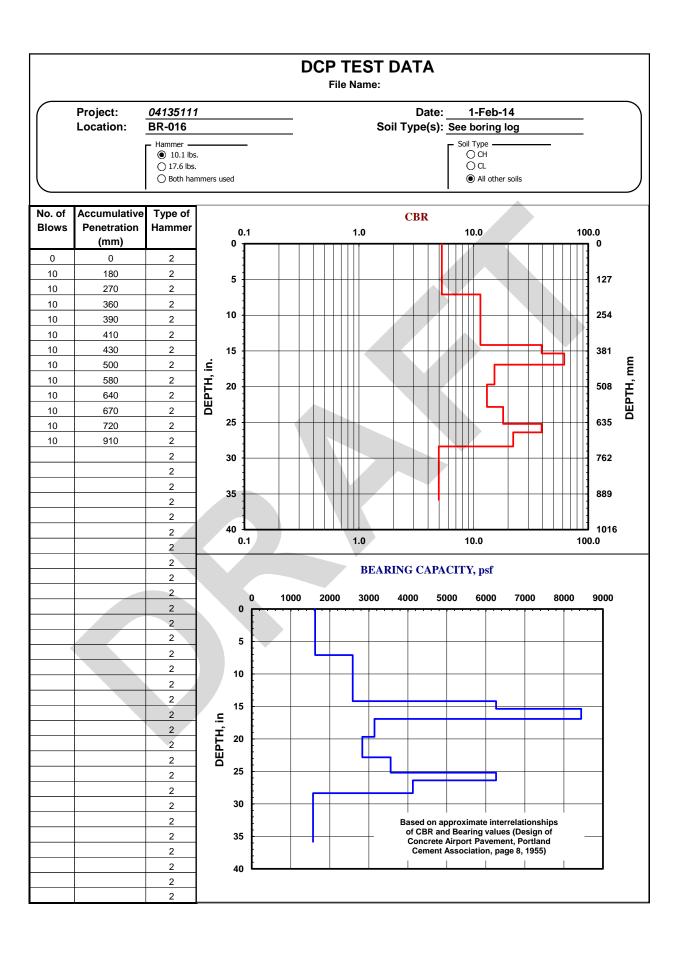

DCP TEST DATA File Name: Project: 1-Feb-14 Date: Location: BR-004 Soil Type(s): See boring log Hammer -Soil Type • 10.1 lbs. \bigcirc CH ○ 17.6 lbs. Ō CL O Both hammers used All other soils No. of Accumulative Type of **CBR Blows** Penetration Hammer 100.0 0.1 1.0 10.0 (mm) DEPTH, mm DEPTH, in. DCP Refusal 1.0 10.0 100.0 0.1

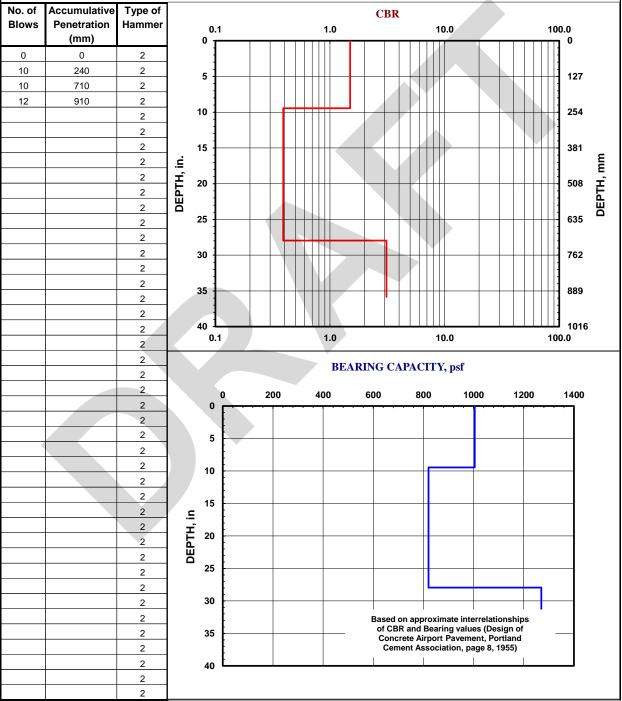

DCP TEST DATA File Name: Project: Date: 16-Feb-14 Location: BR-006 Soil Type(s): See boring log Hammer -Soil Type • 10.1 lbs. \bigcirc CH ○ 17.6 lbs. Ō CL O Both hammers used All other soils Accumulative No. of Type of **CBR Blows** Penetration Hammer 10.0 100.0 0.1 1.0 (mm) DEPTH, mm DCP Refusal DEPTH, in. 1.0 10.0 100.0 0.1 **BEARING CAPACITY, psf**



DCP TEST DATA File Name: Project: Date: 16-Feb-14 Location: BR-008 Soil Type(s): See boring log Hammer -Soil Type • 10.1 lbs. \bigcirc CH ○ 17.6 lbs. Ō CL O Both hammers used All other soils Accumulative No. of Type of **CBR Blows** Penetration Hammer 10.0 100.0 0.1 1.0 (mm) DEPTH, mm DCP Refusal DEPTH, in. 1.0 10.0 100.0 0.1 **BEARING CAPACITY, psf** -15000 -10000 -5000 Based on approximate interrelationships of CBR and Bearing values (Design of Concrete Airport Pavement, Portland Cement Association, page 8, 1955)

DCP TEST DATA File Name: Project: 04135111 Date: 16-Feb-14 Location: BR-009 Soil Type(s): See boring log Hammer -Soil Type ○ CH • 10.1 lbs. ○ 17.6 lbs. O Both hammers used All other soils Accumulative No. of Type of **CBR Blows** Penetration Hammer


DCP TEST DATA File Name: Project: Date: 22-Feb-14 Location: BR-010 Soil Type(s): See boring log Hammer -Soil Type ○ CH • 10.1 lbs. ○ 17.6 lbs. O Both hammers used All other soils Accumulative No. of Type of **CBR Blows** Penetration Hammer 10.0 100.0 0.1 1.0 (mm) DCP Refusal DEPTH, mm DEPTH, in. 1.0 10.0 100.0 0.1 **BEARING CAPACITY, psf** -15000 -10000 -5000 Based on approximate interrelationships of CBR and Bearing values (Design of Concrete Airport Pavement, Portland Cement Association, page 8, 1955)


DCP TEST DATA File Name: Project: Date: 15-Feb-14 Location: BR-013 Soil Type(s): See boring log Hammer -Soil Type ○ CH • 10.1 lbs. ○ 17.6 lbs. O Both hammers used All other soils Accumulative No. of Type of CBR **Blows** Penetration Hammer 10.0 100.0 0.1 1.0 (mm) DEPTH, mm DEPTH, in. 0.1 1.0 10.0 100.0 **BEARING CAPACITY, psf** DEPTH, in Based on approximate interrelationships of CBR and Bearing values (Design of Concrete Airport Pavement, Portland Cement Association, page 8, 1955)

DCP TEST DATA File Name: Project: 1-Feb-14 Date: Location: Soil Type(s): See boring log **BR-014** Hammer -Soil Type • 10.1 lbs. \bigcirc CH ○ 17.6 lbs. Ō CL O Both hammers used All other soils No. of Accumulative Type of **CBR Blows** Penetration Hammer 10.0 100.0 0.1 1.0 (mm) DEPTH, mm DEPTH, in. 100.0 1.0 10.0 0.1 **BEARING CAPACITY, psf** -200000 -150000 -100000 -50000 Based on approximate interrelationships of CBR and Bearing values (Design of Concrete Airport Pavement, Portland Cement Association, page 8, 1955)

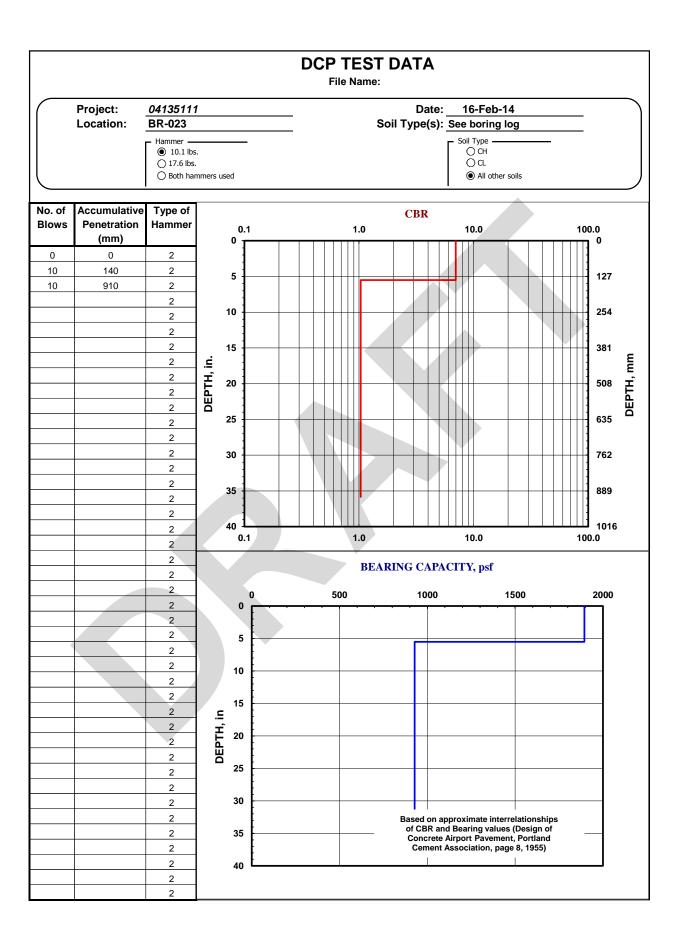
DCP TEST DATA File Name: Project: Date: 15-Feb-14 Location: BR-015 Soil Type(s): High plasticity Clay Hammer -Soil Type • • 10.1 lbs. CH ○ 17.6 lbs. Ō CL O Both hammers used O All other soils Accumulative No. of Type of **CBR Blows** Penetration Hammer 10.0 100.0 0.1 1.0 (mm) DEPTH, mm DEPTH, in. 0.1 1.0 10.0 100.0 **BEARING CAPACITY, psf** Based on approximate interrelationships of CBR and Bearing values (Design of Concrete Airport Pavement, Portland Cement Association, page 8, 1955)

DCP TEST DATA File Name: Project: 04135111 Date: 15-Feb-14 Location: BR-017 Soil Type(s): Low plasticity Clay with CBR<10 Soil Type -Hammer -• 10.1 lbs. ○ 17.6 lbs. CL O Both hammers used $\ensuremath{\bigcirc}$ All other soils Accumulative No. of Type of CBR

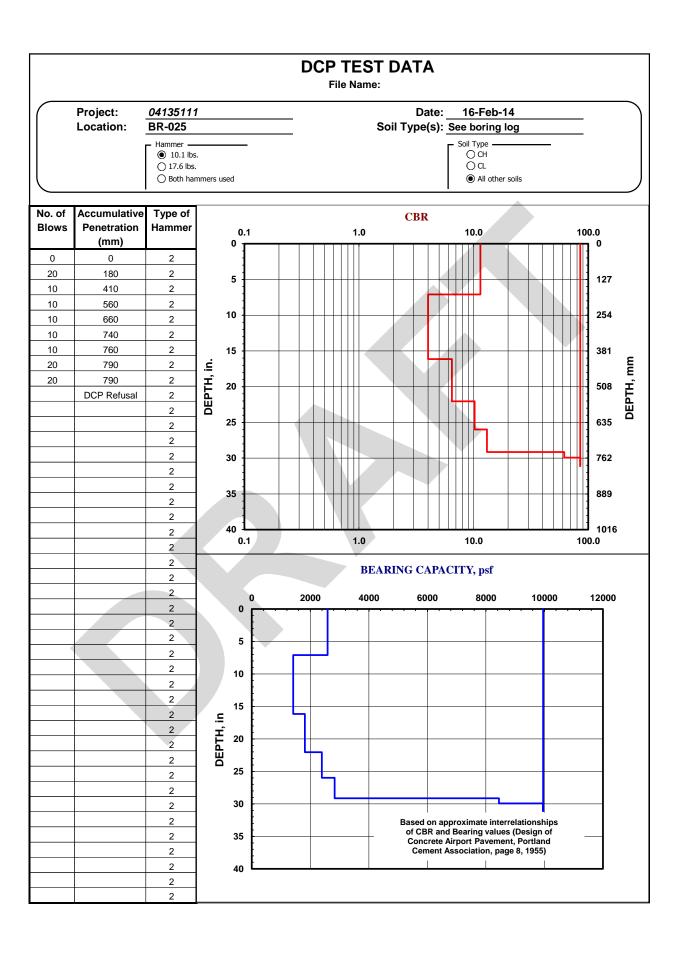
DCP TEST DATA File Name: Project: Date: 17-Feb-14 Location: BR-018 Soil Type(s): See boring log Hammer -Soil Type ○ CH • 10.1 lbs. ○ 17.6 lbs. O Both hammers used All other soils Accumulative No. of Type of **CBR** Blows Penetration Hammer 10.0 100.0 0.1 1.0 (mm) DEPTH, mm DEPTH, in. 0.1 1.0 10.0 100.0 **BEARING CAPACITY, psf** Based on approximate interrelationships of CBR and Bearing values (Design of Concrete Airport Pavement, Portland Cement Association, page 8, 1955)

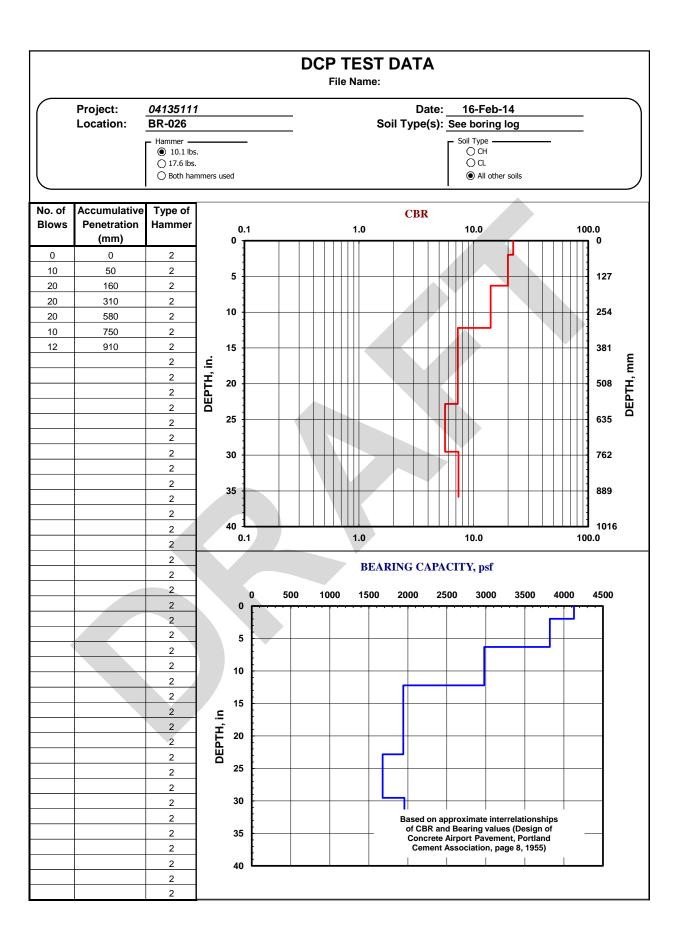
DCP TEST DATA File Name: Project: Date: 16-Feb-14 Location: BR-019 Soil Type(s): See boring log Hammer -Soil Type • 10.1 lbs. \bigcirc CH ○ 17.6 lbs. Ō CL O Both hammers used All other soils Accumulative No. of Type of **CBR Blows** Penetration Hammer 10.0 100.0 0.1 1.0 (mm) DEPTH, mm DEPTH, in. DCP Refusal 1.0 10.0 100.0 0.1 **BEARING CAPACITY, psf** -15000 -10000 -5000

Based on approximate interrelationships of CBR and Bearing values (Design of Concrete Airport Pavement, Portland


Cement Association, page 8, 1955)

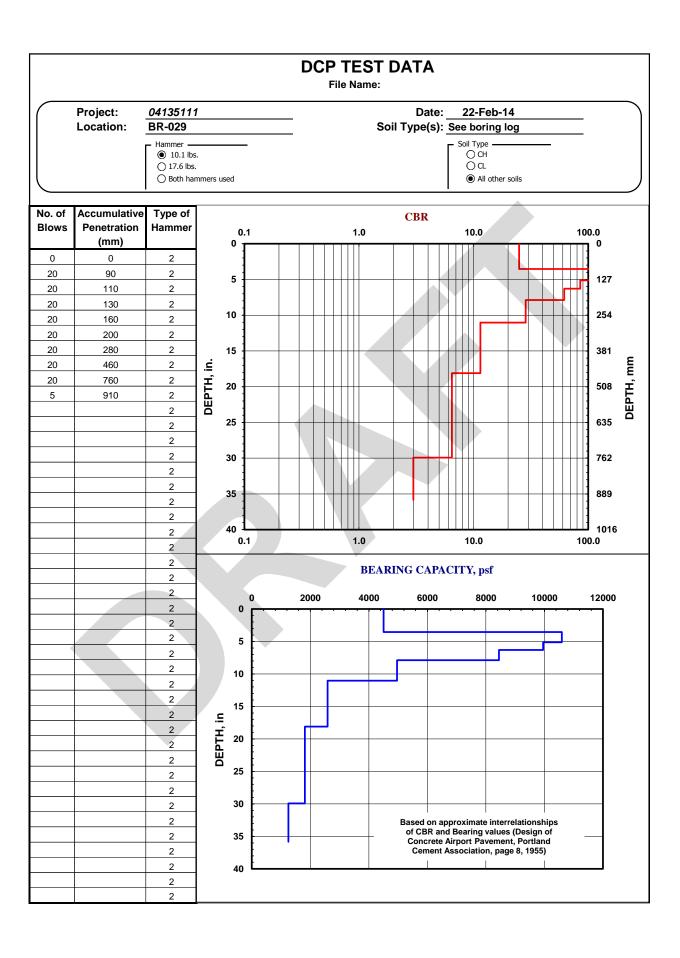
2 2

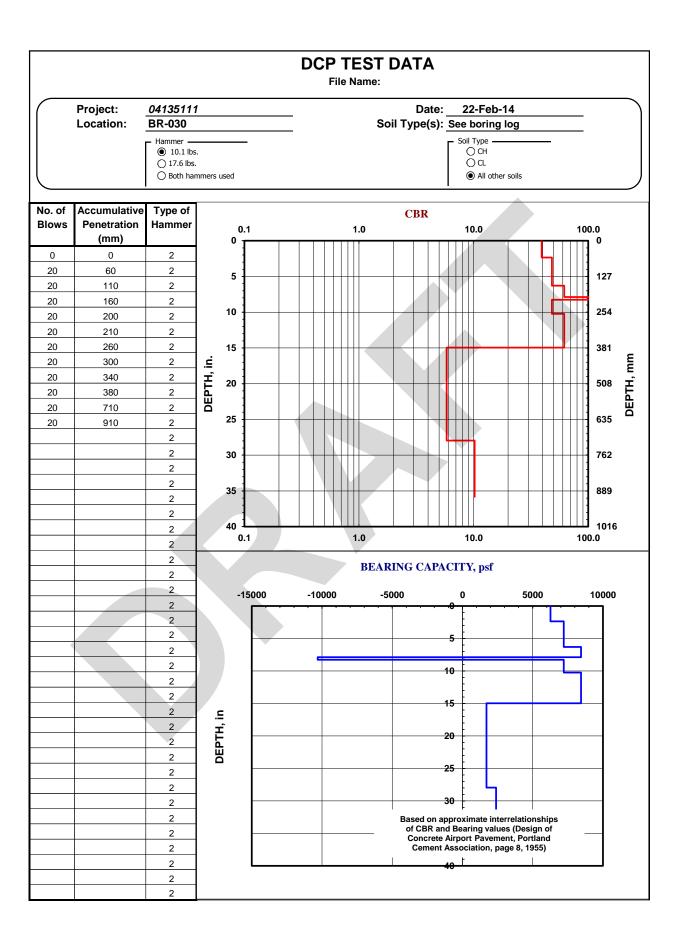

DCP TEST DATA File Name: Project: Date: 16-Feb-14 Location: BR-020 Soil Type(s): See boring log Hammer -Soil Type • 10.1 lbs. \bigcirc CH ○ 17.6 lbs. Ō CL O Both hammers used All other soils Accumulative No. of Type of **CBR Blows** Penetration Hammer 10.0 100.0 0.1 1.0 (mm) DEPTH, mm DEPTH, in. 0.1 1.0 10.0 100.0 **BEARING CAPACITY, psf** Based on approximate interrelationships of CBR and Bearing values (Design of Concrete Airport Pavement, Portland Cement Association, page 8, 1955)


DCP TEST DATA File Name: Project: Date: 16-Feb-14 Location: BR-021 Soil Type(s): See boring log Hammer -Soil Type ○ CH • 10.1 lbs. ○ 17.6 lbs. O Both hammers used All other soils Accumulative No. of Type of **CBR Blows** Penetration Hammer 10.0 100.0 0.1 1.0 (mm) DEPTH, mm DEPTH, in. 0.1 1.0 10.0 100.0 **BEARING CAPACITY, psf** Based on approximate interrelationships of CBR and Bearing values (Design of Concrete Airport Pavement, Portland Cement Association, page 8, 1955)

DCP TEST DATA File Name: Project: Date: 16-Feb-14 Location: Soil Type(s): See boring log **BR-022** Hammer -Soil Type • 10.1 lbs. \bigcirc CH ○ 17.6 lbs. Ō CL O Both hammers used All other soils Accumulative No. of Type of **CBR Blows** Penetration Hammer 10.0 100.0 0.1 1.0 (mm) DEPTH, mm DEPTH, in. 1.0 10.0 100.0 0.1 **BEARING CAPACITY, psf** -15000 -10000 -5000 Based on approximate interrelationships of CBR and Bearing values (Design of Concrete Airport Pavement, Portland Cement Association, page 8, 1955)

DCP TEST DATA File Name: Project: Date: 1-Feb-14 Location: BR-024 Soil Type(s): See boring log Hammer -Soil Type • 10.1 lbs. \bigcirc CH ○ 17.6 lbs. Ō CL O Both hammers used All other soils Accumulative No. of Type of **CBR Blows** Penetration Hammer 100.0 0.1 1.0 10.0 (mm) DEPTH, mm DEPTH, in. DCP Refusal 0.1 1.0 10.0 100.0 **BEARING CAPACITY, psf** Based on approximate interrelationships of CBR and Bearing values (Design of Concrete Airport Pavement, Portland Cement Association, page 8, 1955)

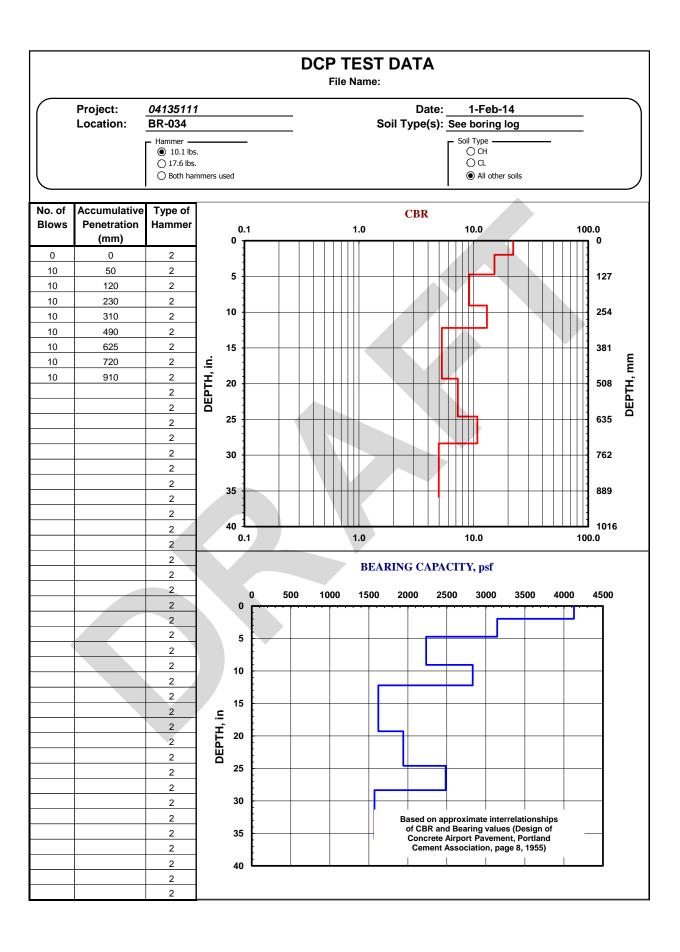


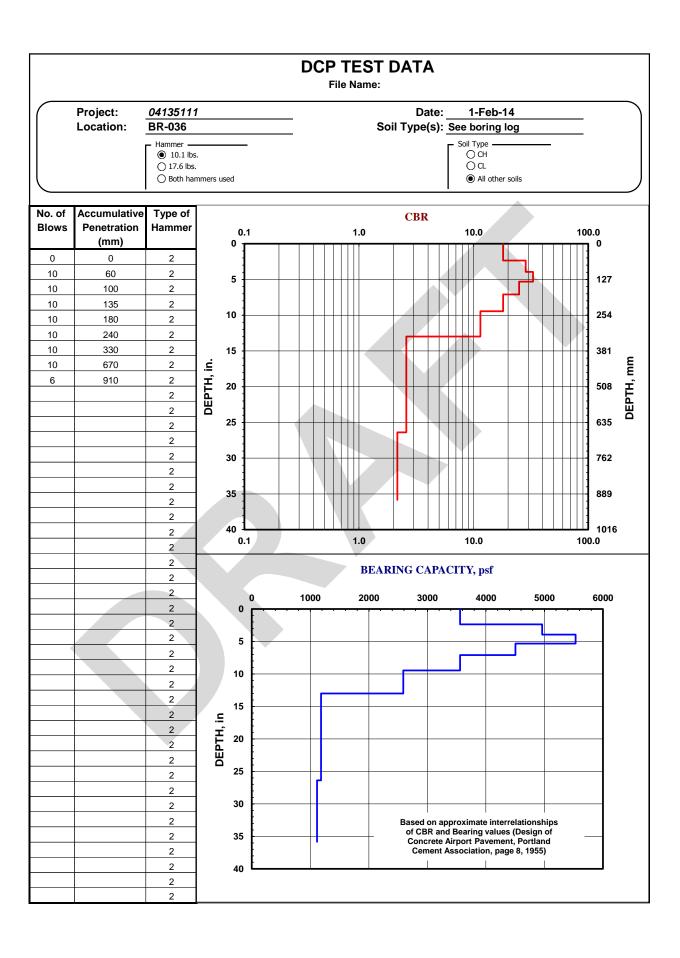

DCP TEST DATA File Name: Project: Date: 16-Feb-14 Location: BR-027 Soil Type(s): See boring log Hammer -Soil Type • 10.1 lbs. \bigcirc CH ○ 17.6 lbs. Ō CL O Both hammers used All other soils Accumulative No. of Type of **CBR Blows** Penetration Hammer 10.0 100.0 0.1 1.0 (mm) DEPTH, mm DCP Refusal DEPTH, in. 0.1 1.0 10.0 100.0 **BEARING CAPACITY, psf**

Based on approximate interrelationships of CBR and Bearing values (Design of Concrete Airport Pavement, Portland

Cement Association, page 8, 1955)

DCP TEST DATA File Name: Project: Date: 22-Feb-14 Location: BR-028 Soil Type(s): See boring log Hammer -Soil Type ○ CH • 10.1 lbs. ○ 17.6 lbs. O Both hammers used All other soils Accumulative No. of Type of **CBR** Blows Penetration Hammer 10.0 100.0 0.1 1.0 (mm) DEPTH, mm DEPTH, in. 0.1 1.0 10.0 100.0 **BEARING CAPACITY, psf** Based on approximate interrelationships of CBR and Bearing values (Design of Concrete Airport Pavement, Portland Cement Association, page 8, 1955)




DCP TEST DATA File Name: Project: Date: 22-Feb-14 Location: BR-031 Soil Type(s): See boring log Hammer -Soil Type ○ CH • 10.1 lbs. ○ 17.6 lbs. O Both hammers used All other soils Accumulative No. of Type of **CBR** Blows Penetration Hammer 10.0 100.0 0.1 1.0 (mm) DEPTH, mm DEPTH, in. 1.0 10.0 100.0 0.1 **BEARING CAPACITY, psf** Based on approximate interrelationships of CBR and Bearing values (Design of Concrete Airport Pavement, Portland Cement Association, page 8, 1955)

DCP TEST DATA File Name: Project: Date: 22-Feb-14 Location: Soil Type(s): See boring log BR-032 Hammer -Soil Type • 10.1 lbs. \bigcirc CH ○ 17.6 lbs. Ō CL O Both hammers used All other soils No. of Accumulative Type of **CBR Blows** Penetration Hammer 100.0 0.1 1.0 10.0 (mm) DEPTH, mm DEPTH, in. DCP Refusal 1.0 10.0 100.0 0.1 **BEARING CAPACITY, psf** Based on approximate interrelationships of CBR and Bearing values (Design of Concrete Airport Pavement, Portland Cement Association, page 8, 1955)

DCP TEST DATA File Name: Project: Date: 22-Feb-14 Location: Soil Type(s): See boring log BR-033 Hammer -Soil Type ○ CH • 10.1 lbs. ○ 17.6 lbs. O Both hammers used All other soils Accumulative No. of Type of **CBR** Blows Penetration Hammer 10.0 100.0 0.1 1.0 (mm) DEPTH, mm DEPTH, in. 0.1 1.0 10.0 100.0 **BEARING CAPACITY, psf** Based on approximate interrelationships of CBR and Bearing values (Design of Concrete Airport Pavement, Portland Cement Association, page 8, 1955)

DCP TEST DATA File Name: Project: Date: 22-Feb-14 Location: Soil Type(s): See boring log BR-035 Hammer -Soil Type • 10.1 lbs. \bigcirc CH ○ 17.6 lbs. Ō CL \bigcirc Both hammers used All other soils Accumulative No. of Type of **CBR Blows** Penetration Hammer 10.0 100.0 0.1 1.0 (mm) DEPTH, mm DEPTH, in. 1.0 10.0 100.0 0.1 **BEARING CAPACITY, psf** Based on approximate interrelationships of CBR and Bearing values (Design of Concrete Airport Pavement, Portland Cement Association, page 8, 1955)

APPENDIX D SUPPORTING DOCUMENTS

GENERAL NOTES

DESCRIPTION OF SYMBOLS AND ABBREVIATIONS

				Water Initially Encountered		(HP)	Hand Penetrometer
	Auger	Split Spoon		Water Level After a Specified Period of Time		(T)	Torvane
NG	Challey Tube	Maara Cara	LEVEL	Water Level After a Specified Period of Time	ESTS	(b/f)	Standard Penetration Test (blows per foot)
IPLIN	Shelby Tube	Macro Core	~	Water levels indicated on the soil boring logs are the levels measured in the	D TE	(PID)	Photo-Ionization Detector
SAMP	Ring Sampler	Rock Core	WATE	borehole at the times indicated. Groundwater level variations will occur over time. In low permeability soils, accurate determination of groundwater	FEL	(OVA)	Organic Vapor Analyzer
	Grab Sample	No Recovery		levels is not possible with short term water level observations.			

DESCRIPTIVE SOIL CLASSIFICATION

Soil classification is based on the Unified Soil Classification System. Coarse Grained Soils have more than 50% of their dry weight retained on a #200 sieve; their principal descriptors are: boulders, cobbles, gravel or sand. Fine Grained Soils have less than 50% of their dry weight retained on a #200 sieve; they are principally described as clays if they are plastic, and silts if they are slightly plastic or non-plastic. Major constituents may be added as modifiers and minor constituents may be added according to the relative proportions based on grain size. In addition to gradation, coarse-grained soils are defined on the basis of their in-place relative density and fine-grained soils on the basis of their consistency.

LOCATION AND ELEVATION NOTES

Unless otherwise noted, Latitude and Longitude are approximately determined using a hand-held GPS device. The accuracy of such devices is variable. Surface elevation data annotated with +/- indicates that no actual topographical survey was conducted to confirm the surface elevation. Instead, the surface elevation was approximately determined from topographic maps of the area.

	RELATIVE DENSITY OF COARSE-GRAINED SOILS (More than 50% retained on No. 200 sieve.) Density determined by Standard Penetration Resistance Includes gravels, sands and silts.			CONSISTENCY OF FINE-GRAINED SOILS (50% or more passing the No. 200 sieve.) Consistency determined by laboratory shear strength testing, field visual-manual procedures or standard penetration resistance			
RMS	Descriptive Term (Density)	Standard Penetration or N-Value Blows/Ft.	Ring Sampler Blows/Ft.	Descriptive Term (Consistency)	Unconfined Compressive Strength, Qu, psf	Standard Penetration or N-Value Blows/Ft.	Ring Sampler Blows/Ft.
뽀	Very Loose	0 - 3	0 - 6	Very Soft	less than 500	0 - 1	< 3
NGT	Loose	4 - 9	7 - 18	Soft	500 to 1,000	2 - 4	3 - 4
TREN	Medium Dense	10 - 29	19 - 58	Medium-Stiff	1,000 to 2,000	4 - 8	5 - 9
ြ	Dense	30 - 50	59 - 98	Stiff	2,000 to 4,000	8 - 15	10 - 18
	Very Dense	> 50	≥ 99	Very Stiff	4,000 to 8,000	15 - 30	19 - 42
				Hard	> 8,000	> 30	> 42

RELATIVE PROPORTIONS OF SAND AND GRAVEL

<u>Descriptive Term(s)</u>	Percent of	<u>Major Component</u>	Particle Size
of other constituents	Dry Weight	<u>of Sample</u>	
Trace With Modifier	< 15 15 - 29 > 30	Boulders Cobbles Gravel Sand Silt or Clay	Over 12 in. (300 mm) 12 in. to 3 in. (300mm to 75mm) 3 in. to #4 sieve (75mm to 4.75 mm) #4 to #200 sieve (4.75mm to 0.075mm Passing #200 sieve (0.075mm)

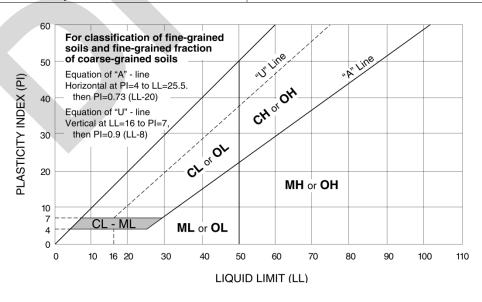
GRAIN SIZE TERMINOLOGY

PLASTICITY DESCRIPTION

RELATIVE PROPORTIONS OF FINES

Descriptive Term(s) of other constituents	Percent of Dry Weight	<u>Term</u>	Plasticity Index
of other constituents	<u>Dry weight</u>	Non-plastic	0
Trace	< 5	Low	1 - 10
With	5 - 12	Medium	11 - 30
Modifier	> 12	High	> 30

UNIFIED SOIL CLASSIFICATION SYSTEM


	Soil Classification				
Criteria for Assigi	ning Group Symbols	s and Group Names	s Using Laboratory Tests ^A	Group Symbol	Group Name ^B
	Gravels:	Clean Gravels:	$Cu \ge 4$ and $1 \le Cc \le 3^E$	GW	Well-graded gravel F
	More than 50% of	Less than 5% fines ^C	Cu < 4 and/or 1 > Cc > 3 ^E	GP	Poorly graded gravel F
	fraction retained on	Gravels with Fines:	Fines classify as ML or MH	GM	Silty gravel F,G, H
Coarse Grained Soils: More than 50% retained	No. 4 sieve	More than 12% fines ^C	Fines classify as CL or CH	GC	Clayey gravel F,G,H
on No. 200 sieve	Sands:	Clean Sands:	Cu ≥ 6 and 1 ≤ Cc ≤ 3 ^E	SW	Well-graded sand
5.1.10. 200 5.610	50% or more of coarse fraction passes No. 4 sieve	Less than 5% fines D	Cu < 6 and/or 1 > Cc > 3 ^E	SP	Poorly graded sand I
		Sands with Fines: More than 12% fines D	Fines classify as ML or MH	SM	Silty sand G,H,I
			Fines Classify as CL or CH	SC	Clayey sand G,H,I
	Silts and Clays: Liquid limit less than 50	Inorganic:	PI > 7 and plots on or above "A" line J	CL	Lean clay K,L,M
		morganic.	PI < 4 or plots below "A" line J	ML	Silt K,L,M
		Organic:	Liquid limit - oven dried	OL	Organic clay K,L,M,N
Fine-Grained Soils: 50% or more passes the		Organic.	Liquid limit - not dried	OL .	Organic silt K,L,M,O
No. 200 sieve		Inorganic:	PI plots on or above "A" line	CH	Fat clay K,L,M
	Silts and Clays:	inorganic.	PI plots below "A" line	MH	Elastic Silt K,L,M
	Liquid limit 50 or more	Organic:	Liquid limit - oven dried < 0.75	ОН	Organic clay K,L,M,P
		Organic.	Liquid limit - not dried		Organic silt K,L,M,Q
Highly organic soils:	Primarily	y organic matter, dark in o	color, and organic odor	PT	Peat

- ^A Based on the material passing the 3-in. (75-mm) sieve
- ^B If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.
- ^C Gravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with silt, GW-GC well-graded gravel with clay, GP-GM poorly graded gravel with silt, GP-GC poorly graded gravel with clay.
- Sands with 5 to 12% fines require dual symbols: SW-SM well-graded sand with silt, SW-SC well-graded sand with clay, SP-SM poorly graded sand with silt, SP-SC poorly graded sand with clay

^E
$$Cu = D_{60}/D_{10}$$
 $Cc = \frac{(D_{30})^2}{D_{10} \times D_{60}}$

- $^{\text{F}}$ If soil contains \geq 15% sand, add "with sand" to group name.
- ^G If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

- ^H If fines are organic, add "with organic fines" to group name.
- If soil contains ≥ 15% gravel, add "with gravel" to group name.
- If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay.
- K If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel," whichever is predominant.
- L If soil contains ≥ 30% plus No. 200 predominantly sand, add "sandy" to group name.
- M If soil contains ≥ 30% plus No. 200, predominantly gravel, add "gravelly" to group name.
- N PI ≥ 4 and plots on or above "A" line.
- ^o PI < 4 or plots below "A" line.
- P PI plots on or above "A" line.
- Q PI plots below "A" line.

GENERAL NOTES

Sedimentary Rock Classification

DESCRIPTIVE ROCK CLASSIFICATION:

Sedimentary rocks are composed of cemented clay, silt and sand sized particles. The most common minerals are clay, quartz and calcite. Rock composed primarily of calcite is called limestone; rock of sand size grains is called sandstone, and rock of clay and silt size grains is called mudstone or claystone, siltstone, or shale. Modifiers such as shaly, sandy, dolomitic, calcareous, carbonaceous, etc. are used to describe various constituents. Examples: sandy

shale; calcareous sandstone.

LIMESTONE Light to dark colored, crystalline to fine-grained texture, composed of CaCo₃, reacts readily

with HCI.

DOLOMITE Light to dark colored, crystalline to fine-grained texture, composed of CaMg(CO₃)₂, harder

than limestone, reacts with HCI when powdered.

CHERT Light to dark colored, very fine-grained texture, composed of micro-crystalline quartz (Si02),

brittle, breaks into angular fragments, will scratch glass.

SHALE Very fine-grained texture, composed of consolidated silt or clay, bedded in thin layers. The

unlaminated equivalent is frequently referred to as siltstone, claystone or mudstone.

SANDSTONE Usually light colored, coarse to fine texture, composed of cemented sand size grains of quartz.

feldspar, etc. Cement usually is silica but may be such minerals as calcite, iron-oxide, or some

other carbonate.

CONGLOMERATE Rounded rock fragments of variable mineralogy varying in size from near sand to boulder size

but usually pebble to cobble size (½ inch to 6 inches). Cemented together with various cementing agents. Breccia is similar but composed of angular, fractured rock particles cemented

together.

PHYSICAL PROPERTIES:

DEGREE OF WEATHERING

Slight Slight decomposition of parent

material on joints. May be color

change.

Moderate Some decomposition and color

change throughout.

High Rock highly decomposed, may be ex-

tremely broken.

BEDDING AND JOINT CHARACTERISTICS

Bed Thickness Joint Spacing **Dimensions** Very Thick Very Wide >10' Thick Wide 3' - 10' Medium Moderately Close 1' -3' Thin Close 2" -1′ .4" -Very Thin Very Close 2" Laminated .1" -

Bedding Plane A plane dividing sedimentary rocks of

the same or different lithology.

less vertical or transverse to bedding,

along which no appreciable move-

HARDNESS AND DEGREE OF CEMENTATION

Joint

Fracture in rock, generally more or

Hard Difficult to scratch with knife.

Moderately
Hard

Can be scratched easily with knife, cannot be scratched with fingernail.

Soft Can be scratched with fingernail.

ment has occurred.

Seam Generally applies to bedding plane

with an unspecified degree of

weathering.

Shale, Siltstone and Claystone

Limestone and Dolomite:

Hard Can be scratched easily with knife,

cannot be scratched with fingernail.

Moderately

Hard Can be scratched with fingernail.

Soft Can be easily dented but not molded

with fingers.

SOLUTION AND VOID CONDITIONS

Solid Contains no voids.

Vuggy (Pitted) Rock having small solution pits or

cavities up to ½ inch diameter, frequently with a mineral lining.

Porous Containing numerous voids, pores, or

other openings, which may or may

not interconnect.

ng a knife blade. Cavernous Containing cavities or caverns, some-

times quite large.

Sandstone and Conglomerate

Well Capable of scratching a knife blade.

Cemented

Cemented Can be scratched with knife.

Poorly Can be broken apart easily with

Cemented fingers.

8th Street Widening Project Proposed Bridge over Interstate 49 Bentonville, Arkansas

> December 17, 2015 Terracon Project No. 04135111

Prepared for:

Burns & McDonnell Engineering Company, Inc. Kansas City, Missouri

Prepared by:

Terracon Consultants, Inc. Tulsa, Oklahoma

Offices Nationwide Employee-Owned Established in 1965 terracon.com

December 17, 2015

Burns & McDonnell Engineering Company, Inc. 9400 Ward Parkway Kansas City, Missouri 64114

Attn:

Mr. David Hurt, P.E.

P: (816) 822 3426

E: dhurt@burnsmcd.com

Re:

Geotechnical Engineering Report

8th Street Widening Project

Proposed Bridge over Interstate 49

Bentonville, Arkansas

Terracon Project Number: 04135111

Dear Mr. Hurt:

Terracon Consultants, Inc. (Terracon) has completed the geotechnical engineering services for the above referenced project. This geotechnical study was performed in general accordance with our Proposal No. P04090495 dated February 26, 2010 and the Amendment to Consultant Agreement dated May 21, 2010 between Burns & McDonnell Engineering Company, Inc. and Terracon Consultants, Inc. for Burns & McDonnell Project No. 090218.

This report presents the findings of the subsurface exploration and provides geotechnical recommendations for bridge foundations and lateral earth pressures for abutment walls, as related to the subsurface conditions encountered at the bridge borings.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report, or if we may be of further service, please contact us.

Sincerely,

Terracon Consultants, Inc.

Cert. Of Auth. #CA-223 exp. 12/31/17

Jaime E. Granados

Geotechnical Engineer

Geoleci ilicai Engineei

JEG:MHH:lo Enclosures

Addressee (3 via US mail and 1 via email)

Terracon Consultants, Inc. 9522 East 47th Place, Unit D Tulsa, Oklahoma 74145 P [918] 250 0461 F [918] 250 4570 terracon.com

Michael H. Homan, P.E.

Arkansas No. 7052

TABLE OF CONTENTS

							Page
1.0							
2.0				ATION			
	2.1	•		iption			
2.0	2.2			and Description			
3.0				IDITIONS			
	3.1			urfa a a Duafila			
	3.2			urface Profile			
4.0	3.3			NS FOR DESIGN A			
4.0	4.1			Considerations			
	4.1			Considerations			
	4.2	4.2.1		reparation			
				aterial Types			
		4.2.3		mpaction Requirem			
	4.3	_		oundations			
	1.0	4.3.1		pility of Pile Foundat			
				nal Capacity of Pile			
		4.3.3		al Capacity of Pile F			
	4.4			siderations			
	4.5			Pressures for Cast-			
	4.6			Stabilized Earth (M			
			•	n Parameters for M	•		
		4.6.2	•	I Stability of MSE W			
		4.6.3		ruction Consideration			
5.0	GENE	RAL C	OMME	NTS			 16
APPE	ENDIX A	– FIEL	D EXP	LORATION			
	Exhibi	t A-1		Field Exploration I	Description		
	Exhibi	t A-2		Site Location Map	•		
	Exhibi	t A-3		Boring Location P	lan		
	Exhibi	t A-4 to	A-7	Boring Logs			
	Exhibi	t A-8		Fence Diagram: B	ridge Subsurf	ace Profile	
	Exhibi	t A-9 to	A-13	Photographic Log			
APPE	ENDIX B	– LAB	ORAT	ORY TESTING			
	Exhibi			Laboratory Testing	•		
	Exhibi	t B-2 to	B-4	Grain Size Distrib	ution Curves		

APPENDIX C - PILE DRIVABILITY

Exhibit C-1 to C-33 Pile Drivability Results

TABLE OF CONTENTS (Continued)

APPENDIX D - FRICTIONAL CAPACITY

Exhibit D-1 to D-4 Side Resistance Curves

APPENDIX E - LATERAL CAPACITY

Exhibit E-1 to E-4 LPILE Tables

APPENDIX F - GLOBAL STABILITY RESULTS

Exhibit F-1 Long Term Global Stability Results
Exhibit F-2 Short Term Global Stability Results

APPENDIX G - SUPPORTING DOCUMENTS

Exhibit G-1 General Notes

Exhibit G-2 Unified Soil Classification

Exhibit G-3 General Notes for Sedimentary Rock

GEOTECHNICAL ENGINEERING REPORT 8TH STREET WIDENING PROJECT PROPOSED BRIDGE OVER INTERSTATE 49 BENTONVILLE, ARKANSAS

Terracon Project No. 04135111 December 17, 2015

1.0 INTRODUCTION

This geotechnical engineering report has been completed as a part of the 8th Street widening project in Bentonville, Arkansas. This report addresses recommendations regarding bridge foundations and lateral earth pressures for abutment walls for the proposed 8th Street bridge over Interstate 49.

Four bridge borings, designated BM-001 through BM-004, were drilled to depths of approximately 27.5 to 54 feet below the existing surface. Per Burns & McDonnell's request, only borings BM-001, BM-002, and BM-004 were extended into the bedrock. Boring logs along with a site location map and a boring location diagram are included in **Appendix A** of this report.

The purpose of these services is to provide information and geotechnical engineering recommendations relative to:

- subsurface soil and rock conditions
- groundwater conditions
- general earthwork

- lateral earth pressures for rigid wing walls
- global and external stability of MSE abutment walls
- bridge foundation design and construction recommendations

2.0 PROJECT INFORMATION

2.1 Project Description

Item	Description		
Site layout	See Appendix A, Figure A-2, Boring Location Plan		
Proposed Construction	We understand that the proposed bridge will be constructed along the 8 th Street alignment over Interstate 49 (I-49). The bridge will serve as a single point urban interchange and will be a two-span structure supported on driven piles. MSE walls are planned to be constructed at the bridge abutments. Underpass structures will also be constructed at the abutment locations as part of the interchange project.		

8th Street Widening Project – Proposed Bridge over I-49 ■ Bentonville, AR December 17, 2015 ■ Terracon Project No. 04135111

2.2 Site Location and Description

Item	Description		
Location	New intersection between 8 th Street and Interstate 49 in Bentonville, Arkansas.		
Existing improvements	Existing Interstate 49		
Existing ground surface	Pavements and grass		
Existing topography	Relatively flat		

3.0 SUBSURFACE CONDITIONS

3.1 Geology

Based on information obtained from the Arkansas Geological Survey website (www.geology.ar.gov), the geology of the project site is underlain by the Boone Formation, which consists of gray, fine- to coarse-grained fossiliferous limestone interbedded with chert. Some sections may be predominantly limestone or chert. The cherts are dark in color in the lower part of the sequence and light in the upper part. The quantity of chert varies considerably both vertically and horizontally. The Boone Formation is well known for dissolutional features, such as sinkholes, caves, and enlarged fissures. The thickness of the Boone Formation is 300 to 350 feet in most of northern Arkansas, but as much as 390 feet has been reported.

According to the US Geological Survey (USGS), the Peak Ground Acceleration (PGA) for the City of Bentonville, Arkansas corresponds to 0.049g. Thus, seismic analyses for the MSE wall structures are not required for external stability.

3.2 Typical Subsurface Profile

Based on the results of the bridge borings, subsurface conditions along the bridge project can be generalized as indicated in the following table.

Description	Approximate Depth to Bottom of Stratum Material Encountered		Consistency/Density
Surface	3 inches Topsoil		N/A
Stratum 1 ¹	2 feet	Fill: Lean clay with various amounts of sand	N/A
Stratum 2 ²	13.5 to 18.5 feet	Lean clay and fat clay with different amounts of sand and chert gravel	Stiff to very stiff
Stratum 3 ³	23.5 feet	Elastic silt with various amounts of sand, chert gravel, and chert seams	Stiff to very stiff

8th Street Widening Project – Proposed Bridge over I-49 ■ Bentonville, AR December 17, 2015 ■ Terracon Project No. 04135111

Description	Approximate Depth to Bottom of Stratum	Material Encountered	Consistency/Density
Stratum 4 ⁴	27.5 to 32 feet	Clayey & silty chert gravel and clayey & silty sand with various amounts of chert gravel	Loose to very dense
Stratum 5 5	29.5 to 33.5 feet	Fat clay with various amounts of sand and chert gravel	Stiff
Stratum 6 ⁶	Boring terminated in this stratum	Limestone with chert seams and cherty limestone	Hard

- 1. Encountered in bridge borings BM-001 and BM-002
- 2. Encountered in all bridge borings
- 3. Encountered in bridge borings BM-001 and BM-002
- 4. Encountered in bridge borings BM-001, BM-003, and BM-004
- 5. Encountered at relatively deep depths in bridge borings BM-002 and BM-004
- 6. Bridge borings BM-001, BM-002, and BM-004 penetrated and were terminated in this stratum at depths of about 50 to 54 feet. Boring BM-003 terminated in auger refusal in this stratum at a depth of about 27.5 feet.

Atterberg limits and percent passing the No. 200 sieve tests were performed on select soil samples taken from the bridge borings as indicated in the table below. The on-site clays were classified as medium to highly plastic. The samples tested had the following measured Liquid Limit (LL), Plastic Limit (PL), and Plasticity Index (PI) values and percentage of material passing the No. 200 sieve:

Sample Location, Depth	Liquid Limit, (%)	Plastic Limit,	Plasticity Index, (%)	Percent Passing No. 200 Sieve, (%)
	(70)	(70)	` '	, ,
Boring BM-001, 2.0-3.5 ft.	46	24	22	94
Boring BM-001, 13.5-15.0 ft.	67	38	29	53
Boring BM-001, 28.5-30.0 ft.	69	27	42	46
Boring BM-002, 8.5-10.0 ft.	59	29	30	75
Boring BM-002, 13.5-15.0 ft.	79	36	43	87
Boring BM-003, 0.5-2.0 ft.	52	20	32	70
Boring BM-003, 23.5-25.0 ft.	59	23	36	22
Boring BM-004, 8.5-10.0 ft.	42	21	21	80
Boring BM-004, 23.5-25.0 ft.	63	28	35	41

Conditions encountered at each boring location are indicated on the individual boring logs. Stratification boundaries on the boring logs represent the approximate location of changes in soil and rock types; in-situ, the transition between materials may be gradual. Details for each of the borings can be found on the boring logs in **Appendix A**.

8th Street Widening Project – Proposed Bridge over I-49 ■ Bentonville, AR December 17, 2015 ■ Terracon Project No. 04135111

3.3 Groundwater

The boreholes were observed while drilling and immediately after completion for the presence and level of groundwater. The water levels observed are noted on the attached boring logs, and are summarized below.

Approximate Groundwater Depth / Elevation (feet)							
Boring	While drilling	After drilling	24 hours after drilling				
BM-001	Not encountered to 32' / 1285'	Not determined, boring caved in	Not determined, boring caved in				
BM-002	27' / 1289.5'	Not determined, boring caved in	Not determined, boring caved in				
BM-003	24' / 1291'	Not determined, boring caved in	Not determined, boring caved in				
BM-004	Not encountered to 34' / 1288'	Not determined, boring caved in	Not determined, boring caved in				

Monitoring Water Well (BW-706)

To obtain longer-term groundwater levels, a temporary piezometer (monitoring water well) was installed at boring location BW-706, near the west bridge abutment. Upon installation of the temporary piezometer, water was bailed from the piezometer the same day. Groundwater levels were then measured between October 10, 2013 and April 16, 2014. Boring log for BW-706 is provided in **Appendix A**.

Approximate Groundwater Depth / Elevation (feet)								
Boring No.	January 29, 2014	April 16, 2014						
BW706	23.8' / 1292.8'	29.5' / 1287.1'	23.0' / 1293.6'	24.5' / 1292.1'				

Fluctuations in the groundwater level should be expected due to seasonal variations in the amount of rainfall, runoff and other factors not apparent at the time the borings were drilled. Evaluation of these factors and their effect on the groundwater levels is beyond the scope of this report. The possibility of groundwater level fluctuations and the presence of perched water should be considered when designing and developing the construction plans for the project.

8th Street Widening Project – Proposed Bridge over I-49 ■ Bentonville, AR December 17, 2015 ■ Terracon Project No. 04135111

4.0 RECOMMENDATIONS FOR DESIGN AND CONSTRUCTION

4.1 Geotechnical Considerations

The proposed 8th Street bridge over I-49 will include the construction of MSE walls at the bridge abutments along with three bridge bents and wingwalls at the bridge ends. Based on the results of our exploration and our understanding of the project, bents and wingwalls can be supported on driven steel H-piles driven to practical refusal. We understand that bridge foundations consisting of HP 12×53 piles are desired. However, the results of our pile drivability analyses indicate that a bigger pile size will be required near the bridge abutments. Based on our analysis, we anticipate that HP 12×53 piles can be used to support the bridge structures with predrilling through the overburden soil and chert seams to extend the piles to suitable bedrock. We have included recommendations for HP 14×73 piles in this report. Piles will develop their capacity from end bearing on the recommended bedrock materials and/or side friction within the overburden soils.

Based on the results of the bridge borings, the top of the bedrock will be encountered at elevations of about 1285.5 to 1288.5 feet. The overburden soil thicknesses along the bridge alignment vary from about 27.5 to 33.5 feet. Overburden soil depths as thick as 40 feet were encountered at some of the previously drilled MSE wall borings.

Recommendations regarding earthwork and design and construction of bridge foundations, lateral earth pressures, and MSE walls for the proposed project are provided in the following sections.

4.2 Earthwork

4.2.1 Site Preparation

Areas to be graded should be stripped and cleared of all surface vegetation, bushes, debris, and any other deleterious material. Any surface and subsurface features from previous site use near the proposed project limits should be removed full-depth.

After stripping and completing any required cuts and undercuts, and before placing any new fill, the exposed subgrade should be proofrolled with a fully-loaded dump truck, scraper, or other rubber-tired construction equipment weighing at least 25 tons to evaluate the presence of any low strength, unstable soils. Any low strength, unstable soils identified by the proofrolling should be overexcavated and replaced with tested and approved fill as indicated in section **4.3 Fill Material Types**, if they cannot be adequately stabilized in-place. Areas too small to proofroll should be evaluated by a representative of the geotechnical engineer.

After completing a successful proofroll, and before placing any fill, the exposed subgrade should be scarified to a minimum depth of 9 inches, moisture conditioned, and compacted as recommended in section **4.4 Compaction Requirements**.

8th Street Widening Project – Proposed Bridge over I-49 ■ Bentonville, AR December 17, 2015 ■ Terracon Project No. 04135111

4.2.2 Fill Material Types

We anticipate that fill materials for MSE walls for the bridge abutments will be divided into 1) soils for the reinforced zone and 2) retained soils.

We assume that the backfill materials used within the reinforced zone will meet American Association of State Highway and Transportation Officials (AASHTO), Federal Highway Administration (FHWA) National Concrete Masonry Association (NCMA), and/or Arkansas Highway Transportation Department (AHTD) standard specifications for design and construction of MSE walls. Although currently the use of materials with up to 35 percent fines can be allowed within the reinforced zone, we recommend that relatively clean (with a maximum content of fines of 15 percent), free draining material with a minimum effective friction angle of 34 degrees be used within the reinforced zone.

We anticipate that retained backfill soils will consist of materials similar to the soils encountered in areas near the proposed bridge. Based on the results of our geotechnical exploration, such soils consist of low to high plasticity clays and granular soils with different amounts of fines. We recommend that soils having Plasticity Index (PI) values greater than 20 be blended with lower PI soils before being used as new fill. On-site clayey gravel or imported clayey gravel ("hillside") material must have a liquid limit of less than 45 or, if the liquid limit is 45 or greater, clayey gravel or imported clayey gravel must have less than 35 percent passing a No. 200 sieve. On-site or imported clayey gravel should be tested and approved by the geotechnical engineer prior to its use.

4.2.3 Fill Compaction Requirements

The scarified and compacted subgrade and new fills should be moisture conditioned and compacted using the recommendations presented in the following table.

Item	Description						
Subgrade Scarification Depth	9-inches						
Fill Lift Thickness ¹	12-inches or less in loose thickness						
Compaction Requirements ²	At least 95% of the material's maximum dry density based on AASHTO T-99 standard specifications.						
Moisture Content	A level within minus 2 to plus 2 of the material's optimum moisture content, determined in accordance with AASHTO T-99.						

- 1. Thinner lifts are recommended in confined areas or when hand-operated compaction equipment is used.
- 2. The scarified and compacted subgrade and new fills should be tested for moisture content and compaction during placement. Should the results of the in-place density tests indicate the specified moisture or compaction limits have not been met, the area represented by the test should be reworked and retested as required until the specified moisture and compaction requirements are achieved.

8th Street Widening Project – Proposed Bridge over I-49 ■ Bentonville, AR December 17, 2015 ■ Terracon Project No. 04135111

The recommended moisture content should be maintained in the scarified and compacted subgrade and new fills, until fills are completed.

Although the moisture content and density relationship of free-draining backfill materials cannot be suitably tested using the AASHTO T-99 standard, these materials should still be constructed in a controlled manner and tested during construction. An observation-based procedure in which the granular material is densified by multiple passes of the compaction equipment until the maximum achievable density is reached or relative density test procedures should be performed to verify that adequate compaction of clean granular material has been achieved.

The fill material should be placed on a relatively level surface. Existing slopes configured at ratios greater than 4H:1V should be continuously benched to avoid placing fill on a sloped surface. The benches should be of sufficient width for easy access to placement and compaction equipment.

4.3 Driven Pile Foundations

Based on the results of our geotechnical exploration and analyses, bridge bents and wingwalls can be supported on driven steel H-piles driven to practical refusal in the limestone and/or cherty limestone bedrock that was encountered in our bridge borings and nearby MSE wall borings at depths of about 25 to 40 feet and elevations of about 1281 to 1289 feet.

We understand that steel piles will be primarily designed to develop their capacity from end bearing on the limestone and cherty limestone bedrock materials encountered in the bridge borings. Side friction in the overburden soils can also be used in foundation design to resist vertical and uplift forces. However, side friction to resist vertical loads in compression is only recommended if pile refusal is not achieved in the recommended bedrock bearing materials and piles are designed for side friction only.

Based on the preliminary design drawings provided to us by Burns & McDonnell, we understand that 50 ksi grade steel, HP 12x53 piles driven to bedrock are desired. However, the results of our pile drivability analyses indicate that driving the HP 12x53 piles to bedrock might result in damaged piles due to the presence of chert seams, especially near the bridge abutments. Our analyses were based on using two typical hammers, a small and a medium size hammer, based on our local experience.

Based on our analysis, we anticipate that HP 12x53 piles can be used to support the bridge structures with predrilling through the overburden soil and chert seams to extend the piles to suitable bedrock. To avoid pile predrilling, a larger pile size and a medium-size hammer can be used. Based on the results of our analyses, 50 ksi grade steel, HP 14x73 piles and a Delmag D 30-32, or similar hammer size, can be used as an alternative to the HP 12x53 piles.

8th Street Widening Project – Proposed Bridge over I-49 ■ Bentonville, AR December 17, 2015 ■ Terracon Project No. 04135111

To develop the pile capacity from end bearing, steel piles should be driven to practical refusal in the bedrock materials. If driven to practical refusal, the allowable stress of the pile cross section will control the pile capacity. The capacity of the pile can be determined as 25% of the pile yield stress multiplied by the actual cross section area of the pile.

Because of the high variation in the amount of chert content and thickness and depth to chert seams in the overburden soils, we recommend that the pile length be estimated based on piles being driven to penetrations of less than 3 feet into the hard, limestone and/or cherty limestone bedrock. Because of the high driving resistance anticipated in the overburden (clayey chert gravel, silty chert gravel, and chert seams) and bedrock materials, we recommend that the steel piles be equipped with driving tips that can endure high driving stresses.

Variations may occur in the depth to and quality of bedrock and in the density and strength of overburden soils with distances away from the borings. All piles should be driven until satisfactory driving resistance is developed for the design capacity of the pile section. The required driving resistance and appropriate "refusal" criteria should be evaluated in accordance with an appropriate dynamic pile driving formula or wave equation analysis.

We recommend a minimum spacing of 3 pile diameters center-to-center between adjacent piles to account for both pile constructability and pile bearing capacity.

Long-term settlement of driven pile foundations, designed and constructed as recommended above, should be on the order of 1/2 inch or less.

We estimate that the total settlement of the foundation soils will be on the order of about 1 ½ to 2 ½ inches. With that magnitude of settlement, downdrag forces on driven piles that are located within new fill areas as a result of bridge MSE wall/bridge approach settlement will have to be considered in the driven pile design. We anticipate that the majority of the new fill settlement constructed for the bridge MSE wall/bridge approaches will occur within about 2 to 3 months after completion of MSE wall construction. To reduce the downdrag force to a negligible amount, we recommend that driven piles be installed 3 months or longer after finishing MSE wall construction.

4.3.1 Drivability of Pile Foundations

GRL WEAP analyses were performed to evaluate the pile capacity and drivability at the East abutment and center bent. The soil profiles used in the analyses were based on boring BM-004 for the East abutment and on boring B-002 for the center bent. Borings at the East and West abutments indicate similar subsurface conditions. The consistency of the cohesive soils and relative density of the granular soils were assigned based on the SPT-N values shown on the respective boring logs.

The analyses were performed for two steel HP pile sizes, HP 12x53 and HP 14x73, 50 ksi grade steel, using two hammer types. Delmag D19-42 and Delmag D30-32 hammers were used in the

8th Street Widening Project – Proposed Bridge over I-49 ■ Bentonville, AR December 17, 2015 ■ Terracon Project No. 04135111

analyses. A hammer efficiency of 0.6 was assigned for set limitation whereas a hammer efficiency of 0.8 was used for the pile stress limitation check. The following hammer characteristics were used:

Hammer Type	Ram Weight	Energy/Power	Pressure	Stroke
Delmag D19-42	4.0 kips	43.24 kips-feet	1520 psi	10.81 feet
Delmag D30-32	6.6 kips	75.43 kips-feet	1400 psi	11.43 feet

Cushion

Type: **50% Alum + 50% Conbest**

Area: 415 in²
Elastic Modulus: 530 ksi
Thickness: 2 in.
C.O.R: 0.8
Stiffness: 0 kips/in.
Helmet Weight: 3.2 kips

Driven pile acceptability criteria included a pile stress limitation corresponding to the allowable pile driving stress of 0.9 fy (45 ksi) based on ASSHTO criteria (Article 6.5.4.2). The set limitation was taken as not less than 2 inches per 20 blows based on our experience.

The following conclusions were determined based on the results of our GRL WEAP analyses:

- Drivability will be critical in order to drive the piles to bedrock at the abutments. Borings drilled for the abutments encountered chert/gravel layers. The friction angle in the chert/gravel may be as high as 40 degrees where there is SPT refusal. There is also the possibility of refusal on larger gravel, although these materials were not observed in the borings.
- Based on the results of the drivability analyses, a D30-32 hammer with HP 14x73 piles is recommended in order to realize refusal in bedrock without predrilling as it meets the driven pile acceptability criteria.
- Based on the results of the drivability analyses, neither the D19-42 nor the D30-32 hammers with HP 12x53 piles meet the driven pile acceptability criteria. Thus, predrilling will be required in order to extend HP 12x53 piles at the abutments to realize refusal in bedrock.
- If piles refuse in the chert/gravel layer during driving, settlement may occur because of the fat clay layer below the chert/gravel and above the bedrock. Therefore, we recommend performing settlement analyses to meet the serviceability condition (Service I Limit State).

8th Street Widening Project – Proposed Bridge over I-49 ■ Bentonville, AR December 17, 2015 ■ Terracon Project No. 04135111

- Based on the bearing results, we recommend a maximum 400 kips to 420 kips nominal bearing capacity (based on the pier being critical for stress) for HP 14x73 piles using a D30-32 hammer. Note that this nominal bearing capacity is a slightly higher than the 25% of the pile yield stress.
- We recommend Dynamic Load Testing / Pile Driving Analyzer (PDA) testing to allow for a higher resistance factor of 0.65 and to take advantage of the efficiency of driving to bedrock (or to the gravel/chert layers). Testing with a PDA could also reduce the number of piles driven to equivalent penetration when compared to utilizing a 0.5 resistance factor with WEAP alone. Stresses and hammer efficiency could also be confirmed through the use of a PDA. PDA could also confirm limitation of set to insure that the 0.9Fy stress is not exceeded and for adjusting the fuel setting on the hammer to meet the drivability criteria.
- The bearing and drivability analyses results from the GRL WEAP software are presented in **Appendix C**.

4.3.2 Frictional Capacity of Pile Foundations

Side friction in the overburden soils can also be used in foundation design to resist axial compression or uplift forces only if refusal is not achieved in the recommended bedrock bearing materials. If the piles bear in rock, we anticipate that side friction in compression will not be developed as piles will not mobilize their frictional capacity.

Nominal side resistance curves for bridge borings BM-001 through BM-004 are provided in **Appendix D**. A side resistance factor (ϕ_{stat}) of 0.35 for clay and mixed soils and a side resistance factor of 0.45 for sands (granular materials), as outlined in Table 10.5.5.2.3-1 of AASHTO *LRFD Bridge Design Specification, 6th Edition, 2012,* should be applied to the nominal values.

4.3.3 Lateral Capacity of Pile Foundations

We understand that lateral loads will be supported by the pile foundations. Parameters that can be used for the lateral analysis of single driven pile foundations are provided in in **Appendix E** of this report for the computer program LPILE Version 6.0 (developed by Ensoft, Inc.).

Reduction factors for lateral analysis of driven pile foundations are recommended if the spacing between adjacent piles is less than 6 times the pile diameter. For lateral load resistance of grouped piles, we recommend using the reduction factors (p-multipliers) presented in the "Drilled Shafts: Construction Procedures and LRFD Design Methods" manual published by the Federal Highway Administration (FHWA). The reduction factors depend on each pile's relative position within the group and pier spacing.

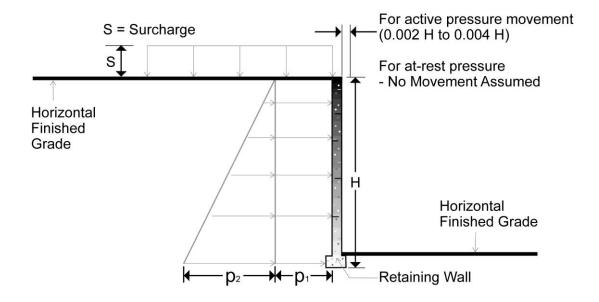
8th Street Widening Project – Proposed Bridge over I-49 ■ Bentonville, AR December 17, 2015 ■ Terracon Project No. 04135111

Pile Center-to-Center	Recommended p-Multiplier							
Spacing in the direction of loading	Lead Row	2 nd Row	3 rd and Higher Row					
3D	0.7	0.5	0.35					
4D	0.85	0.65	0.5					
5D	1	0.85	0.7					
≥6D	1	1	1					
D: pile diameter								

4.4 Seismic Considerations

Code Used	Site Classification
2012 AASHTO LRFD ¹	С

^{1.} In general accordance with the 2012 AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, Table 3.10.3.1-1 – Site Class Definitions.


4.5 Lateral Earth Pressures for Cast-in-Place Concrete Walls

The lateral earth pressure recommendations provided in this section are applicable to the design of rigid retaining walls subject to slight rotation, such as cantilever, or gravity type concrete walls. These recommendations are not applicable to the design of modular block – geogrid reinforced backfill walls.

Reinforced concrete walls with unbalanced backfill levels on opposite sides should be designed for earth pressures at least equal to those indicated in the following table. Earth pressures will be influenced by structural design of the walls, conditions of wall restraint, methods of construction and/or compaction and the strength of the materials being restrained. Two wall restraint conditions are shown. Active earth pressure is commonly used for design of free-standing cantilever retaining walls and assumes wall movement. The "at-rest" condition assumes no wall movement. The recommended design lateral earth pressures do not include a factor of safety and do not provide for possible hydrostatic pressure on the walls.

8th Street Widening Project – Proposed Bridge over I-49 ■ Bentonville, AR December 17, 2015 ■ Terracon Project No. 04135111

Earth Pressure Coefficients

Earth Pressure Conditions	Coefficient for Backfill Type	Equivalent Fluid Density (pcf)	Surcharge Pressure, p ₁ (psf)	Earth Pressure, p ₂ (psf)
Active (Ke)	Granular - 0.30	38	(0.30)S	(38)H
Active (Ka)	Clay - 0.36	45	(0.36)S	(45)H
At Doot (Ka)	Granular - 0.46	58	(0.46)S	(58)H
At-Rest (Ko)	Clay - 0.53	66	(0.53)S	(66)H
Descive (I/n)	Granular - 3.39	424		
Passive (Kp)	Clay - 2.77	346		

Applicable conditions to the above include:

- For active earth pressure, wall must rotate about base, with top lateral movements of about 0.002 H to 0.004 H, where H is wall height
- For passive earth pressure to develop, wall must move horizontally to mobilize resistance
- Uniform surcharge, where S is surcharge pressure. We recommend using a uniform surcharge due to traffic load parallel to the walls of 240 psf and a uniform surcharge due to traffic load perpendicular to the walls of 500 psf
- In-situ soil backfill weight a maximum of 125 pcf
- Horizontal backfill, compacted between 95 and 98 percent of standard Proctor maximum dry density
- Loading from heavy compaction equipment not included
- No hydrostatic pressures acting on wall
- No dynamic loading
- No safety factor included in soil parameters
- Ignore passive pressure within the 2 feet of the final adjacent grade

8th Street Widening Project – Proposed Bridge over I-49 ■ Bentonville, AR December 17, 2015 ■ Terracon Project No. 04135111

Backfill placed against the wall should consist of granular soils or low plasticity imported or on-site cohesive soils that satisfy the requirements outlined in section **4.2.2 Fill Material Types**. For the granular values to be valid, the granular backfill must extend out from the base of the wall at an angle of at least 45 and 60 degrees from vertical for the active and passive cases, respectively.

To control hydrostatic pressure behind the wall, we recommend that drainage be provided behind the wall with a collection pipe leading to a reliable discharge. These pressures do not include the influence of surcharge, equipment loading, which should be added. Heavy equipment should not operate within a distance closer than the exposed height (opposite of backfill side of wall) of retaining walls, or depth of excavation to prevent lateral pressures more than those provided. Walk-behind rollers may be used within this area.

The upper 2 feet of backfill placed adjacent to the walls should consist of a compacted, relatively impermeable, clay material (on-site clay soils with a PI greater than 12 may be used) to limit the downward flow of surface water along the walls. These soils should be placed following the recommendations provided in section **4.2.3 Fill Compaction Requirements**. Also, positive surface drainage should be developed and maintained around the walls to prevent the ponding of water and to divert drainage away from the walls.

4.6 Mechanically Stabilized Earth (MSE) Walls

We understand that the retaining walls planned in the front of the bridge abutments beneath the bridge will be constructed as a modular block faced – geogrid reinforced backfill system. These walls are typically subcontracted as design-build structures, since design details are often manufacturer specific. Established design methods for modular block walls address local and internal stability, but do not specifically address the global stability of the wall system. Therefore, we recommend the following general and specific considerations be included in the project specifications for the wall design.

Internal stability analyses should conform to the latest design methodology accepted for use by the Federal Highway Administration (FHWA). Since this analysis procedure is based on the use of drained strength parameters, the backfill used for the geogrid reinforced backfill section should be a drainable, granular material to conform with the assumptions of the analysis. Cohesive soil or granular material containing high amounts of fines are not considered drainable and should not be allowed in the geogrid reinforced backfill zone unless provisions are made to provide backslope and surface drainage that would prevent water from entering the backfill. The designer should state in the construction specifications the backfill material description and design strength parameters so that unsuitable materials are not allowed in the backfill zone during construction.

We recommend that select aggregate fill material consisting of Arkansas Highway and Transportation Department (AHTD) Class 7 aggregate, or equivalent, be used to construct the reinforced zone of backfill.

8th Street Widening Project – Proposed Bridge over I-49 ■ Bentonville, AR December 17, 2015 ■ Terracon Project No. 04135111

We have performed external and global stability analyses for the MSE walls for the bridge abutments based on the preliminary bridge plans provided to us and the results of borings BM-001 and BM-004. The wall contractor/designer should be required to provide the global stability analyses based on the planned final cross section, including the topography above and below the wall, using the generalized subsurface stratigraphy discussed in this report.

Terracon should be provided the opportunity to review and comment on the wall system design and analysis prior to construction. Testing and monitoring during construction by qualified geotechnical personnel is recommended.

4.6.1 Design Parameters for MSE Walls

The following recommended values can be used in external stability analyses of MSE walls for the bridge abutments. Global stability of the wall system should be analyzed using both drained and undrained strength parameters. Parameters used in the analysis should not exceed those given in the following table. These parameters are based on laboratory testing performed as part of this study and/or our past experience with similar materials. Confirmatory testing is recommended.

	Recommended Strength Parameters							
Material Type		s (Undrained) neters		ess (Drained) neters				
	Cu, psf	φ, degrees	C', psf	φ', degrees				
Foundation Soils								
Lean clay and lean to fat clay	1,750	0	50	29				
Elastic silt and fat clays	1,500	0	0	23				
Clayey Chert Gravel	0	30	0	30				
Bedrock	125	38	125	38				
Reinforced Backfill (AHTD Class 7 aggregate)	(AHTD Class 7 0		0	34				
Retained Backfill								
Clays	1,500	0	0	28				
Clayey Chert Gravel	0	32	0	32				

MSE wall foundations should bear on the stiff to very stiff native clays and can be designed using a nominal bearing resistance of 11,500 pounds per square foot (psf). A bearing resistance factor (ϕ_b) of 0.65, as outlined in Table 11.5.7-1 of AASHTO *LRFD Bridge Design Specification, 6th Edition, 2012,* should be applied to the nominal bearing value.

8th Street Widening Project – Proposed Bridge over I-49 ■ Bentonville, AR December 17, 2015 ■ Terracon Project No. 04135111

Lateral loads can be resisted by frictional resistance between the base of the MSE wall foundations and the underlying bearing materials. The nominal sliding resistance between the base of the MSE wall foundations and the underlying bearing materials can be calculated using a coefficient of friction value (tan δ) of 0.36. A resistance factor (ϕ_{τ}) of 1.0, as outlined in Table 11.5.7-1 of AASHTO *LRFD Bridge Design Specification, 6th Edition, 2012,* should be applied to the calculated nominal sliding resistance.

MSE wall foundations should be embedded a minimum of 2 feet below final adjacent exterior grade to provide frost protection to the bearing materials.

Based on our experience on projects of similar size and scope, consolidation test results for the MSE wall borings near the bridge location, and empirical data, long-term total settlement of the foundation soils at the MSE walls/bridge approaches is expected to be on the order of about 1 ½ to 2 ½ inches. Differential settlement is expected to be on the order of ½ to 1 ½ inches per 100 feet of linear wall. Settlement of new fills is expected to be on the order of about 1 to 3 inches.

We anticipate that the majority of the foundation settlement will occur within about 3 to 6 months after construction and that about 75 percent of the new fill settlement will occur during construction over about a 2 to 3 month period. Recommendations for monitoring plates or special techniques to reduce settlement at the bridge approaches are not considered necessary at this time. If the structural engineer is concerned with the settlement values and settlement rates presented above, we can provide additional recommendations or provisions as required.

4.6.2 Global Stability of MSE Walls

AASHTO LRFD Bridge Design Specifications, 6th Edition, 2012 recommends that global (overall) stability of the retaining wall, retained slope, and foundation soil be evaluated using limiting equilibrium methods of analysis, in which a single Factor of Safety (FOS) is generated by slope stability software.

The computer program SLIDE v6.0 (by Rocscience, Inc.) was used to evaluate the global stability of the MSE wall to be constructed in front of the West abutment. The analyses were performed based on the GLE/Morgenstern-Price analysis method, which consists of satisfying equilibrium of forces and moments acting on individual blocks to calculate the Factor of Safety. The results of boring BM-001 and BM-004 were used to estimate the strength parameters.

Based on the results of the global stability analyses, the minimum required reinforcing strap length for the MSE walls in front of the West and East abutments should be 80 percent of the wall height. The wall height is taken as the exposed height of the wall plus the embedment depth. The minimum reinforcement length required to satisfy the global stability is based on a FOS value equal to or greater than 1.5 for critical structures. The factor of safety values for both the long-term (drained) and short-term (undrained) conditions for the MSE walls were calculated as greater than 1.5. The SLIDE output for the West and East MSE walls is provided in **Appendix F**.

8th Street Widening Project – Proposed Bridge over I-49 ■ Bentonville, AR December 17, 2015 ■ Terracon Project No. 04135111

4.6.3 Construction Considerations for MSE Walls

The subgrade soils exposed at the bottom of the excavation for the retaining wall should consist stiff to very stiff native clays. Any low strength soils and/or undocumented existing fill materials will need to be removed full-depth and replaced with tested and approved fill.

The construction specifications should provide the backfill material description and design strength parameters that are required for the different fill zones so that unsuitable materials are not used in the reinforced backfill zone during construction.

Prior to starting construction of the MSE wall, fill material proposed to be used in constructing the reinforced zone for the wall should be sampled and tested in the laboratory to confirm that the engineering properties of the backfill satisfy the assumed properties used in design. Observation and field testing during earthwork activities and construction of MSE walls should be provided by qualified geotechnical personnel.

Any overexcavations for compacted backfill placement below the retaining wall should extend laterally a minimum of 5 feet beyond the front of the retaining wall toe to a minimum distance behind the wall equal to the width of the reinforced zone. The overexcavation should then be backfilled to the foundation base elevation with approved fill materials as recommended in section **4.2.3 Fill Compaction Requirements**.

If soils encountered during construction differ from the soils described in this report, Terracon should be consulted so proper adjustments and/or reevaluation of our analyses can be performed.

5.0 GENERAL COMMENTS

Terracon should be retained to review the final design plans and specifications so comments can be made regarding interpretation and implementation of our geotechnical recommendations in the design and specifications. Terracon also should be retained to provide observation and testing services during grading, excavation, pavement construction and other earth-related construction phases of the project.

The analysis and recommendations presented in this report are based upon the data obtained from the borings performed at the indicated locations and from other information discussed in this report. This report does not reflect variations that may occur between borings, across the site, or due to the modifying effects of construction or weather. The nature and extent of such variations may not become evident until during or after construction. If variations appear, we should be immediately notified so that further evaluation and supplemental recommendations can be provided.

The scope of services for this project does not include either specifically or by implication any environmental or biological (e.g., mold, fungi, bacteria) assessment of the site or identification or

8th Street Widening Project – Proposed Bridge over I-49 ■ Bentonville, AR December 17, 2015 ■ Terracon Project No. 04135111

prevention of pollutants, hazardous materials or conditions. If the owner is concerned about the potential for such contamination or pollution, other studies should be undertaken.

This report has been prepared for the exclusive use of our client for specific application to the project discussed and has been prepared in accordance with generally accepted geotechnical engineering practices. No warranties, either express or implied, are intended or made. Site safety, excavation support, and dewatering requirements are the responsibility of others. In the event that changes in the nature, design, or location of the project as outlined in this report are planned, the conclusions and recommendations contained in this report shall not be considered valid unless Terracon reviews the changes and either verifies or modifies the conclusions of this report in writing.

APPENDIX A FIELD EXPLORATION

8th Street Widening Project – Proposed Bridge over I-49 ■ Bentonville, AR October 12, 2015 ■ Terracon Project No. 04135111

Field Exploration Description

The boring locations and elevations were established in the field by B & F Engineering, Inc. prior to commencement of our field activities. Borings BM-001 and BM-002 were offset in the field from their originally designated locations due to rig access constrains and/or the presence of underground utilities. Offset distances and elevation differences with respect to the staked borings were determined for the offset borings. Offset distances, ground elevations at the boring locations, and boring coordinates are shown on the boring logs in this Appendix. Elevations shown on the logs have been rounded to the nearest 0.1 feet. The boring locations and elevations should be considered accurate only to the degree implied by the methods used to define them.

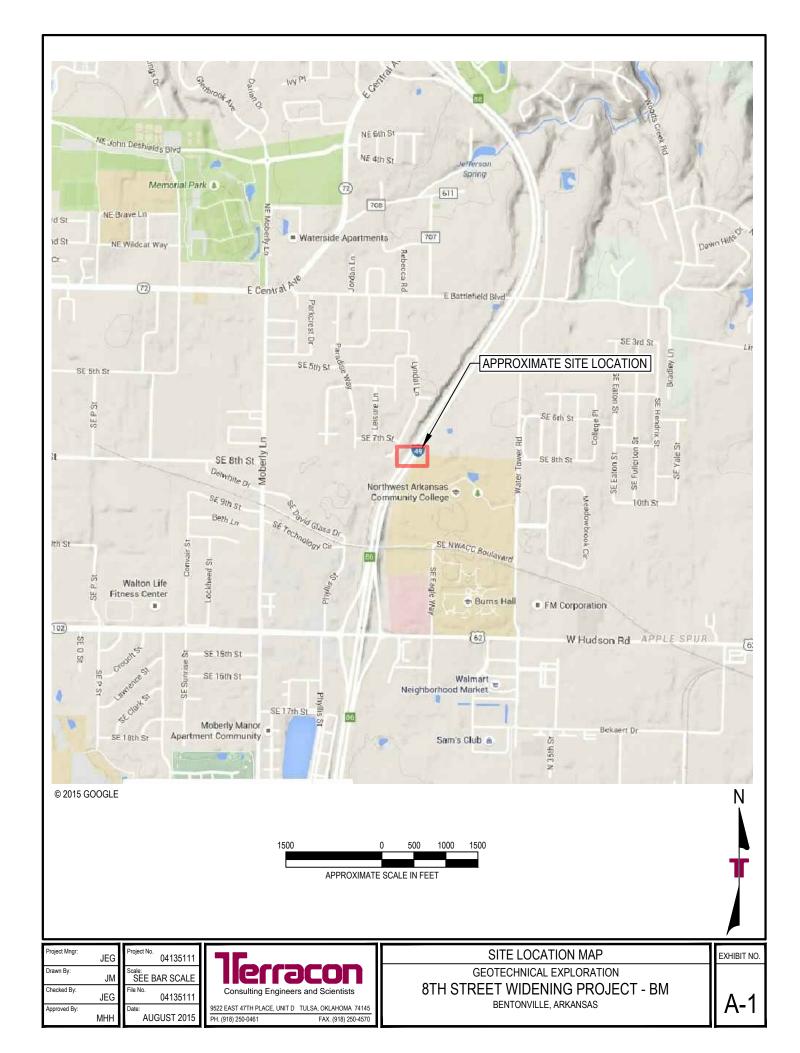
We drilled the borings with ATV-mounted rotary drill rigs using continuous flight augers and rotary cutting bits to advance the boreholes. Representative samples were obtained by the split-barrel sampling procedure. In the split-barrel sampling procedure, the number of blows required to advance a standard 2-inch O.D. split-barrel sampler the last 12 inches of the typical total 18-inch penetration by means of a 140-pound auto-hammer with a free fall of 30 inches, is the standard penetration resistance value (SPT-N). The N-value is used to estimate the in-situ relative density of cohesionless soils, and to a lesser degree of accuracy, the consistency of cohesive soils and hardness of weathered bedrock.

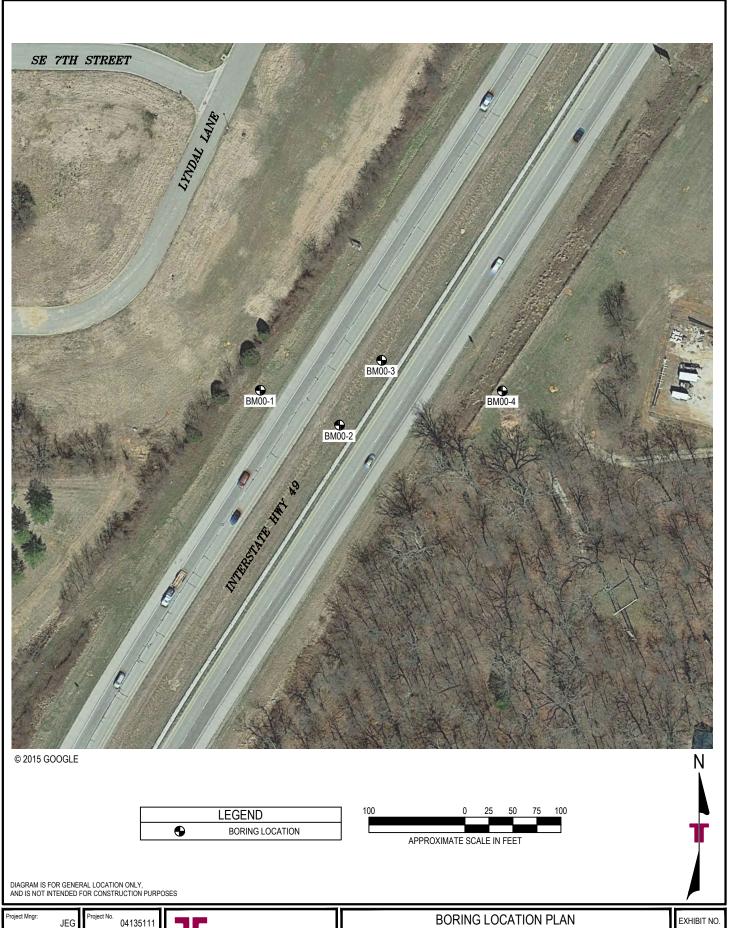
An automatic SPT hammer was used to advance the split-barrel sampler in the borings. Generally, a greater efficiency is achieved with the automatic hammer compared to the conventional safety hammer operated with a cathead and rope. The effect of the automatic hammer's efficiency has been considered in the interpretation and analysis of the subsurface information for this report.

The sampling depths, penetration distances, and N-values are reported on the boring logs. The samples were tagged for identification, sealed to reduce moisture loss and returned to the laboratory for further examination, testing and classification.

We cored the bedrock at select boring locations using a NQ-size, diamond-bit core barrel. After the core samples were retrieved, the cores were placed in a box and logged. The rock was visually classified, and the "percent recovery" and rock quality designation (RQD) was determined for each run. The "percent recovery" is the ratio of the recovered sample length to the cored length, expressed as a percent. An indication of the actual in-situ rock quality is provided by calculating the core's RQD. The RQD is the percentage of the total length of core retrieved that are in segments at least 4 inches in length compared to each core run length.

After drilling completion, the borings were backfilled with a cement-grout mix and soil cuttings as described on the individual borings logs.


8th Street Widening Project – Proposed Bridge over I-49 ■ Bentonville, AR October 12, 2015 ■ Terracon Project No. 04135111



Field Exploration Description (continued)

A field log of each boring was prepared by a geologist. These logs included visual classifications of the materials encountered during drilling as well as the geologist interpretation of the subsurface conditions between samples. Final boring logs include modifications based on observation and laboratory tests of the samples retrieved.

APPENDIX A FIELD EXPLORATION

Project Mngr:	JEG
Drawn By:	JM
Checked By:	JEG
Approved By:	МНН

Project No. 04135111

Scale: SEE BAR SCALE

File No. 04135111

Date: AUGUST 2015

TICETTOCON
Consulting Engineers and Scientists
9522 EAST 47TH PLACE, UNIT D TULSA, OKLAHOMA 74145
PH. (918) 250-0461 FAX. (918) 250-4570

GEOTECHNICAL EXPLORATION

8TH STREET WIDENING PROJECT - BM

BENTONVILLE, ARKANSAS

A-2

8th Street Widening Project – Proposed Bridge over I-49 ■ Bentonville, AR December 17, 2015 ■ Terracon Project No. 04135111

Field Exploration Description

The boring locations and elevations were established in the field by B & F Engineering, Inc. prior to commencement of our field activities. Borings BM-001 and BM-002 were offset in the field from their originally designated locations due to rig access constrains and/or the presence of underground utilities. Offset distances and elevation differences with respect to the staked borings were determined for the offset borings. Offset distances, ground elevations at the boring locations, and boring coordinates are shown on the boring logs in this Appendix. Elevations shown on the logs have been rounded to the nearest 0.1 feet. The boring locations and elevations should be considered accurate only to the degree implied by the methods used to define them.

We drilled the borings with ATV-mounted rotary drill rigs using continuous flight augers and rotary cutting bits to advance the boreholes. Representative samples were obtained by the split-barrel sampling procedure. In the split-barrel sampling procedure, the number of blows required to advance a standard 2-inch O.D. split-barrel sampler the last 12 inches of the typical total 18-inch penetration by means of a 140-pound auto-hammer with a free fall of 30 inches, is the standard penetration resistance value (SPT-N). The N-value is used to estimate the in-situ relative density of cohesionless soils, and to a lesser degree of accuracy, the consistency of cohesive soils and hardness of weathered bedrock.

An automatic SPT hammer was used to advance the split-barrel sampler in the borings. Generally, a greater efficiency is achieved with the automatic hammer compared to the conventional safety hammer operated with a cathead and rope. The effect of the automatic hammer's efficiency has been considered in the interpretation and analysis of the subsurface information for this report.

The sampling depths, penetration distances, and N-values are reported on the boring logs. The samples were tagged for identification, sealed to reduce moisture loss and returned to the laboratory for further examination, testing and classification.

We cored the bedrock at select boring locations using a NQ-size, diamond-bit core barrel. After the core samples were retrieved, the cores were placed in a box and logged. The rock was visually classified, and the "percent recovery" and rock quality designation (RQD) was determined for each run. The "percent recovery" is the ratio of the recovered sample length to the cored length, expressed as a percent. An indication of the actual in-situ rock quality is provided by calculating the core's RQD. The RQD is the percentage of the total length of core retrieved that are in segments at least 4 inches in length compared to each core run length.

After drilling completion, the borings were backfilled with a cement-grout mix and soil cuttings as described on the individual borings logs.

8th Street Widening Project – Proposed Bridge over I-49 ■ Bentonville, AR December 17, 2015 ■ Terracon Project No. 04135111

Field Exploration Description (Continued)

A field log of each boring was prepared by a geologist. These logs included visual classifications of the materials encountered during drilling as well as the geologist interpretation of the subsurface conditions between samples. Final boring logs include modifications based on observation and laboratory tests of the samples retrieved.

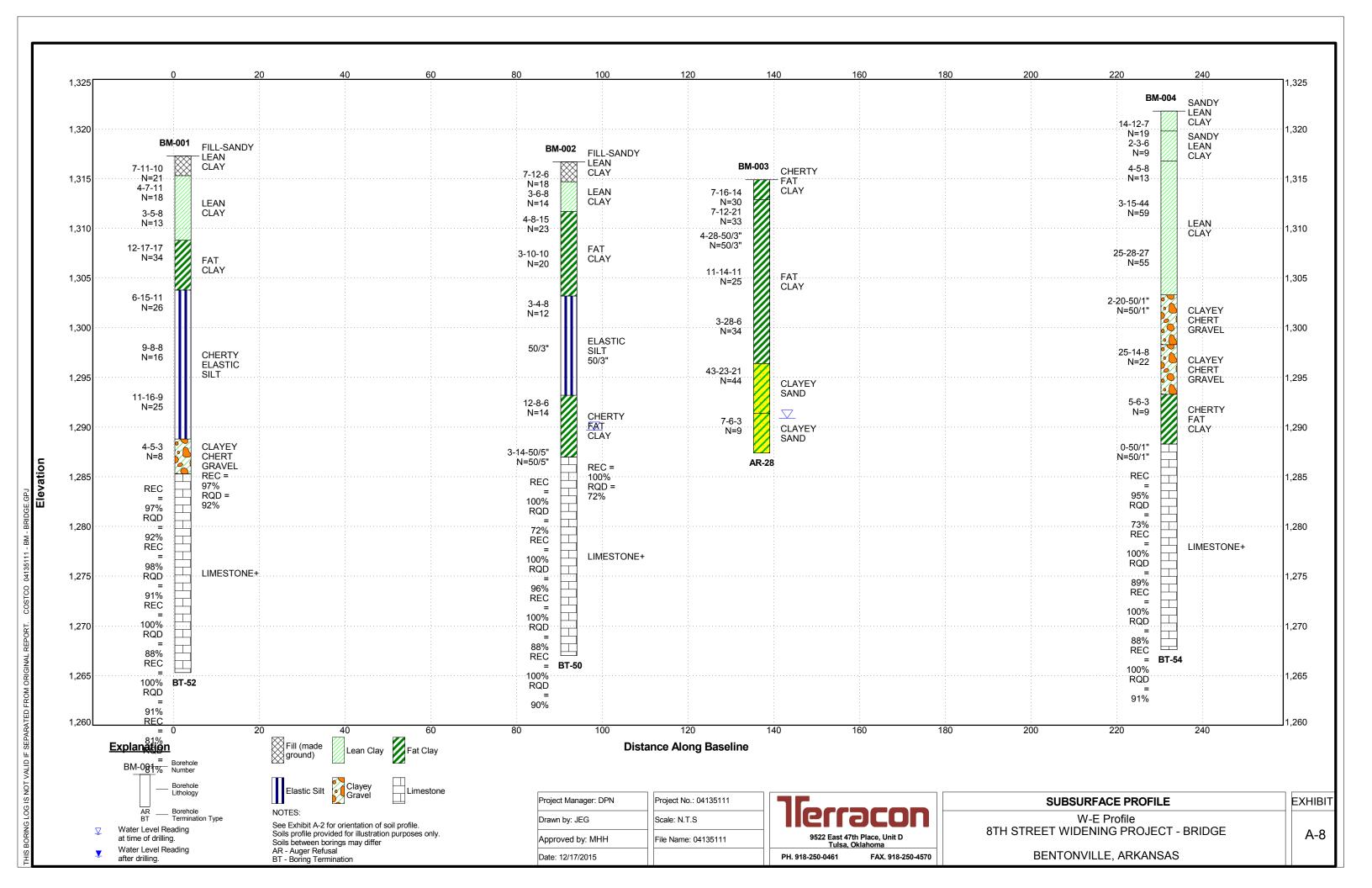
GEO SMART LOG-NO WELL 04135111 - BM - BRIDGE.GPJ

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT.

	ВС	RING LOG	NO.	BN	/ 1-(001	<u> </u>			Page 2 of	3
F	ROJECT: 8th Street Widening Project -	Bridge	CLIENT	: Bı	ırns	s & I	McDonell Eng	jineerin	ıg Co	mpany, I	nc.
	ITE:										
	Bentonville, Arkansas										
9	LOCATION Offset 10 feet East		£	JEL ONS	PE	(In.)	T:0	ED (psi)	(%)	ATTERBERG LIMITS	NES
	Latitude: 36.36374° Longitude: -94.17602°		-/- DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	UNCONFINED COMPRESSIVE STRENGTH (psi)	WATER CONTENT (%)		PERCENT FINES
1	Approximate S	Surface Elev: 1317.3 (Ft.)	+/- DEP.	VATE	AMP	ECO	FELL	COMP	NOC W	LL-PL-PI	ERCE
Ь	DEPTH CHERTY ELASTIC SILT (MH), with sand, red.	ELEVATION (F	Ft.)	-0	0)	<u>«</u>		-0ω			
Ш	(5YR,5/3) and pinkish-gray (5YR,7/2), very st	iff (continued)	_								
Ш											
Ш			-								
Ш			-								
Ш			_		\bigvee	4	11-16-9		37		
Ш			25-		\triangle	4	N=25		31		
Ш			25								
Ш			-								
Ш			-	1							
Ш			_								
⊋ !/	28.5 CLAYEY CHERT GRAVEL (GC), with sand, d	ark 128	39+/-		7		4.5.0				
F. G.	reddish-brown (5YR,3/3) and reddish-brown (5YR,5/3), loose			X	13	4-5-3 N=8		56	69-27-42	46
e e e e e e e e e e e e e e e e e e e			30-								
- BM			-	-							
04135111 - BM - BRIDGE.GPJ	32.0	1285.	.5+/-								
1 04	LIMESTONE+, with chert seams, light gray (1 hard	UYR,7/2),			П						
					П		REC = 97% RQD = 92%				
			-	1	П		11QD - 3270	7960			
GEO SMART LOG-NO WELL			35-					7 900			
			_		П						
-					П						
ZEPOF			_				REC = 98% RQD = 91%				
NAL H			-	1	П		NQD = 9170				
			_		П						
FROM			40-		Ш			10580			
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT.	Stratification lines are approximate. In-situ, the transition ma	ay be gradual.	40				mmer Type: Automat		<u> </u>		
SEPAF			. ,			Pet	assification estimated rographic analysis mass				
	Advancement Method: See Exhibit A-3 for descrip Power Auger to 32 feet procedures. Diamond Bit below 32 feet		·		v	Note	50.				
T VA	See Appendix B for descr procedures and additiona Abandonment Method: See Appendix G for expla		al data (if an	y).							
	ndonment Metnod: ackfilled with cuttings above 4'; grouted 4' to 14'; ackfilled with cuttings from 14' to termination depth.	abbreviations. At offset location			unu						
010	WATER LEVEL OBSERVATIONS	75				Borine	g Started: 8/17/2015	Bor	ing Com	pleted: 8/17/2	2015
30RIN	none to 32 feet while drilling (See advancement method)		DC (Rig: ATV 884			Geologist: DF	
THIS B	25 ft Cave in depth	9522 East 47th Tulsa, Ok	Place, Unit	D	_		ct No.: 04135111			A-4	

	ВО	RING LOG	NO.	B۱	/ 1-(001				Page 3 of	f 3
PR	OJECT: 8th Street Widening Project - I	Bridge	CLIEN	Γ: Βι	ırns	s & I	McDonell Eng	gineer	ing C		
SI											
	Bentonville, Arkansas										
90	LOCATION Offset 10 feet East	<u>.</u>		IS NS	PE	ln.)	L	G 30	Íg g	ATTERBERO LIMITS	G SH
GRAPHIC LOG	Latitude: 36.36374° Longitude: -94.17602°		-+ DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	UNCONFINED	WATER (%)	2	PERCENT FINES
βΑΡΗ		5 5 4047.0 (51)	. LE	TER	MPLE	OVE	ELD	NON I	WAT	LL-PL-PI	CEN
R.	Approximate St	urface Elev: 1317.3 (Ft.) ELEVATION (F		WA	SA	REC	또	NO.		}	PER
	LIMESTONE+, with chert seams, light gray (10		.,		П						
	hard (continued)			_	П						
					П						
			'		П		REC = 100%				
					П		RQD = 88%				
					П						
			-		П			1027	0		
			45-		Ц						
					П						
			-		П						
					П						
					П		REC = 100% RQD = 91%				
					П		RQD 0170				
					П			7590	,		
					П			, , ,			
\perp			50-	1	Н						
\Box					П		REC = 81%				
					П		RQD = 81%				
	52.0 Boring Terminated at 52 Feet	1265.	5+/-		Н					+	
Advar Pov Dia Aband Bad bad											
	Stratification lines are approximate. In-situ, the transition may	y be gradual.	,	•			nmer Type: Automatassification estimated		sturbed o	r core cample:	
V 97.2	coment Method:					Pet	rographic analysis m	ay reveal	other roo	ck types.	<i>3</i> .
Pov		See Exhibit A-3 for descr procedures.	iption of fie	d		Note	es:				
Dia	Į,	See Appendix B for desc procedures and addition			у						
		See Appendix G for explanations.	anation of s	ymbols	and						
bac	kfilled with cuttings from 14 ¹ to termination depth.	At offset location									
	WATER LEVEL OBSERVATIONS none to 32 feet while drilling	7.				Borin	g Started: 8/17/2015	E	Boring Co	mpleted: 8/17/	2015
	(See advancement method)	llerra			1	Drill F	Rig: ATV 884		Driller: DB	3 / Geologist: D	PN
2936	25 ft Cave in denth	9522 East 47th Tulsa, Ok	Place, Unit		_		ct No.: 04135111		Exhibit:	A-4	
LCX3(4)	25 ft Cave in depth	ruisa, Uk	ialiulid			I' 'UJE	UL 14U UT 133 I I I		- או וועונ.	/1- 1	

	BOR	ING LOG	NO.	B۱	/ 1-(002	1		F	Page 2 of 3	3
PF	OJECT: 8th Street Widening Project - Brid	dge	CLIEN	Γ: Βι	ırns	s & I	/IcDonell Eng	ineerir			
SI											
	Bentonville, Arkansas										
90	LOCATION See Exhibit A-2			EL	PE	ln.)	⊢	ED VE psi)	(%	ATTERBERG LIMITS	SES
10 F	Latitude: 36.36366° Longitude: -94.17575°		H (Ft	ATIC	ΕTY	ERY () TES: ULTS	VFINE SESSI STH (TER (°		
GRAPHIC LOG	Surl	face Elev.: 1316.7 (F	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	UNCONFINED COMPRESSIVE STRENGTH (psi)	WATER CONTENT (%)	LL-PL-PI	PERCENT FINES
	DEPTH (NEW YORK)	ELEVATION (F	·	≥º	S)	8		STC	0		H H
Ш	ELASTIC SILT (MH), trace chert gravel, reddish-b (5YR,5/3), stiff (continued)	rown									
Ш											
Ш											
Ш											
	23.5 CHERTY FAT CLAY (CH), reddish-brown (5YR,5/3		293								
	pinkish-gray (5YR,7/2), stiff				X	66	12-8-6 N=14		29		
			25								
					\bigvee		2.44.50/5"		24		
GEO SWARK LOG-NO WELL 04133111 - BM - BKIDGE: GFD	29.7 LIMESTONE+ , with chert seams, light gray (10YR		287			1	3-14-50/5"		24		
ž I	hard	,112),	30-		П						
<u> </u>				-	П						
3511					П		REC = 100%				
1 04					П		RQD = 72%	7830			
					П						
					П						
X T			35-								
					П						
					П						
					П		REC = 100% RQD = 96%	8280			
4 H				1			178D - 90/0				
				1							
			40								
AKA	Stratification lines are approximate. In-situ, the transition may be	gradual.				+Cl	nmer Type: Automat assification estimated	d from distu			
Advaire Para Para Para Para Para Para Para Pa		Exhibit A-3 for descri	ption of fie	d		Note	rographic analysis ma es:	ay reveal o	uier rock	types.	
Dia	mond Bit below 30 feet See	edures. Appendix B for descr edures and additiona	ription of la	borator	у						
Aban	donment Method: See	Appendix G for expla			and						
bac bac	kfilled with cuttings from 14' to termination depth.	eviations.									
NG-LC	WATER LEVEL OBSERVATIONS 27 ft while drilling					Boring	3 Started: 8/17/2015	Во	ring Com	pleted: 8/17/2	015
EGK EGK	<u> </u>	llerra				Drill R	ig: ATV 884	Dri	ller: DB /	Geologist: DF	PN
	4 ft Cave in depth	9522 East 47th F Tulsa, Okl		ט		Projec	et No.: 04135111	Ex	nibit:	A-5	


	BORII	NG LOG N	10.	BN	1-0	002			ı	Page 3 of 3	3
PF	OJECT: 8th Street Widening Project - Brid	ge CL	IENT	: Bu	ırns	s & I	McDonell Eng	jineerin	ıg Co	mpany, lı	nc.
SI											
	Bentonville, Arkansas										
90	LOCATION See Exhibit A-2		÷	EL	PE	(In.)	⊢	NE Psi)	(%	ATTERBERG LIMITS	ZES
GRAPHIC LOG	Latitude: 36.36366° Longitude: -94.17575°		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	UNCONFINED COMPRESSIVE STRENGTH (psi)	WATER CONTENT (%)		PERCENT FINES
RAP	Surfa	ce Elev.: 1316.7 (Ft.)	DEPT	ATER SER\	MPL	COVE	RESI	NCON OMPR	WA	LL-PL-PI	3CEN
٥	DEPTH	ELEVATION (Ft.)		N O	γ,	R	<u> </u>	SCU	O		PE
	LIMESTONE+, with chert seams, light gray (10YR,7 hard (continued)	7/2),									
H			_								
			_				REC = 100%				
							RQD = 88%	0000			
			_					9660			
			_	-							
			45-		Н						
			_	-							
H			_	-			REC = 100%	6510			
			_				RQD = 90%				
<u> </u>	-		_								
3	49.7 Boring Terminated at 49.7 Feet	1267			_						
GEO SWART LOG-NO WELL 04135111 - BW - BRIDGE GFJ											
<u> </u>											
1351											
Š											
<u>7-500</u>											
X Y Y											
N N											
<u> </u>											
구 규											
S S S S S S S S S S S S S S S S S S S											
∑ 5 5											
SX											
W E	Stratification lines are approximate. In-situ, the transition may be gr	adual.		<u> </u>			nmer Type: Automat		<u> </u>		
A A	Toomant Mathadi					Pet	assification estimated rographic analysis m				
Po\	ver Auger to 30 feet proced					Note	es:				
NA Pia	proced	ppendix B for description ures and additional da	ita (if any	/).							
Aband	exfilled with cuttings above 4'; grouted 4' to 14'; abbrev	ppendix G for explanati iations.	ion of sy	mbols	and						
bac	kfilled with cuttings from 14' to termination depth. WATER LEVEL OBSERVATIONS							<u> </u>			
	27 ft while drilling	Torra				Boring	g Started: 8/17/2015	Bor	ing Com	pleted: 8/17/2	015
		9522 East 47th Place				Drill R	Rig: ATV 884	Dril	ler: DB /	Geologist: DF	N
	4 ft Cave in depth	Tulsa, Oklaho		_		Projec	ct No.: 04135111	Ext	nibit:	A-5	

	ВС	RING LOG	3 N	10.	BN	/ 1-(003	}		F	Page 2 of 2	2
PR	OJECT: 8th Street Widening Project -	Bridge	CL	IENT	: Bı	ırns	s & I	McDonell Eng	jineerin	g Co	mpany, I	nc.
SIT												
	Bentonville, Arkansas											
90	LOCATION See Exhibit A-2			·:	'EL JNS	'PE	(In.)	īT	ED IVE (psi)	(%	ATTERBERG LIMITS	FINES
GRAPHIC LOG	Latitude: 36.36384° Longitude: -94.1756°			DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	UNCONFINED COMPRESSIVE STRENGTH (psi)	WATER CONTENT (%)		
3RAP		Surface Elev.: 1314.9 (Ft.)	DEPT	ATE 3SER	AMP	0	FIELD	JNCO OMPF	NO.	LL-PL-PI	PERCENT
777	DEPTH	ELEVATION (Ft.)		≥ö	Š	2		JOR	0		8
	CLAYEY SAND (SC), with chert gravel, light (10YR,7/2) and brownish-yellow (10YR,6/6),	dense										
	(continued)											
				_								
				_								
	23.5 CLAYEY SAND (SC), with chert gravel, redding		91.5		$\overline{}$	7						
	(5YR,5/3) and pinkish-gray (5YR,7/2), loose			_		X	12	7-6-3 N=9		44	59-23-36	22
				25-		\vdash						
				_								
	27.5	12	87.5	_	-							
	Auger Refusal at 27.5 Feet											
2												
3E.GF												
BRIDG												
G-NO WELL 04135111 - BM - BRIDGE.GPJ												
111												
04136												
HELL HELL												
> O Y												
907												
GEO SMART LO												
S O S												
EPO.												
AL R												
ORIGI GI												
MON												
	Obs. If a line is a line i											
PARA	Stratification lines are approximate. In-situ, the transition ma	ay be gradual.					+Cl	mmer Type: Automat assification estimated	d from distur			
	cement Method: er Auger	See Exhibit A-3 for desc	riptior	n of field	ı		Note	rographic analysis ma es:	ay revedi Oli	ici iuuk	турсэ.	
ALID.	ogo.	procedures. See Appendix B for desc				у						
Aband	onment Method:	procedures and addition See Appendix G for expl				and						
Bac bac	kfilled with cuttings above 4'; grouted 4' to 14'; kfilled with cuttings from 14' to termination depth.	abbreviations.										
	WATER LEVEL OBSERVATIONS 24 ft while drilling	75					Borin	g Started: 8/17/2015	Bori	ng Com	pleted: 8/17/2	015
BORI	2. A William	llerr					Drill F	Rig: ATV 884	Drill	er: DB /	Geologist: DF	PN
	8 ft Cave in depth	9522 East 47th Tulsa, Ol	Place	e, Unit [Proje	ct No.: 04135111	Exh	ibit:	A-6	

GEO SMART LOG-NO WELL 04135111 - BM - BRIDGE.GPJ

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT.

	BC	ORING LOG	NO.	BN	/1-0	004	Ļ			Page 3 of	3
PF	ROJECT: 8th Street Widening Project -	Bridge	CLIENT	: Bu	ırns	s & I	McDonell Eng	jineeri			
SI	TE:										
	Bentonville, Arkansas										
90.	LOCATION Offset 30 feet East		£	ZNC JNS	/PE	(In.)		ED (DSI)	(%)	ATTERBERG LIMITS	NES
GRAPHIC LOG	Latitude: 36.36372° Longitude: -94.17518°		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	UNCONFINED COMPRESSIVE STRENGTH (psi)	WATER CONTENT (%)		PERCENT FINES
GRAF	Approximate S	Surface Elev: 1321.8 (Ft.)	+/- DEP.	NATE BSER	AMP	ECO	FIELL RES	UNCC	CONT	LL-PL-PI	ERCE
	DEPTH LIMESTONE+, with chert seams, light gray (1	ELEVATION (I	Ft.)	-0	o)	α.		-08	'		
	hard (continued)	0114,772),									
	-						REC = 100%				
			-				RQD = 89%				
			_					7320			
			_								
			45-								
			_								
							REC = 100%	7290			
			-				RQD = 88%				
			-								
- I											
ig H	-										
	- 1		50-								
BM-			_					11930			
2111							REC = 100% RQD = 91%				
0413			_				NQD - 91/0				
WELL			_								
G-NO WELL 04135111 - BM - BRIDGE.GPJ		1267.	.5+/-								
ST LO	Boring Terminated at 54.2 Feet	·									
GEO SMART LO											
GEO											
ORT.											
REP											
SINAL											
1 ORIC											
FROM											
ATED	Stratification lines are approximate. In-situ, the transition ma	ay be gradual.					nmer Type: Automat				
EPAR						Pet	assification estimated rographic analysis ma				
⊢ Po	ncement Method: wer Auger to 34 feet Imond Bit below 34 feet	See Exhibit A-3 for descriprocedures.	•			Note	es:				
VAL	iniona bit below 54 feet	See Appendix B for desc procedures and addition	cription of lab al data (if an	oratory y).	/						
Aban Ba	donment Method: ckfilled with cuttings above 4'; grouted 4' to 14';	See Appendix G for expl abbreviations.	lanation of sy	mbols	and						
bac	ckfilled with cuttings from 14' to termination depth. WATER LEVEL OBSERVATIONS	At offset location									
SING	none to 34 feet while drilling	There	900	7		Boring	g Started: 8/17/2015	В	oring Com	pleted: 8/17/2	015
S BOF	(See advancement method)	9522 East 47th				Drill F	Rig: ATV 884	D	riller: DB /	Geologist: DF	PN
Ĭ 1834	6 ft Cave in depth	Tulsa, Ok		_		Proje	ct No.: 04135111	E	xhibit:	A-7	

BM-001 32.0' to 40.0'

BM-001 40.0' to 50.0'

BM-001 50.0' to 52.0'

BM-002 29.7' to 39.7'

BM-002 39.7' to 47.7'

BM-002 47.7' to 49.7'

BM-004 34.2' to 44.2'

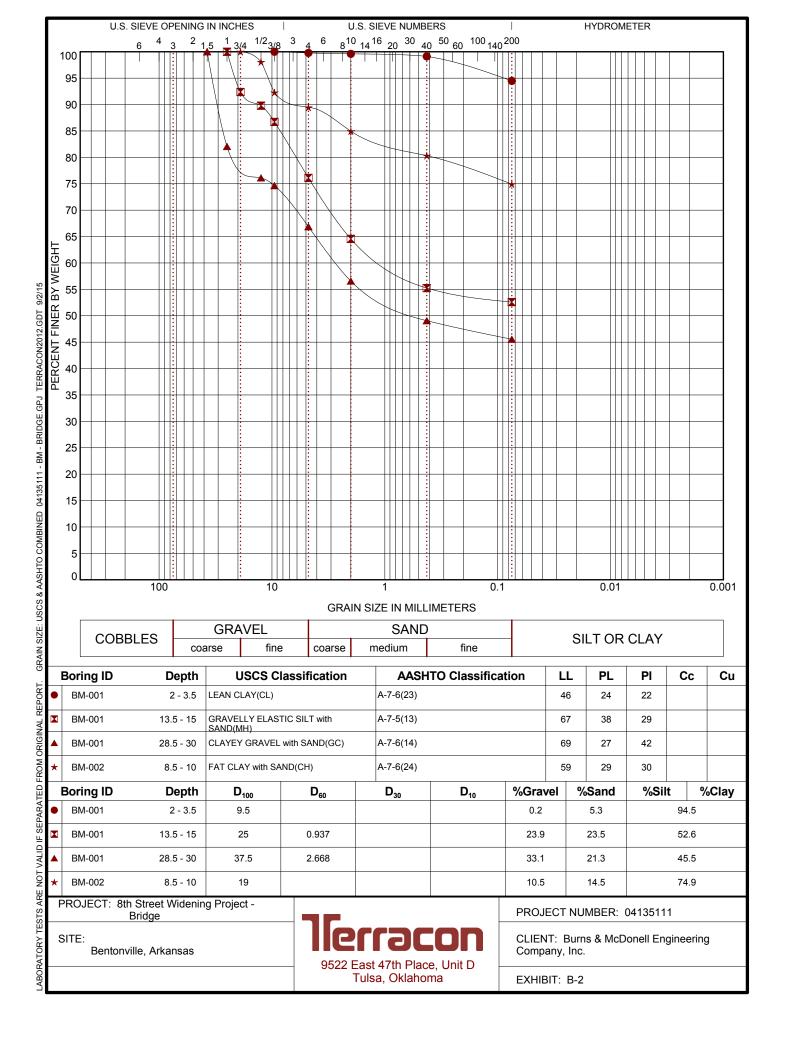
BM-004 44.2' to 52.2'

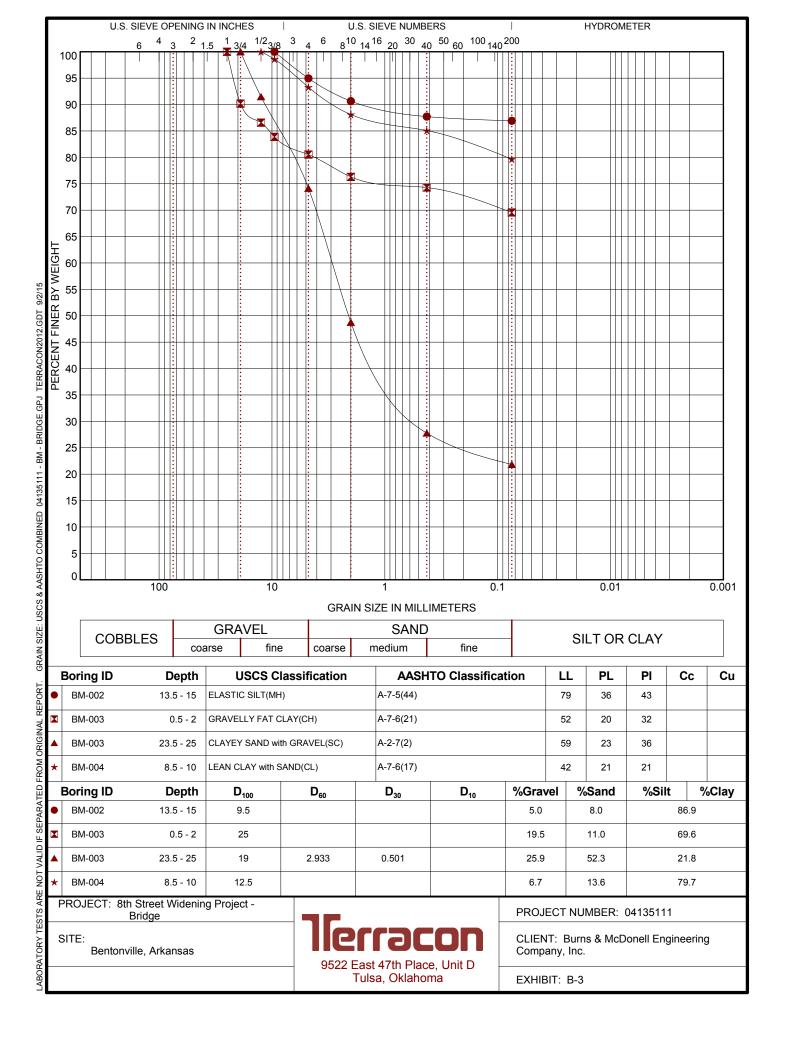
BM-004 52.2' to 54.2'

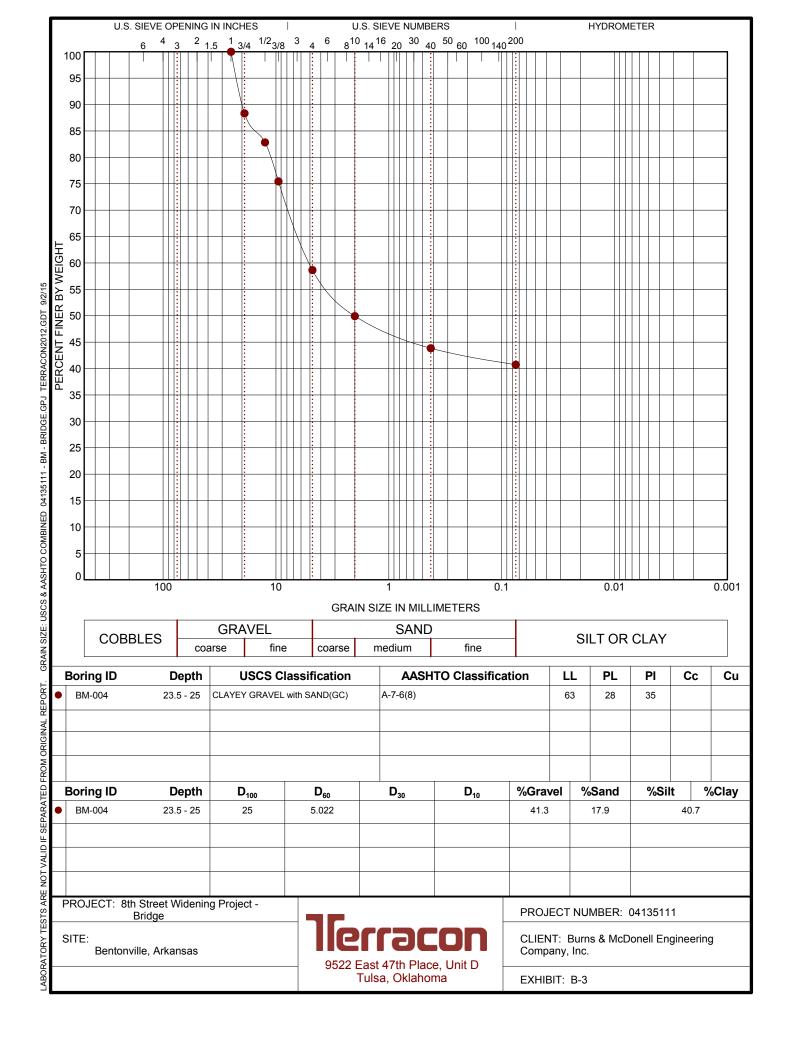
APPENDIX B LABORATORY TESTING

Geotechnical Engineering Report

8th Street Widening Project – Proposed Bridge over I-49 ■ Bentonville, AR December 17, 2015 ■ Terracon Project No. 04135111


Laboratory Testing


Samples retrieved during the field exploration were taken to the laboratory for further observation by the project geotechnical engineer and were classified in accordance with the Unified Soil Classification System (USCS) described in Appendix G. Bedrock materials were classified according to the General Notes and described using commonly accepted geotechnical terminology. The field descriptions were modified as necessary and an applicable laboratory testing program was formulated to determine engineering properties of the subsurface materials.


Laboratory tests were conducted on selected soil and rock samples. The laboratory test results are presented on the boring logs next to the respective samples and attached to this appendix. Laboratory tests were performed in general accordance with the applicable ASTM, AASHTO, local or other accepted standards.

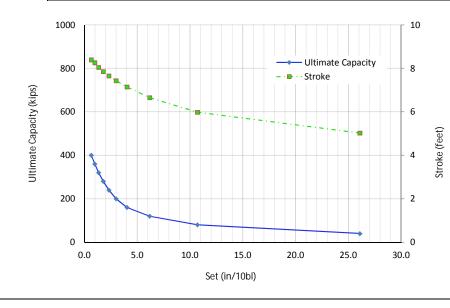
The following tests were performed on selected soil and rock samples:

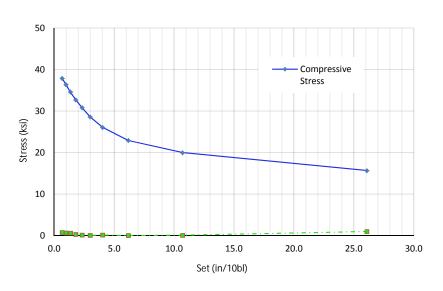
- Water content
- Atterberg limits
- Particle size distribution
- Rock unconfined compressive strength

APPENDIX C PILE DRIVABILITY

Summary of Pile Drivability Analyses

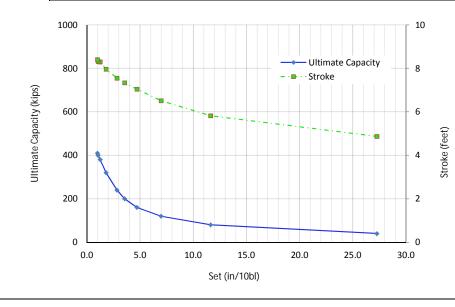
Boring BM-002 (Center Bent)

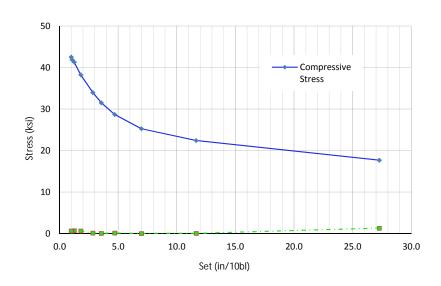

Pile Type	Hammer	Hammer Efficiency	Set (in/2	0 blows)	Stress	s (ksi)	Remark	Result
	D 19-42	0.6	9.8	9.2			at depth of 28-30 feet	OK
HP 12X53	D 19-42	0.8			26.7	27.9	at depth of 28-30 feet	OK
	D 30-32	0.6	20	18.8			at depth of 28-30 feet	OK
	D 30-32	0.8			33.9	35.2	at depth of 28-30 feet	OK
	D 19-42	0.6	4	3.7			at depth of 28-30 feet	OK
HD 14Y73	D 13-42	0.8			24.9	25.7	at depth of 28-30 feet	OK
HP 14X73	D 30 33	0.6	8.3	7.8			at depth of 28-30 feet	OK
	D 30-32	0.8			28.7	30.2	at depth of 28-30 feet	OK


Boring BM-004 (East Abutment)

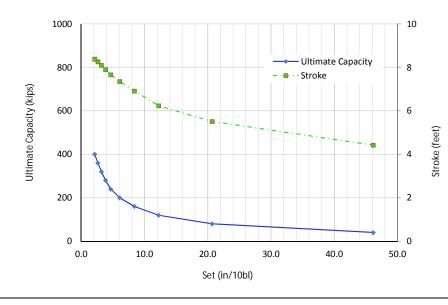
Pile Type	Hammer	Hammer Efficiency	Set (in/2	0 blows)	Stress	s (ksi)	Remark	Result
	D 19-42	0.6	1	0.6			at depth of 20-22 feet	Not OK
HP 12X53	D 19-42	0.8			42.4	42.5	at depth of 20-22 feet	OK
	D 30-32	0.6	4.2	3.6			at depth of 20-22 feet	OK
	D 30-32	0.8			55.3	55.7	at depth of 20-22 feet	Not OK
	D 19-42	0.6	1	0.8			at depth of 20-22 feet	Not OK
HP 14X73	D 19-42	0.8			32.4	32.3	at depth of 20-22 feet	OK
ΠΡ 14A/3	D 30-32	0.6	4.2	3.6			at depth of 20-22 feet	OK
	D 00-02	0.8			41.9	42.2	at depth of 20-22 feet	OK

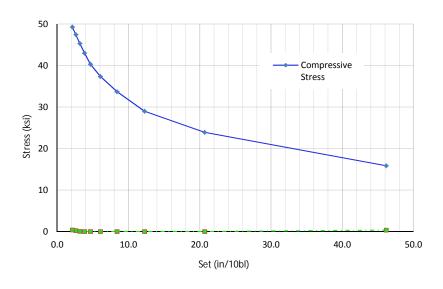
Pile:HP12x53Soil Boring:BM-002Hammer:DELMAG D 19-42Hammer Efficiency:0.6


Ultimate Capacity	Max. Comp. Stress	Max. Tensile Stress	Set	Stroke	Energy
Kips	ksi	ksi	in/10bl	ft	kips-ft
40	15.64	0.98	26.1	5.02	18.9
80	19.96	0.07	10.7	5.98	15.5
120	22.92	0.02	6.2	6.65	13.9
160	26.05	0.12	4.0	7.14	13.1
200	28.57	0.06	3.0	7.43	12.7
240	30.82	0.14	2.3	7.65	12.4
280	32.72	0.29	1.8	7.85	12.3
320	34.59	0.59	1.4	8.04	12.4
360	36.36	0.64	1.0	8.26	12.5
400	37.87	0.75	0.7	8.39	12.5

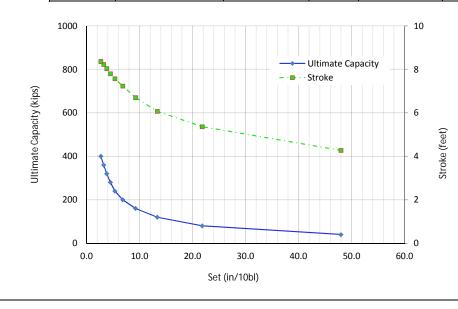


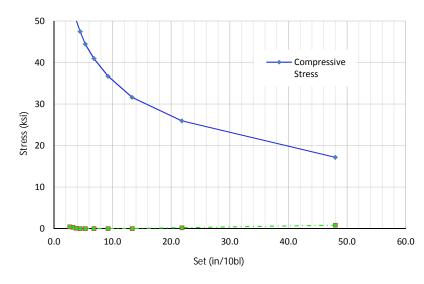
Pile: HP12x53 Soil Boring BM-002
Hammer: DELMAG D 19-42 Hammer Efficiency: 0.8
Toe Quake: 0.04 in


Ultimate Capacity	Max. Comp. Stress	Max. Tensile Stress	Set	Stroke	Energy
Kips	ksi	ksi	in/10bl	ft	kips-ft
40	17.65	1.3	27.3	4.87	20.8
80	22.41	0.06	11.7	5.82	17.9
120	25.27	0.03	7.0	6.51	16.7
160	28.68	0.13	4.7	7.04	16.2
200	31.5	0.06	3.6	7.33	15.8
240	33.96	0.12	2.8	7.55	15.6
320	38.24	0.64	1.8	7.96	15.7
380	41.29	0.7	1.3	8.3	16.0
400	41.91	0.59	1.1	8.32	15.9
410	42.54	0.62	1.0	8.4	16.0

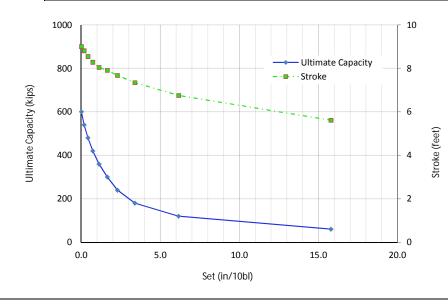


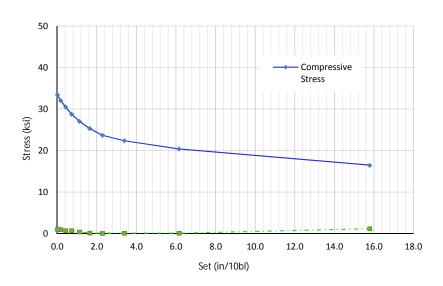
Pile:HP12X53Soil BoringBM-002Hammer:DELMAG D30-32Hammer Efficiency:0.6


Ultimate Capacity	Max. Comp. Stress	Max. Tensile Stress	Set	Stroke	Energy
Kips	ksi	ksi	in/10bl	ft	kips-ft
40	15.86	0.36	46.2	4.42	39.4
80	23.92	0	20.7	5.51	32.9
120	29.01	0	12.2	6.23	29.2
160	33.7	0	8.4	6.91	27.4
200	37.35	0	6.1	7.35	25.8
240	40.35	0	4.7	7.66	24.7
280	43.01	0	3.8	7.89	24.4
320	45.31	0.06	3.2	8.09	24.0
360	47.45	0.25	2.6	8.26	23.9
400	49.28	0.39	2.1	8.38	23.7

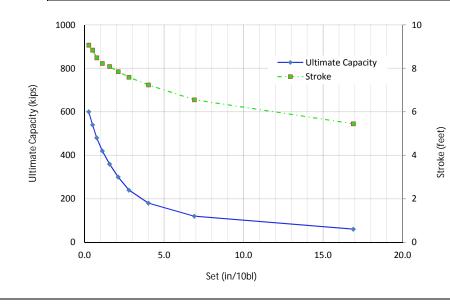


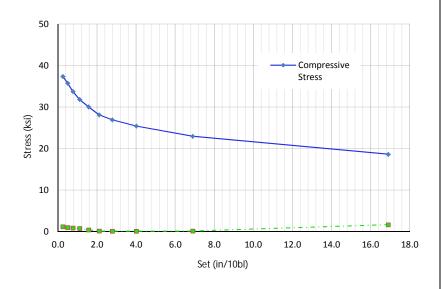
Pile:HP12X53Soil BoringBM-002Hammer:DELMAG D30-32Hammer Efficiency:0.8Toe Quake:0.04 in


Ultimate Capacity	Max. Comp. Stress	Max. Tensile Stress	Set	Stroke	Energy
Kips	ksi	ksi	in/10bl	ft	kips-ft
40	17.17	0.82	48.0	4.27	41.9
80	25.95	0.19	21.8	5.36	36.6
120	31.62	0	13.3	6.07	33.5
160	36.72	0	9.2	6.7	32.0
200	40.99	0	6.8	7.23	31.0
240	44.46	0	5.3	7.57	30.2
280	47.45	0	4.5	7.8	30.0
320	50.12	0.08	3.8	8.03	29.8
360	52.53	0.31	3.2	8.22	29.8
400	54.71	0.42	2.7	8.36	29.9

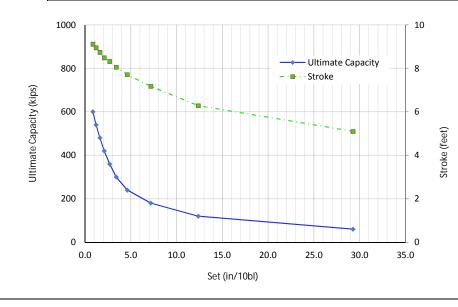


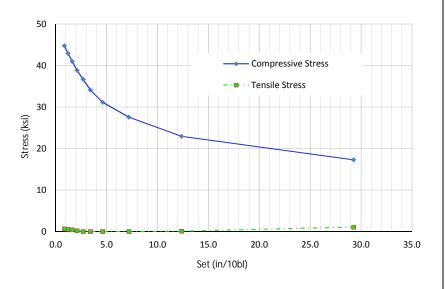
Pile:HP14X73Soil BoringBM-002Hammer:DELMAG D 19-42Hammer Efficiency:0.6


Ultimate Capacity	Max. Comp. Stress	Max. Tensile Stress	Set	Stroke	Energy
Kips	ksi	ksi	in/10bl	ft	kips-ft
60	16.45	1.17	15.8	5.61	16.6
120	20.38	0.1	6.2	6.75	13.9
180	22.37	0.09	3.4	7.34	12.7
240	23.68	0.07	2.3	7.67	12.1
300	25.29	0.13	1.6	7.91	12.0
360	27.05	0.39	1.1	8.04	11.8
420	28.78	0.69	0.7	8.28	11.9
480	30.51	0.71	0.4	8.55	12.1
540	32.06	0.99	0.2	8.81	12.4
600	33.42	1.02	0.0	9	12.6

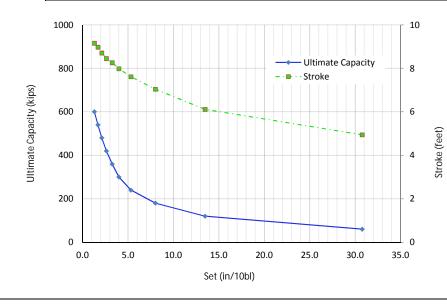


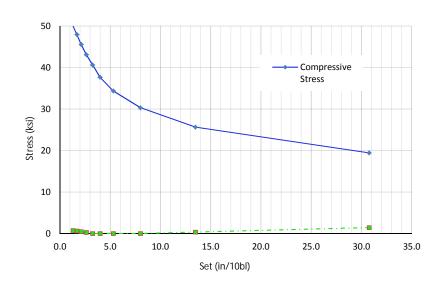
Pile:	HP14X73	Soil Boring	BM-002
Hammer:	DELMAG D 19-42	Hammer Efficiency:	0.8
Toe Quake:	0.04 in		


Ultimate Capacity	Max. Comp. Stress	Max. Tensile Stress	Set	Stroke	Energy
Kips	ksi	ksi	in/10bl	ft	kips-ft
60	18.61	1.65	16.9	5.45	18.7
120	22.93	0.12	6.9	6.55	16.6
180	25.41	0.09	4.0	7.24	15.9
240	26.92	0.08	2.8	7.59	15.4
300	28.11	0.12	2.1	7.85	15.3
360	30.03	0.39	1.6	8.08	15.4
420	31.8	0.73	1.1	8.22	15.3
480	33.74	0.86	0.8	8.49	15.7
540	35.74	0.98	0.5	8.84	16.4
600	37.38	1.16	0.3	9.07	16.7



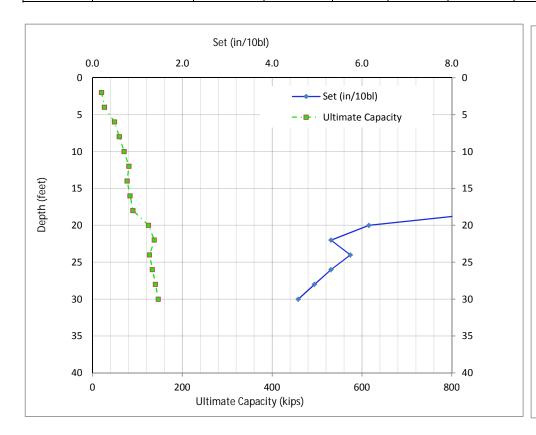
Pile:	HP14X73	Soil Boring	BM-002
Hammer:	DELMAG D 30-32	Hammer Efficiency:	0.6
Toe Ouake:	0.04 in		

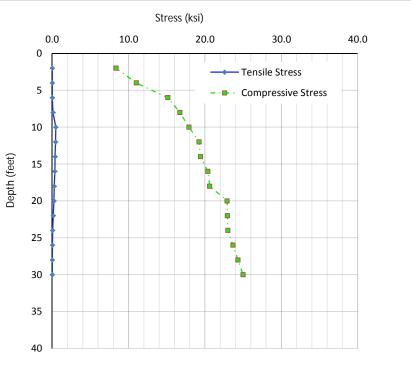

Ultimate Capacity	Max. Comp. Stress	Max. Tensile Stress	Set	Stroke	Energy
Kips	ksi	ksi	in/10bl	ft	kips-ft
60	17.28	1.07	29.3	5.1	35.3
120	22.95	0.09	12.4	6.28	29.1
180	27.58	0	7.2	7.17	26.3
240	31.15	0	4.6	7.71	24.3
300	34.14	0	3.4	8.05	23.4
360	36.71	0	2.7	8.32	23.2
420	38.85	0.21	2.1	8.49	23.0
480	41.02	0.42	1.6	8.74	23.2
540	42.94	0.57	1.2	8.95	23.2
600	44.77	0.68	0.9	9.11	23.4

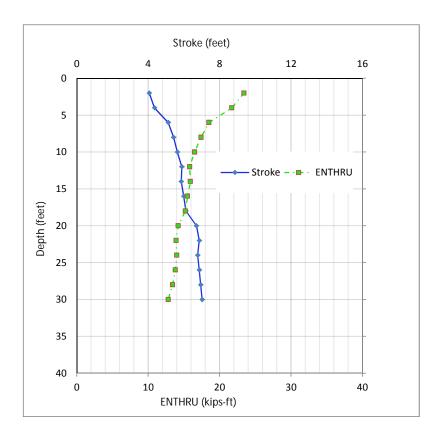


Pile:	HP14X73	Soil Boring	BM-002
Hammer:	DELMAG D 30-32	Hammer Efficiency:	0.8
Toe Ouake:	0.04 in		

Ultimate Capacity	Max. Comp. Stress	Max. Tensile Stress	Set	Stroke	Energy
Kips	ksi	ksi	in/10bl	ft	kips-ft
60	19.43	1.44	30.8	4.94	38.5
120	25.64	0.37	13.5	6.11	33.4
180	30.33	0	8.0	7.04	31.5
240	34.35	0	5.3	7.61	29.9
300	37.69	0	4.0	7.98	29.1
360	40.64	0	3.3	8.26	29.1
420	43.12	0.27	2.6	8.45	29.1
480	45.58	0.46	2.1	8.71	29.4
540	47.98	0.63	1.7	8.97	29.9
600	50.04	0.74	1.3	9.16	30.2

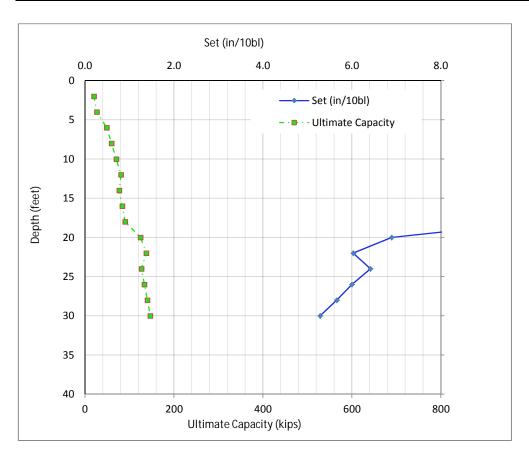


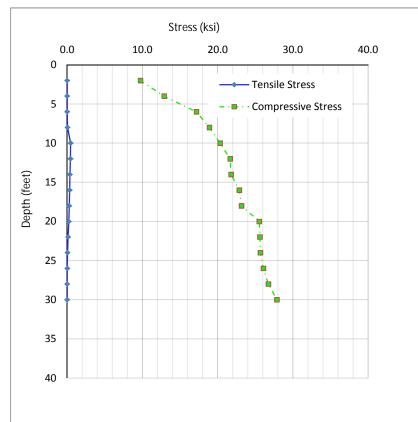

HP12x53 Pile: Hammer: **DELMAG D 19-42**

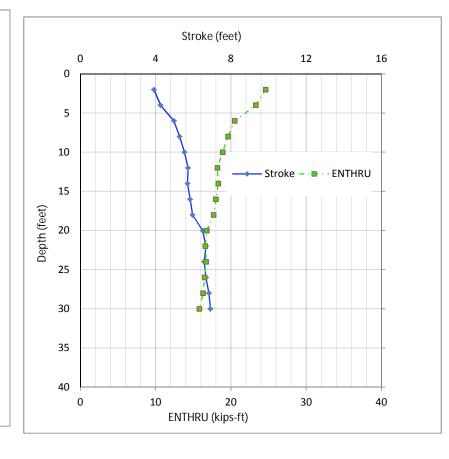

Soil Boring Hammer Efficiency: 0.6

BM-002

Depth	Ultimate Capacity	Friction	End Bearing	Set	Comp. Stress	Tensile Stress	Stroke	ENTHRU
ft	kips	kips	kips	in/10bl	ksi	ksi	ft	kips-ft
2	20.1	6.5	13.6	63.2	8.3	0.0	4.06	23.4
4	26.6	13	13.6	46.2	11.0	0.0	4.35	21.7
6	48.8	21.6	27.1	21.8	15.1	0.0	5.12	18.5
8	59.5	32.3	27.1	16.7	16.7	0.1	5.42	17.4
10	70.2	43	27.1	13.3	17.9	0.5	5.63	16.5
12	80.9	53.7	27.1	11.0	19.2	0.4	5.88	15.8
14	77	63.4	13.6	11.4	19.4	0.4	5.85	15.9
16	83.5	69.9	13.6	10.3	20.4	0.3	5.99	15.5
18	90	76.4	13.6	9.2	20.6	0.3	6.11	15.2
20	124.8	89.3	35.5	6.2	22.9	0.2	6.7	14.2
22	137.7	102.2	35.5	5.3	22.9	0.1	6.86	13.9
24	127	113.4	13.6	5.7	23.0	0.0	6.77	14
26	133.5	120	13.6	5.3	23.7	0.0	6.86	13.8
28	140.1	126.5	13.6	4.9	24.3	0.0	6.94	13.4
30	146.6	133	13.6	4.6	25.0	0.0	7.02	12.8
·								·

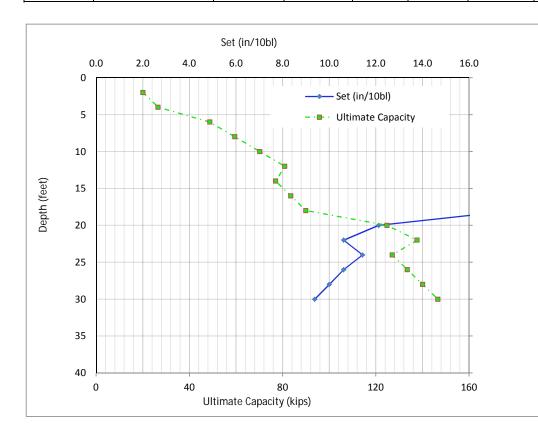


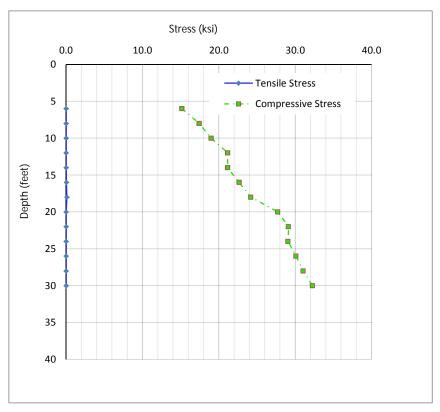


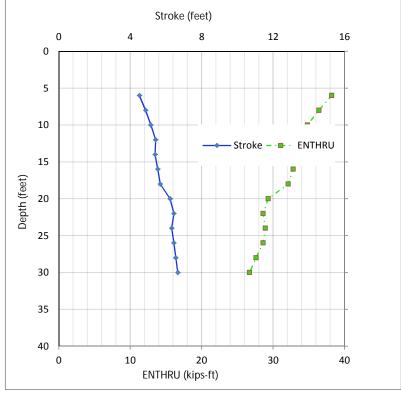


Pile:HP12x53Soil BoringBM-002Hammer:DELMAG D 19-42Hammer Efficiency:0.8

Depth	Ultimate Capacity	Friction	End Bearing	Set	Comp. Stress	Tensile Stress	Stroke	ENTHRU
ft	kips	kips	kips	in/10bl	ksi	ksi	ft	kips-ft
2	20.1	6.5	13.6	66.7	9.7	0.0	3.91	24.6
4	26.6	13	13.6	48.0	12.9	0.0	4.26	23.3
6	48.8	21.6	27.1	23.1	17.2	0.0	4.97	20.5
8	59.5	32.3	27.1	17.9	18.9	0.0	5.27	19.6
10	70.2	43	27.1	14.5	20.3	0.5	5.53	18.9
12	80.9	53.7	27.1	12.0	21.7	0.4	5.72	18.2
14	77	63.4	13.6	12.5	21.8	0.4	5.69	18.3
16	83.5	69.9	13.6	11.2	22.9	0.3	5.83	18
18	90	76.4	13.6	10.2	23.2	0.3	5.96	17.7
20	124.8	89.3	35.5	6.9	25.5	0.2	6.5	16.8
22	137.7	102.2	35.5	6.0	25.6	0.1	6.67	16.6
24	127	113.4	13.6	6.4	25.7	0.0	6.58	16.7
26	133.5	120	13.6	6.0	26.1	0.0	6.67	16.5
28	140.1	126.5	13.6	5.7	26.7	0.0	6.83	16.3
30	146.6	133	13.6	5.3	27.9	0.0	6.91	15.8

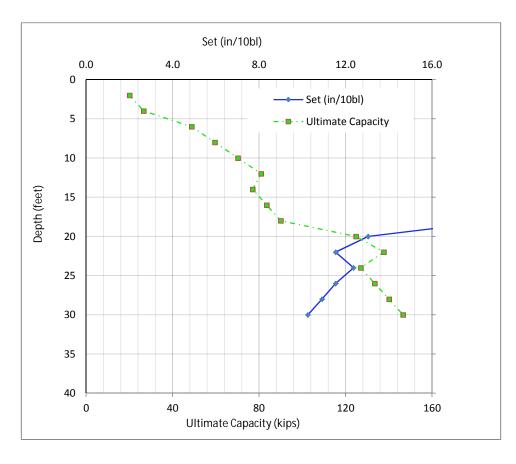


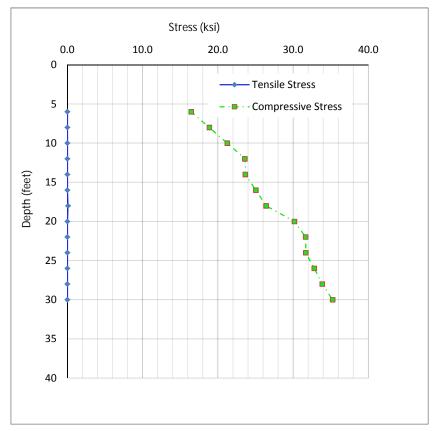




Pile:HP12X53Soil BoringBM-002Hammer:DELMAG D30-32Hammer Efficiency:0.6

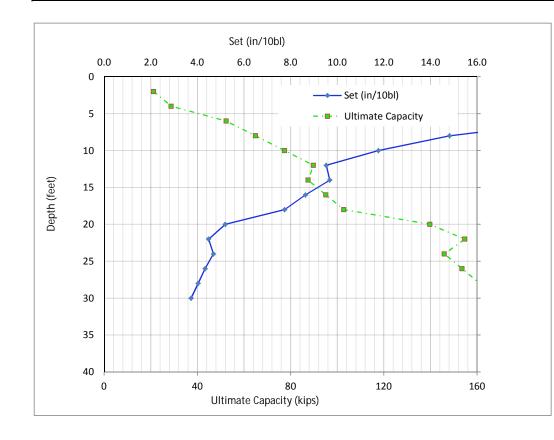
Depth	Ultimate Capacity	Friction	End Bearing	Set	Comp. Stress	Tensile Stress	Stroke	ENTHRU
ft	kips	kips	kips	in/10bl	ksi	ksi	ft	kips-ft
2	20.1	6.5	13.6					
4	26.6	13	13.6					
6	48.8	21.6	27.1	40.0	15.2	0.0	4.51	38.2
8	59.5	32.3	27.1	30.8	17.4	0.0	4.86	36.4
10	70.2	43	27.1	25.0	19.0	0.0	5.15	34.8
12	80.9	53.7	27.1	21.1	21.1	0.0	5.42	33.5
14	77	63.4	13.6	21.8	21.1	0.0	5.39	33.5
16	83.5	69.9	13.6	19.7	22.6	0.0	5.54	32.8
18	90	76.4	13.6	17.9	24.2	0.1	5.68	32.1
20	124.8	89.3	35.5	12.1	27.7	0.0	6.23	29.3
22	137.7	102.2	35.5	10.6	29.1	0.0	6.44	28.6
24	127	113.4	13.6	11.4	29.0	0.0	6.32	28.9
26	133.5	120	13.6	10.6	30.1	0.0	6.44	28.6
28	140.1	126.5	13.6	10.0	31.0	0.0	6.55	27.6
30	146.6	133	13.6	9.4	32.3	0.0	6.66	26.7
					·		·	
		•			·			

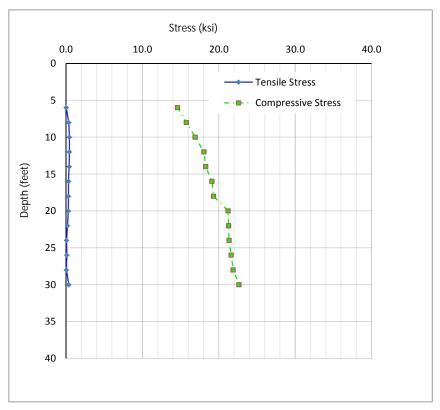


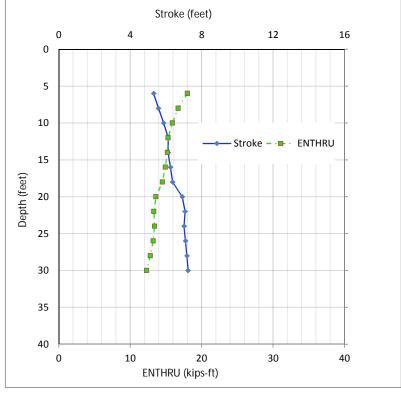


Pile:HP12x53Soil BoringBM-002Hammer:DELMAG D30-32Hammer Efficiency:0.8

Depth	Ultimate Capacity	Friction	End Bearing	Set	Comp. Stress	Tensile Stress	Stroke	ENTHRU
ft	kips	kips	kips	in/10bl	ksi	ksi	ft	kips-ft
2	20.1	6.5	13.6					
4	26.6	13	13.6					
6	48.8	21.6	27.1	41.4	16.5	0.0	4.36	40.8
8	59.5	32.3	27.1	32.4	18.8	0.0	4.66	39
10	70.2	43	27.1	26.7	21.2	0.0	4.99	38
12	80.9	53.7	27.1	22.2	23.6	0.0	5.26	37
14	77	63.4	13.6	23.1	23.6	0.0	5.23	37.1
16	83.5	69.9	13.6	21.1	25.0	0.0	5.38	36.4
18	90	76.4	13.6	19.0	26.4	0.1	5.53	35.9
20	124.8	89.3	35.5	13.0	30.2	0.0	6.06	33.6
22	137.7	102.2	35.5	11.5	31.7	0.0	6.28	32.9
24	127	113.4	13.6	12.4	31.7	0.0	6.16	33.3
26	133.5	120	13.6	11.5	32.8	0.0	6.28	32.9
28	140.1	126.5	13.6	10.9	33.9	0.0	6.39	32
30	146.6	133	13.6	10.3	35.2	0.0	6.51	31.1

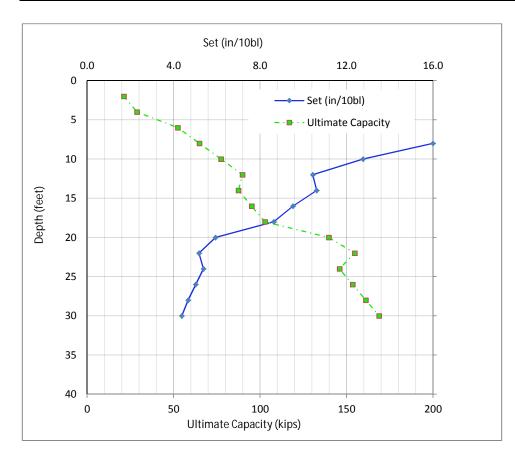


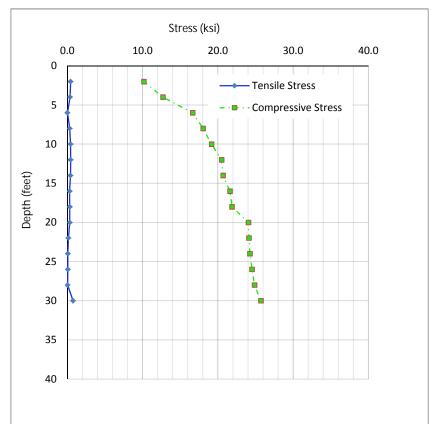

 Pile:
 HP14X73
 Soil Boring
 BM-002

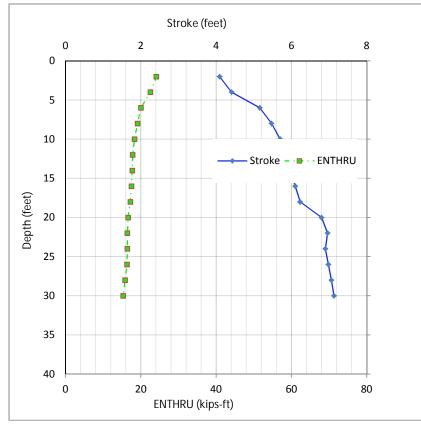

 Hammer:
 DELMAG D 19-42
 Hammer Efficiency:
 0.6

 Toe Quake:
 0.04 in
 0.04 in
 0.04 in

Depth	Ultimate Capacity	Friction	End Bearing	Set	Comp. Stress	Tensile Stress	Stroke	ENTHRU
ft	kips	kips	kips	in/10bl	ksi	ksi	ft	kips-ft
2	21.2	7.6	13.6					
4	28.8	15.2	13.6					
6	52.4	25.3	27.1	20.0	14.6	0.0	5.31	18
8	64.9	37.7	27.1	14.8	15.7	0.3	5.58	16.7
10	77.4	50.2	27.1	11.8	16.9	0.4	5.87	15.9
12	89.8	62.7	27.1	9.5	18.1	0.4	6.12	15.3
14	87.5	74	13.6	9.7	18.3	0.4	6.12	15.2
16	95.1	81.6	13.6	8.6	19.1	0.3	6.25	14.9
18	102.8	89.2	13.6	7.7	19.3	0.3	6.37	14.5
20	139.7	104.2	35.5	5.2	21.2	0.3	6.91	13.6
22	154.7	119.2	35.5	4.5	21.3	0.2	7.07	13.3
24	145.9	132.3	13.6	4.7	21.3	0.0	7.01	13.4
26	153.5	140	13.6	4.3	21.6	0.1	7.09	13.2
28	161.1	147.6	13.6	4.0	21.9	0.0	7.17	12.8
30	168.8	155.2	13.6	3.7	22.6	0.3	7.24	12.3

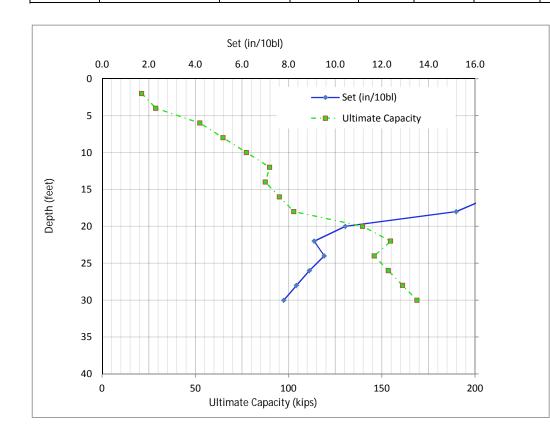


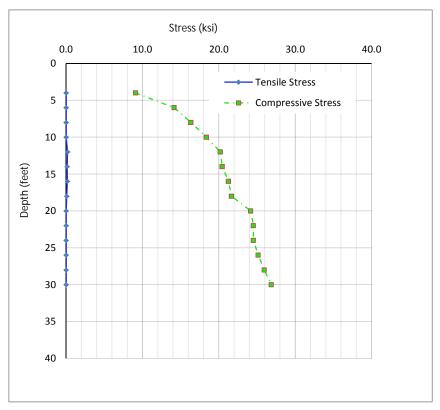


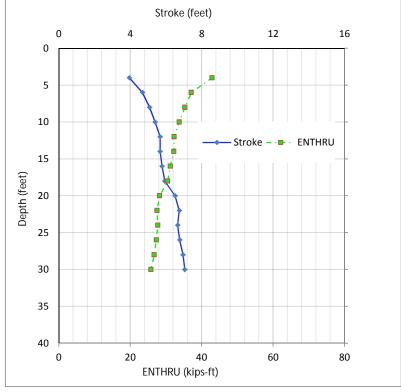


Pile:HP14X73Soil BoringBM-002Hammer:DELMAG D 19-42Hammer Efficiency:0.8

Depth	Ultimate Capacity	Friction	End Bearing	Set	Comp. Stress	Tensile Stress	Stroke	ENTHRU
ft	kips	kips	kips	in/10bl	ksi	ksi	ft	kips-ft
2	21.2	7.6	13.6	63.2	10.2	0.4	4.09	24.1
4	28.8	15.2	13.6	42.9	12.7	0.3	4.41	22.5
6	52.4	25.3	27.1	21.4	16.7	0.0	5.16	20
8	64.9	37.7	27.1	16.0	18.0	0.3	5.47	19.1
10	77.4	50.2	27.1	12.8	19.1	0.4	5.7	18.3
12	89.8	62.7	27.1	10.4	20.5	0.4	5.96	17.8
14	87.5	74	13.6	10.6	20.7	0.4	5.96	17.7
16	95.1	81.6	13.6	9.5	21.6	0.3	6.1	17.5
18	102.8	89.2	13.6	8.6	21.9	0.3	6.23	17.2
20	139.7	104.2	35.5	5.9	24.1	0.3	6.8	16.6
22	154.7	119.2	35.5	5.2	24.1	0.1	6.96	16.4
24	145.9	132.3	13.6	5.4	24.2	0.1	6.9	16.4
26	153.5	140	13.6	5.0	24.5	0.1	6.98	16.3
28	161.1	147.6	13.6	4.7	24.9	0.0	7.06	15.8
30	168.8	155.2	13.6	4.4	25.7	0.8	7.13	15.3

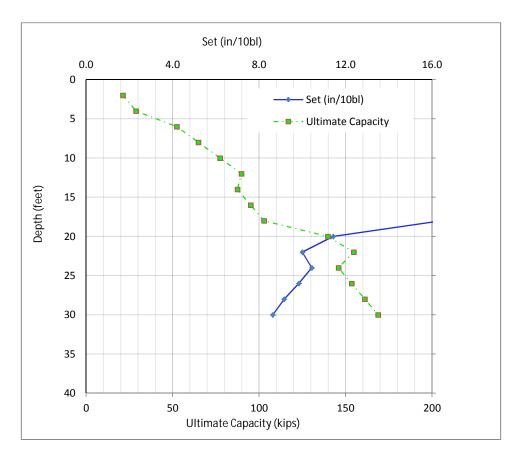


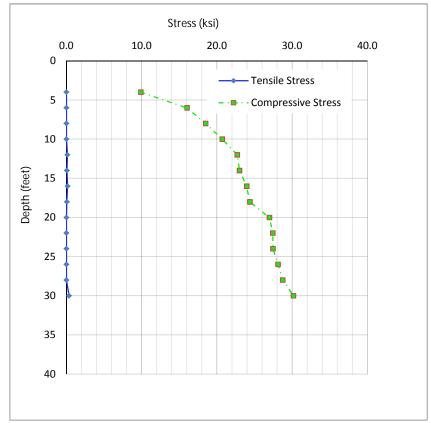


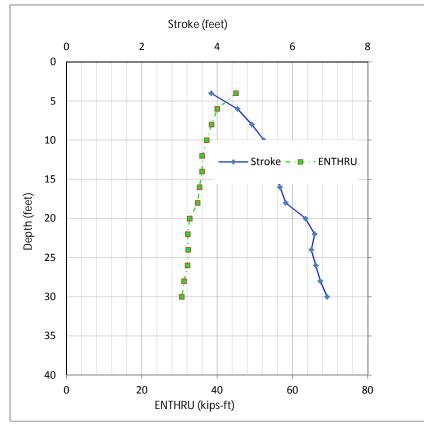


Pile:HP14X73Soil BoringBM-002Hammer:DELMAG D 30-32Hammer Efficiency:0.6Toe Quake:0.04 in

Comp. Tensile **End Bearing** ENTHRU Depth **Ultimate Capacity** Friction Stroke Stress Stress ft kips kips kips in/10bl ksi ksi ft kips-ft 21.2 7.6 13.6 28.8 15.2 13.6 75.0 9.1 0.0 3.95 42.9 52.4 37.1 25.3 27.1 37.5 14.1 0.0 4.68 37.7 64.9 27.1 27.9 16.3 0.0 5.08 35.3 77.4 50.2 27.1 22.6 18.4 0.0 5.39 33.7 12 89.8 62.7 27.1 18.5 20.2 0.2 5.67 32.3 14 87.5 74 13.6 18.8 20.4 0.1 5.67 32.2 16 95.1 81.6 13.6 16.7 21.3 0.2 5.78 31.2 102.8 89.2 13.6 0.1 30.5 18 15.2 21.7 5.93 20 139.7 104.2 35.5 10.4 24.2 0.0 6.51 28.2 35.5 27.5 22 119.2 0.0 154.7 9.1 24.5 6.74 24 145.9 132.3 13.6 9.5 24.5 0.0 6.65 27.7 140 13.6 27.3 153.5 8.9 25.2 0.0 6.77 28 161.1 147.6 13.6 8.3 26.0 0.0 6.95 26.7 168.8 155.2 13.6 7.8 26.9 0.0 7.05 25.8

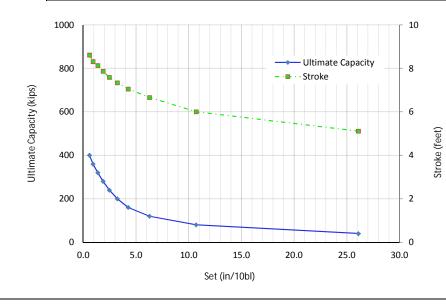


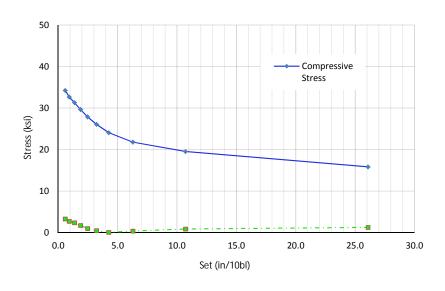




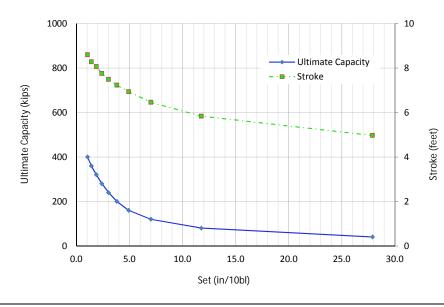
Pile:HP14X73Soil BoringBM-002Hammer:DELMAG D 30-32Hammer Efficiency:0.8

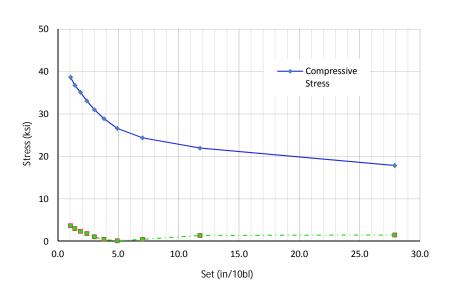
Depth	Ultimate Capacity	Friction	End Bearing	Set	Comp. Stress	Tensile Stress	Stroke	ENTHRU
ft	kips	kips	kips	in/10bl	ksi	ksi	ft	kips-ft
2	21.2	7.6	13.6					
4	28.8	15.2	13.6	75.0	9.9	0.0	3.84	45
6	52.4	25.3	27.1	38.7	16.0	0.0	4.54	40
8	64.9	37.7	27.1	30.0	18.5	0.0	4.92	38.5
10	77.4	50.2	27.1	24.0	20.7	0.0	5.24	37.2
12	89.8	62.7	27.1	19.7	22.7	0.1	5.51	36
14	87.5	74	13.6	20.0	23.0	0.1	5.52	36
16	95.1	81.6	13.6	17.9	23.9	0.1	5.67	35.3
18	102.8	89.2	13.6	16.4	24.4	0.1	5.82	34.8
20	139.7	104.2	35.5	11.4	27.0	0.0	6.35	32.7
22	154.7	119.2	35.5	10.0	27.4	0.0	6.59	32.2
24	145.9	132.3	13.6	10.4	27.4	0.0	6.5	32.3
26	153.5	140	13.6	9.8	28.1	0.0	6.62	32.1
28	161.1	147.6	13.6	9.2	28.7	0.0	6.74	31.2
30	168.8	155.2	13.6	8.6	30.2	0.3	6.92	30.6



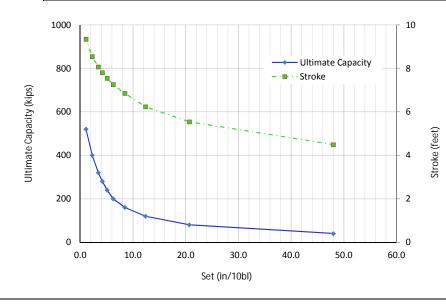


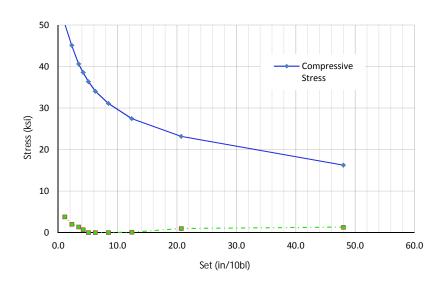
Pile:HP12x53Soil BoringBM-004Hammer:DELMAG D 19-42Hammer Efficiency:0.6


Ultimate Capacity	Max. Comp. Stress	Max. Tensile Stress	Set	Stroke	Energy
Kips	ksi	ksi	in/10bl	ft	kips-ft
40	15.8	1.23	26.1	5.11	18.8
80	19.53	0.86	10.7	6	15.5
120	21.8	0.37	6.3	6.66	14.3
160	24.08	0.05	4.3	7.05	13.5
200	26.08	0.47	3.2	7.33	13.3
240	27.87	0.98	2.5	7.58	13.5
280	29.64	1.72	1.9	7.86	13.8
320	31.3	2.36	1.4	8.13	14.0
360	32.68	2.73	0.9	8.31	14.2
400	34.26	3.28	0.6	8.61	14.7

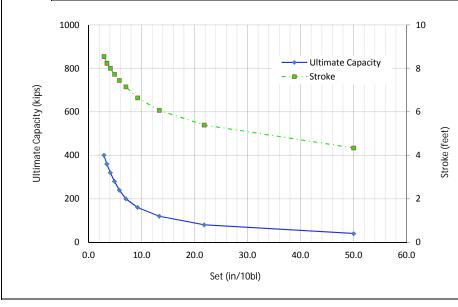


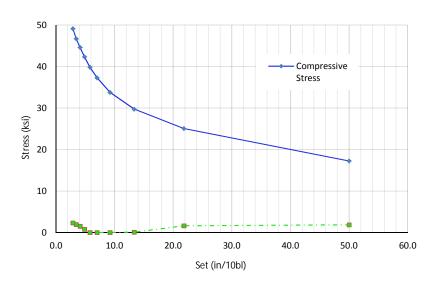
Pile:HP12x53Soil BoringBM-004Hammer:DELMAG D 19-42Hammer Efficiency:0.8


Ultimate Capacity	Max. Comp. Stress	Max. Tensile Stress	Set	Stroke	Energy
Kips	ksi	ksi	in/10bl	ft	kips-ft
40	17.84	1.47	27.9	4.97	20.6
80	21.95	1.36	11.8	5.84	17.9
120	24.37	0.45	7.0	6.46	16.8
160	26.6	0.12	4.9	6.94	16.6
200	28.9	0.43	3.8	7.23	16.4
240	31.01	1.04	3.0	7.49	16.6
280	33.09	1.8	2.4	7.76	17.1
320	35.1	2.33	1.9	8.07	17.6
360	36.75	2.98	1.4	8.28	18.0
400	38.65	3.67	1.0	8.6	18.7

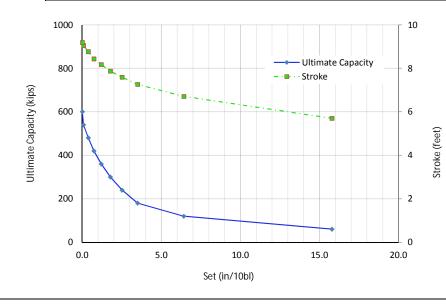


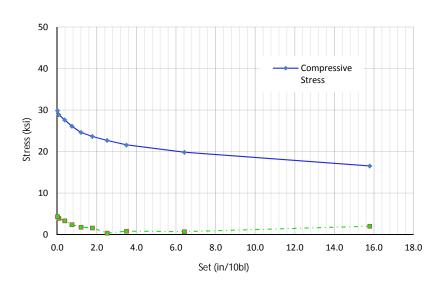
Pile:HP12X53Soil BoringBM-004Hammer:DELMAG D30-32Hammer Efficiency:0.6


Ultimate Capacity	Max. Comp. Stress	Max. Tensile Stress	Set	Stroke	Energy
Kips	ksi	ksi	in/10bl	ft	kips-ft
40	16.23	1.3	48.0	4.49	39.0
80	23.17	0.97	20.7	5.54	32.8
120	27.44	0.1	12.4	6.23	29.5
160	31.13	0	8.5	6.85	27.8
200	34.05	0	6.3	7.25	26.5
240	36.38	0	5.1	7.54	26.1
280	38.59	0.7	4.2	7.8	26.3
320	40.64	1.38	3.4	8.06	26.5
400	45.1	2.03	2.3	8.54	27.4
520	50.41	3.78	1.1	9.34	29.3

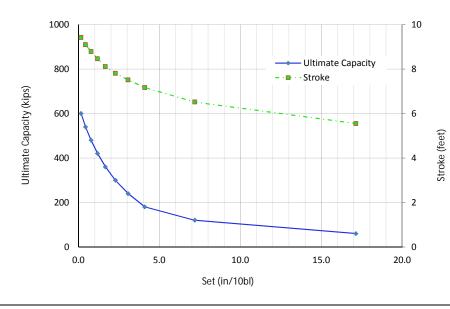


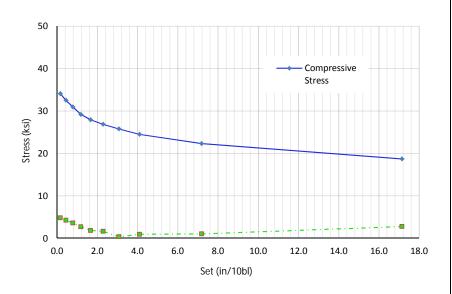
Pile: HP12X53 Soil Boring BM-004
Hammer: DELMAG D30-32 Hammer Efficiency: 0.8
Toe Quake: 0.04 in


Ultimate Capacity	Max. Comp. Stress	Max. Tensile Stress	Set	Stroke	Energy
Kips	ksi	ksi	in/10bl	ft	kips-ft
40	17.23	1.86	50.0	4.34	41.6
80	25.06	1.64	21.8	5.39	36.5
120	29.75	0.08	13.3	6.07	33.7
160	33.77	0	9.2	6.64	32.2
200	37.27	0	7.0	7.15	31.7
240	39.84	0	5.8	7.44	31.5
280	42.34	0.8	4.9	7.72	32.0
320	44.6	1.5	4.1	8	32.6
360	46.69	1.93	3.4	8.24	33.1
400	49.14	2.33	2.9	8.55	34.0

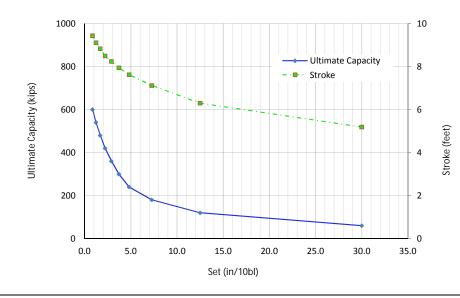


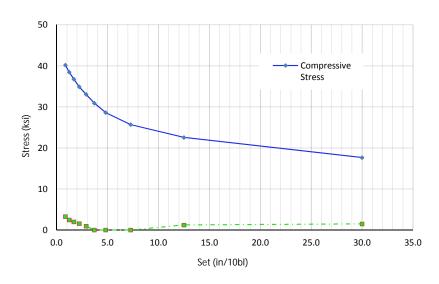
Pile:HP14X73Soil BoringBM-004Hammer:DELMAG D 19-42Hammer Efficiency:0.6


Ultimate Capacity	Max. Comp. Stress	Max. Tensile Stress	Set	Stroke	Energy
Kips	ksi	ksi	in/10bl	ft	kips-ft
60	16.51	2	15.8	5.7	16.4
120	19.82	0.7	6.4	6.71	14.0
180	21.58	0.82	3.5	7.26	13.0
240	22.69	0.36	2.5	7.59	12.8
300	23.65	1.61	1.8	7.87	13.0
360	24.62	1.77	1.2	8.17	13.2
420	26.11	2.42	0.7	8.44	13.5
480	27.6	3.31	0.4	8.77	14.0
540	28.88	3.9	0.1	9.05	14.4
600	29.9	4.34	0.0	9.19	14.5

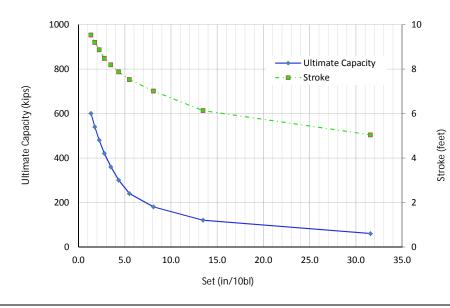


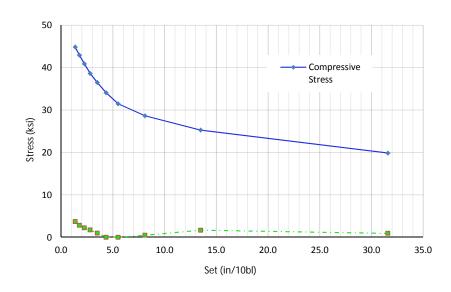
Pile:HP14X73Soil BoringBM-004Hammer:DELMAG D 19-42Hammer Efficiency:0.8


Ultimate Capacity	Max. Comp. Stress	Max. Tensile Stress	Set	Stroke	Energy
Kips	ksi	ksi	in/10bl	ft	kips-ft
60	18.7	2.77	17.1	5.55	18.6
120	22.31	1.04	7.2	6.52	16.6
180	24.5	0.94	4.1	7.17	16.1
240	25.78	0.37	3.1	7.51	16.1
300	26.87	1.64	2.3	7.81	16.4
360	27.94	1.85	1.7	8.11	16.8
420	29.2	2.71	1.2	8.46	17.4
480	30.96	3.6	0.8	8.79	18.0
540	32.54	4.27	0.4	9.1	18.6
600	34.08	4.81	0.2	9.42	19.2

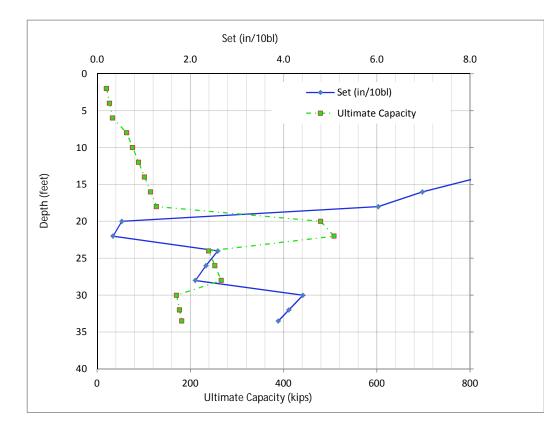


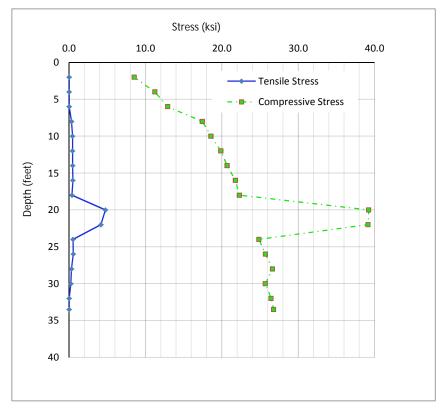
Pile:HP14X73Soil BoringBM-004Hammer:DELMAG D 30-32Hammer Efficiency:0.6Toe Quake:0.04 in

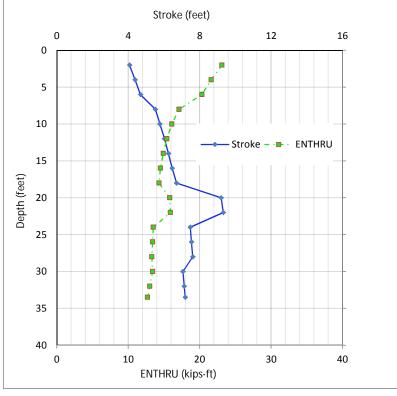

Ultimate Capacity	Max. Comp. Stress	Max. Tensile Stress	Set	Stroke	Energy
Kips	ksi	ksi	in/10bl	ft	kips-ft
60	17.64	1.49	30.0	5.19	35.0
120	22.55	1.23	12.5	6.3	29.1
180	25.68	0	7.3	7.12	26.6
240	28.61	0	4.8	7.62	25.0
300	30.9	0	3.7	7.94	24.8
360	33.05	0.94	2.9	8.24	25.3
420	34.87	1.57	2.2	8.49	25.6
480	36.77	1.99	1.7	8.83	26.3
540	38.48	2.44	1.2	9.11	27.0
600	40.17	3.27	0.9	9.44	27.8



Pile:HP14X73Soil BoringBM-004Hammer:DELMAG D 30-32Hammer Efficiency:0.8

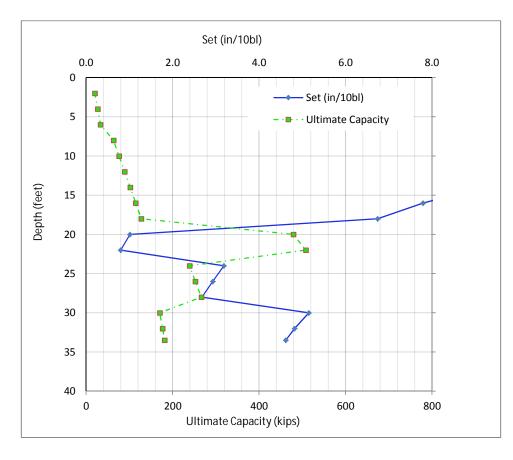

Ultimate Capacity	Max. Comp. Stress	Max. Tensile Stress	Set	Stroke	Energy
Kips	ksi	ksi	in/10bl	ft	kips-ft
60	19.84	0.92	31.6	5.04	38.3
120	25.25	1.66	13.5	6.13	33.4
180	28.63	0.47	8.1	7.01	31.8
240	31.46	0	5.5	7.53	30.5
300	34.06	0	4.3	7.87	30.6
360	36.46	0.98	3.5	8.19	31.3
420	38.62	1.72	2.8	8.48	32.0
480	40.89	2.23	2.2	8.87	33.2
540	42.91	2.81	1.8	9.2	34.3
600	44.85	3.69	1.4	9.53	35.5

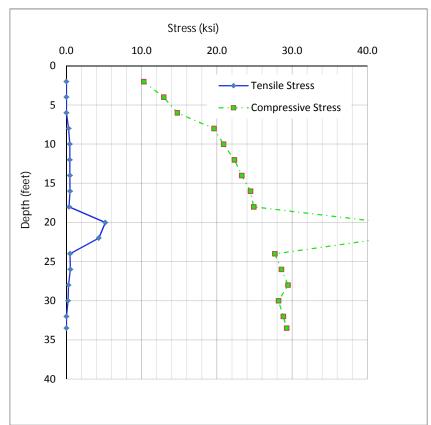


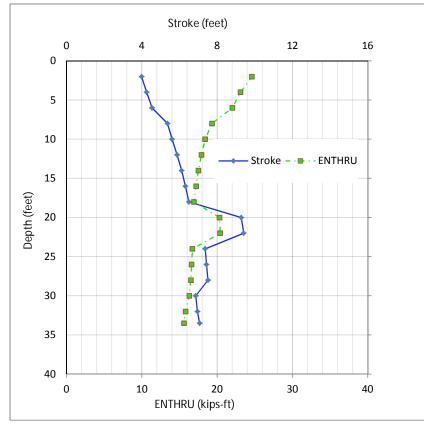


Pile:HP12x53Soil BoringBM-004Hammer:DELMAG D 19-42Hammer Efficiency:0.6

Depth	Ultimate Capacity	Friction	End Bearing	Set	Comp. Stress	Tensile Stress	Stroke	ENTHRU
ft	kips	kips	kips	in/10bl	ksi	ksi	ft	kips-ft
2	20.1	6.5	13.6	63.2	8.5	0.0	4.07	23.1
4	26.6	13	13.6	46.2	11.2	0.0	4.38	21.6
6	33.1	19.6	13.6	34.3	12.9	0.0	4.68	20.3
8	63.2	27.7	35.5	15.8	17.4	0.3	5.52	17.1
10	76	40.5	35.5	12.2	18.6	0.4	5.77	16.1
12	88.9	53.4	35.5	9.9	19.9	0.4	6.03	15.4
14	101.8	66.3	35.5	8.2	20.7	0.5	6.25	14.9
16	114.6	79.1	35.5	7.0	21.8	0.5	6.46	14.5
18	127.5	92	35.5	6.0	22.3	0.4	6.7	14.3
20	479.4	104.9	374.5	0.5	39.2	4.7	9.2	15.8
22	508.1	119.1	389.1	0.3	39.1	4.2	9.32	15.9
24	239.3	132.6	106.6	2.6	24.9	0.5	7.47	13.5
26	252.6	140.8	111.8	2.3	25.7	0.5	7.54	13.4
28	266.4	149.5	116.9	2.1	26.6	0.3	7.61	13.3
30	170.2	156.6	13.6	4.4	25.7	0.2	7.06	13.4
32	176.7	163.1	13.6	4.1	26.4	0.0	7.13	13
33.5	181.6	168	13.6	3.9	26.8	0.0	7.19	12.7

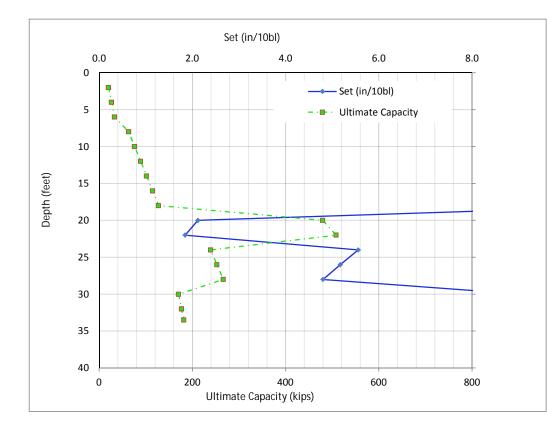


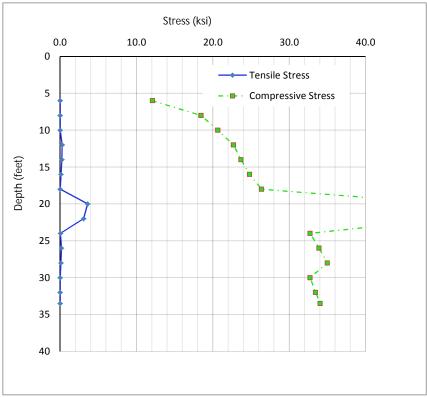


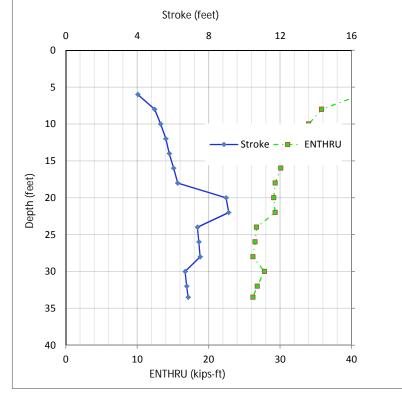


Pile:HP12x53Soil BoringBM-004Hammer:DELMAG D 19-42Hammer Efficiency:0.8

Depth	Ultimate Capacity	Friction	End Bearing	Set	Comp. Stress	Tensile Stress	Stroke	ENTHRU
ft	kips	kips	kips	in/10bl	ksi	ksi	ft	kips-ft
2	20.1	6.5	13.6	66.7	10.3	0.0	3.98	24.6
4	26.6	13	13.6	48.0	12.9	0.0	4.25	23.1
6	33.1	19.6	13.6	36.4	14.7	0.0	4.54	22
8	63.2	27.7	35.5	17.1	19.6	0.3	5.36	19.3
10	76	40.5	35.5	13.3	20.9	0.4	5.6	18.4
12	88.9	53.4	35.5	10.9	22.3	0.4	5.87	17.9
14	101.8	66.3	35.5	9.2	23.3	0.5	6.11	17.5
16	114.6	79.1	35.5	7.8	24.5	0.5	6.31	17.2
18	127.5	92	35.5	6.7	24.9	0.4	6.5	16.9
20	479.4	104.9	374.5	1.0	42.4	5.2	9.28	20.3
22	508.1	119.1	389.1	0.8	42.5	4.3	9.41	20.4
24	239.3	132.6	106.6	3.2	27.7	0.5	7.36	16.7
26	252.6	140.8	111.8	2.9	28.6	0.5	7.43	16.6
28	266.4	149.5	116.9	2.7	29.4	0.3	7.51	16.5
30	170.2	156.6	13.6	5.2	28.2	0.2	6.86	16.3
32	176.7	163.1	13.6	4.8	28.8	0.0	6.95	15.8
33.5	181.6	168	13.6	4.6	29.3	0.0	7.07	15.6

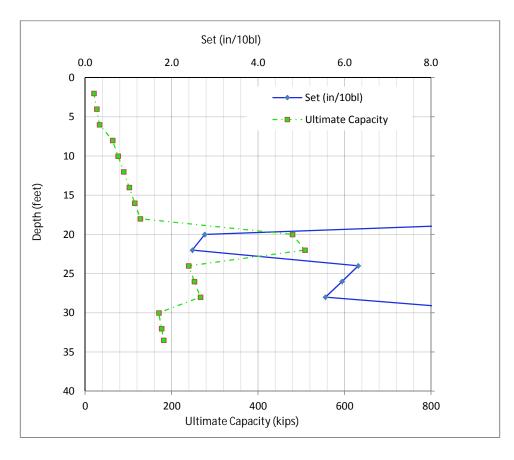


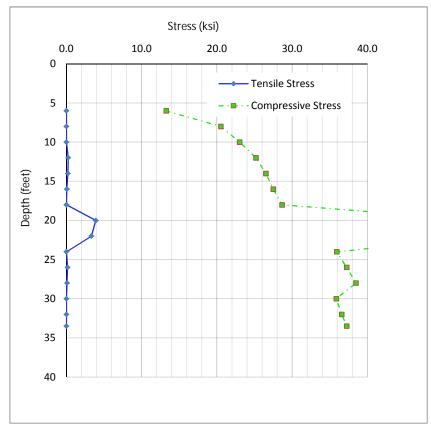


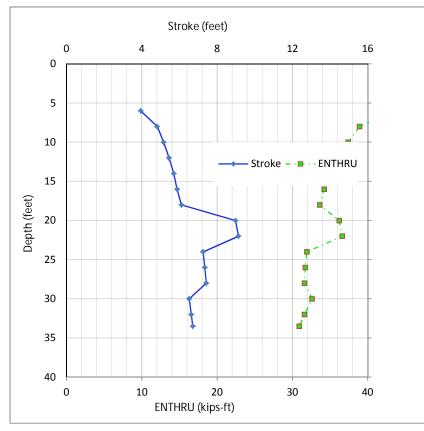


Pile:HP12X53Soil BoringBM-004Hammer:DELMAG D30-32Hammer Efficiency:0.6

Depth	Ultimate Capacity	Friction	End Bearing	Set	Comp. Stress	Tensile Stress	Stroke	ENTHRU
ft	kips	kips	kips	in/10bl	ksi	ksi	ft	kips-ft
2	20.1	6.5	13.6					
4	26.6	13	13.6					
6	33.1	19.6	13.6	63.2	12.1	0.0	4.03	41.4
8	63.2	27.7	35.5	29.3	18.4	0.0	4.97	35.8
10	76	40.5	35.5	23.5	20.7	0.0	5.31	34
12	88.9	53.4	35.5	19.0	22.7	0.3	5.6	32.6
14	101.8	66.3	35.5	16.0	23.7	0.2	5.79	31.1
16	114.6	79.1	35.5	13.6	24.8	0.1	6.04	30.1
18	127.5	92	35.5	11.8	26.4	0.0	6.26	29.3
20	479.4	104.9	374.5	2.1	50.7	3.6	8.97	29.1
22	508.1	119.1	389.1	1.8	51.0	3.1	9.12	29.3
24	239.3	132.6	106.6	5.6	32.7	0.0	7.37	26.7
26	252.6	140.8	111.8	5.2	33.9	0.2	7.45	26.5
28	266.4	149.5	116.9	4.8	35.0	0.1	7.52	26.2
30	170.2	156.6	13.6	9.1	32.7	0.0	6.68	27.8
32	176.7	163.1	13.6	8.6	33.4	0.0	6.77	26.8
33.5	181.6	168	13.6	8.2	34.1	0.0	6.85	26.2

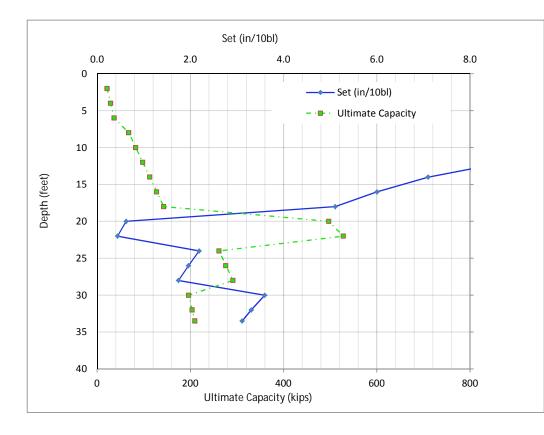


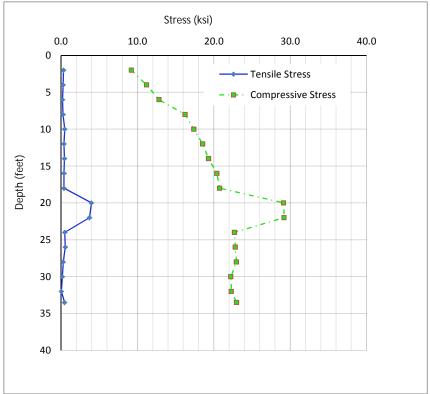


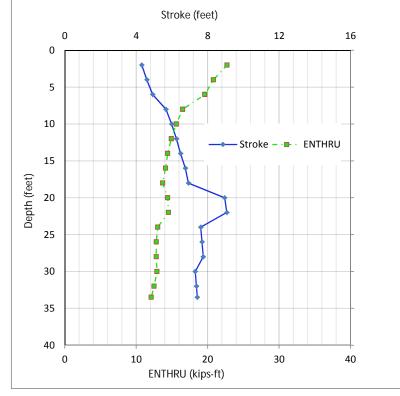


Pile:HP12x53Soil BoringBM-004Hammer:DELMAG D30-32Hammer Efficiency:0.8

Depth	Ultimate Capacity	Friction	End Bearing	Set	Comp. Stress	Tensile Stress	Stroke	ENTHRU
ft	kips	kips	kips	in/10bl	ksi	ksi	ft	kips-ft
2	20.1	6.5	13.6					
4	26.6	13	13.6					
6	33.1	19.6	13.6	63.2	13.3	0.0	3.94	43.9
8	63.2	27.7	35.5	30.8	20.5	0.0	4.81	38.9
10	76	40.5	35.5	24.5	23.0	0.0	5.15	37.4
12	88.9	53.4	35.5	20.3	25.2	0.2	5.44	36.3
14	101.8	66.3	35.5	17.1	26.5	0.2	5.69	35.4
16	114.6	79.1	35.5	14.6	27.5	0.1	5.87	34.2
18	127.5	92	35.5	12.8	28.7	0.0	6.1	33.6
20	479.4	104.9	374.5	2.8	55.3	3.9	8.97	36.2
22	508.1	119.1	389.1	2.5	55.7	3.3	9.13	36.6
24	239.3	132.6	106.6	6.3	35.9	0.0	7.25	31.9
26	252.6	140.8	111.8	5.9	37.2	0.1	7.34	31.7
28	266.4	149.5	116.9	5.6	38.5	0.1	7.42	31.6
30	170.2	156.6	13.6	10.1	35.9	0.0	6.51	32.6
32	176.7	163.1	13.6	9.5	36.6	0.0	6.62	31.6
33.5	181.6	168	13.6	9.1	37.2	0.0	6.7	30.9

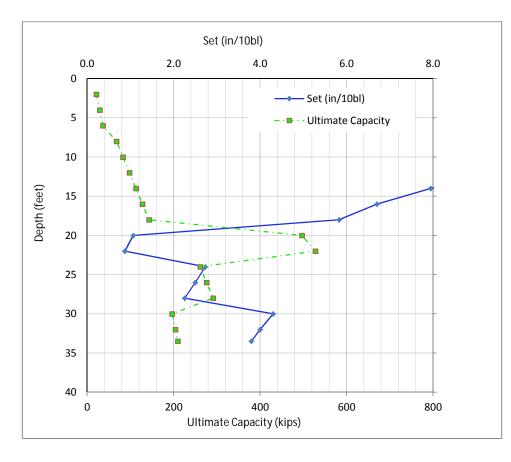


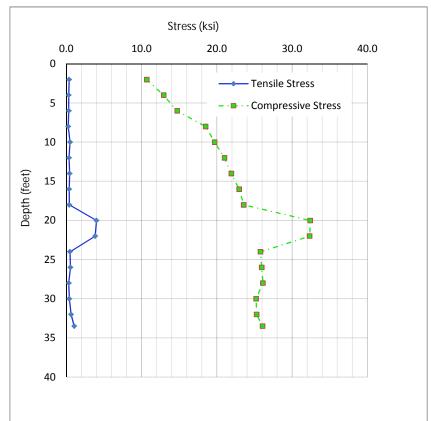


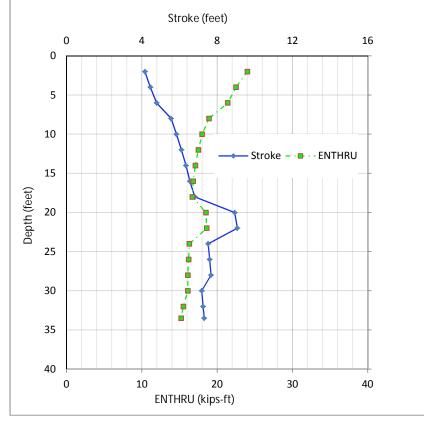


Pile:HP14X73Soil BoringBM-004Hammer:DELMAG D 19-42Hammer Efficiency:0.6

Depth	Ultimate Capacity	Friction	End Bearing	Set	Comp. Stress	Tensile Stress	Stroke	ENTHRU
ft	kips	kips	kips	in/10bl	ksi	ksi	ft	kips-ft
2	21.2	7.6	13.6	60.0	9.2	0.3	4.31	22.7
4	28.8	15.2	13.6	41.4	11.2	0.2	4.59	20.8
6	36.4	22.8	13.6	30.8	12.8	0.2	4.92	19.6
8	67.8	32.3	35.5	14.5	16.2	0.2	5.66	16.5
10	82.8	47.3	35.5	11.0	17.4	0.5	5.98	15.6
12	97.8	62.3	35.5	8.8	18.5	0.4	6.25	14.9
14	112.8	77.3	35.5	7.1	19.3	0.4	6.48	14.4
16	127.8	92.3	35.5	6.0	20.4	0.4	6.75	14.1
18	142.8	107.3	35.5	5.1	20.7	0.4	6.92	13.7
20	496.9	122.4	374.5	0.6	29.1	4.0	8.95	14.4
22	528	138.9	389.1	0.4	29.2	3.7	9.07	14.5
24	261.4	154.7	106.6	2.2	22.7	0.5	7.61	13
26	276.1	164.3	111.8	2.0	22.8	0.5	7.68	12.8
28	291.3	174.4	116.9	1.7	23.0	0.3	7.75	12.8
30	196.3	182.7	13.6	3.6	22.2	0.1	7.3	12.9
32	203.9	190.3	13.6	3.3	22.3	0.0	7.37	12.5
33.5	209.6	196	13.6	3.1	23.0	0.4	7.42	12.1

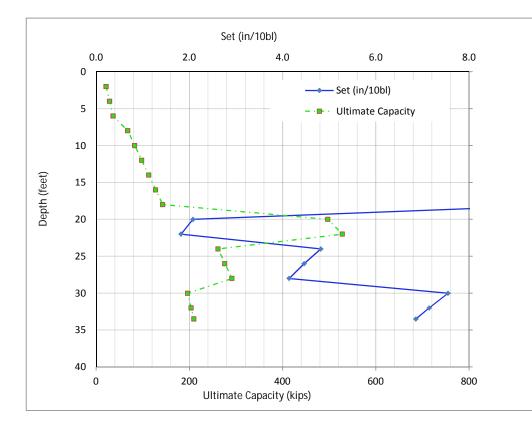


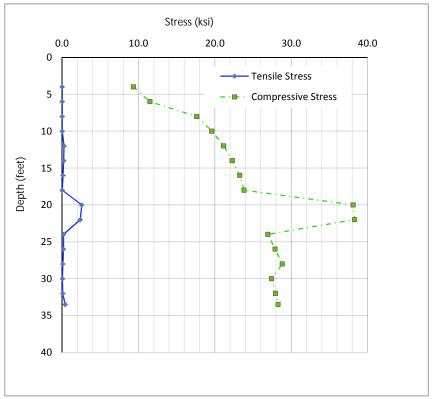


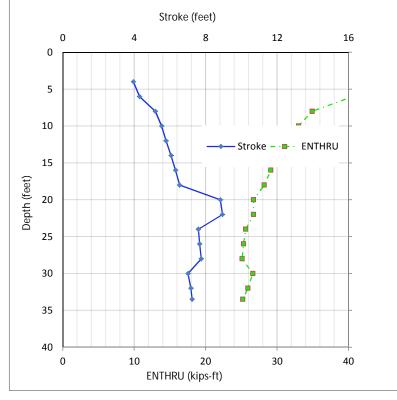


Pile:HP14X73Soil BoringBM-004Hammer:DELMAG D 19-42Hammer Efficiency:0.8

Depth	Ultimate Capacity	Friction	End Bearing	Set	Comp. Stress	Tensile Stress	Stroke	ENTHRU
ft	kips	kips	kips	in/10bl	ksi	ksi	ft	kips-ft
2	21.2	7.6	13.6	63.2	10.7	0.4	4.16	24
4	28.8	15.2	13.6	44.4	12.9	0.3	4.45	22.5
6	36.4	22.8	13.6	32.4	14.7	0.3	4.78	21.4
8	67.8	32.3	35.5	15.6	18.5	0.2	5.55	18.9
10	82.8	47.3	35.5	12.0	19.7	0.5	5.83	18
12	97.8	62.3	35.5	9.7	21.0	0.3	6.1	17.5
14	112.8	77.3	35.5	7.9	21.9	0.4	6.34	17.1
16	127.8	92.3	35.5	6.7	23.0	0.4	6.55	16.8
18	142.8	107.3	35.5	5.8	23.6	0.4	6.81	16.7
20	496.9	122.4	374.5	1.1	32.4	4.0	8.93	18.5
22	528	138.9	389.1	0.9	32.3	3.8	9.07	18.6
24	261.4	154.7	106.6	2.7	25.8	0.5	7.52	16.3
26	276.1	164.3	111.8	2.5	26.0	0.5	7.6	16.2
28	291.3	174.4	116.9	2.3	26.1	0.3	7.67	16.1
30	196.3	182.7	13.6	4.3	25.2	0.4	7.18	16.1
32	203.9	190.3	13.6	4.0	25.3	0.6	7.25	15.5
33.5	209.6	196	13.6	3.8	26.1	1.0	7.31	15.2

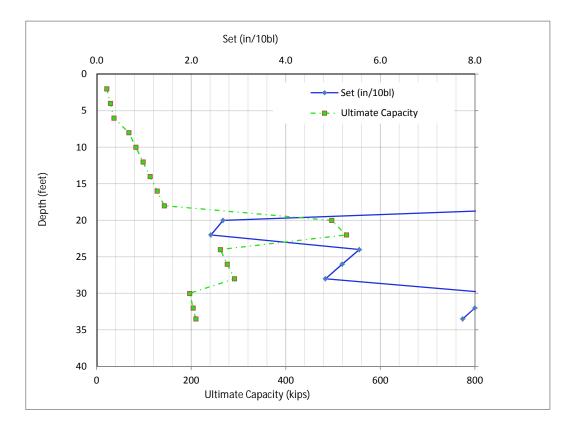


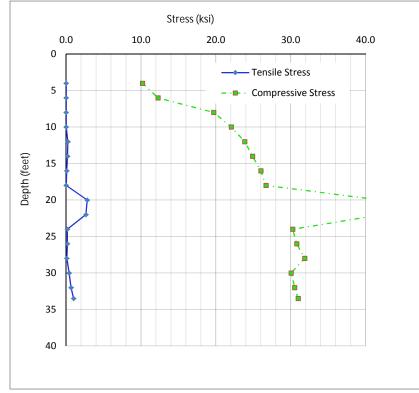


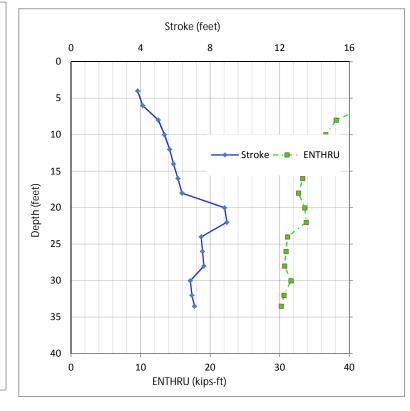


Pile:HP14X73Soil BoringBM-004Hammer:DELMAG D 30-32Hammer Efficiency:0.6

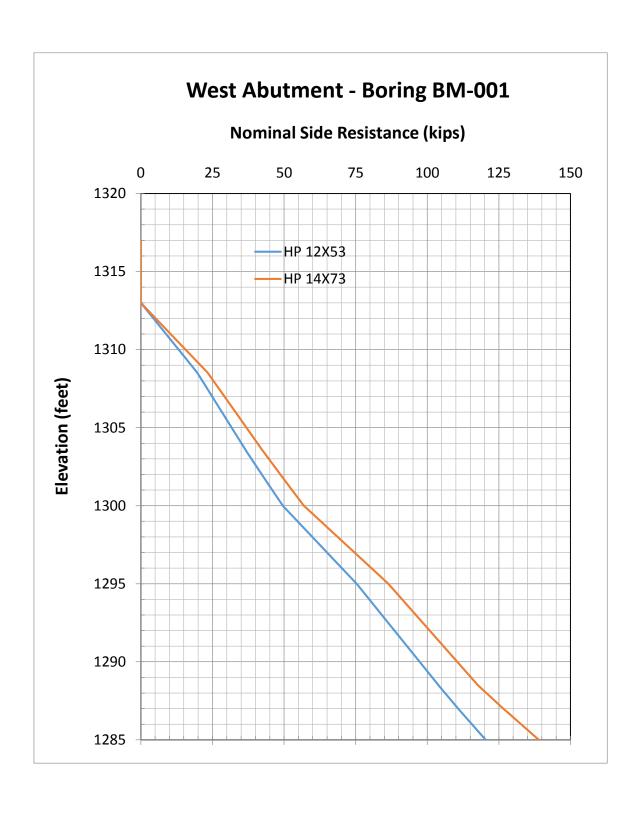
Depth	Ultimate Capacity	Friction	End Bearing	Set	Comp. Stress	Tensile Stress	Stroke	ENTHRU
ft	kips	kips	kips	in/10bl	ksi	ksi	ft	kips-ft
2	21.2	7.6	13.6					
4	28.8	15.2	13.6	75.0	9.3	0.0	3.95	42.5
6	36.4	22.8	13.6	57.1	11.5	0.0	4.29	40.6
8	67.8	32.3	35.5	27.3	17.6	0.0	5.18	34.9
10	82.8	47.3	35.5	21.1	19.6	0.0	5.53	33
12	97.8	62.3	35.5	16.9	21.1	0.2	5.78	31.2
14	112.8	77.3	35.5	14.1	22.3	0.2	6.06	30.1
16	127.8	92.3	35.5	11.9	23.3	0.1	6.31	29.1
18	142.8	107.3	35.5	10.3	23.8	0.0	6.54	28.2
20	496.9	122.4	374.5	2.1	38.1	2.5	8.82	26.7
22	528	138.9	389.1	1.8	38.3	2.4	8.94	26.7
24	261.4	154.7	106.6	4.8	26.9	0.2	7.59	25.6
26	276.1	164.3	111.8	4.5	27.9	0.2	7.66	25.3
28	291.3	174.4	116.9	4.1	28.8	0.1	7.75	25.1
30	196.3	182.7	13.6	7.5	27.4	0.0	7.01	26.6
32	203.9	190.3	13.6	7.1	28.0	0.1	7.17	25.9
33.5	209.6	196	13.6	6.9	28.3	0.4	7.24	25.2

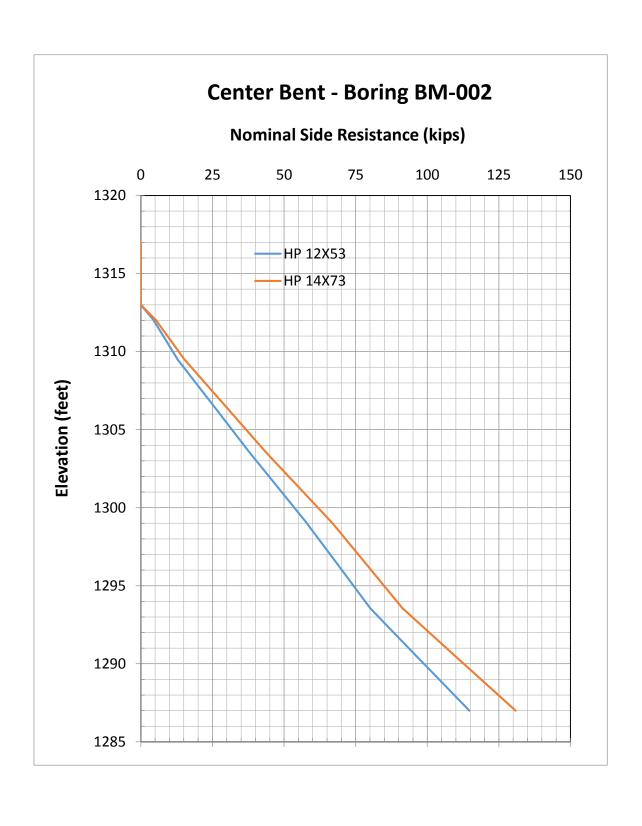


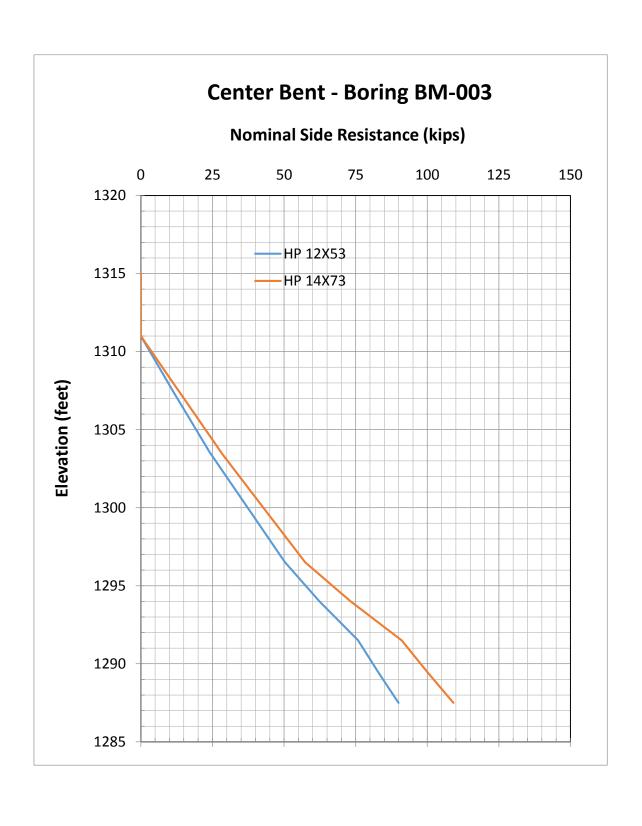


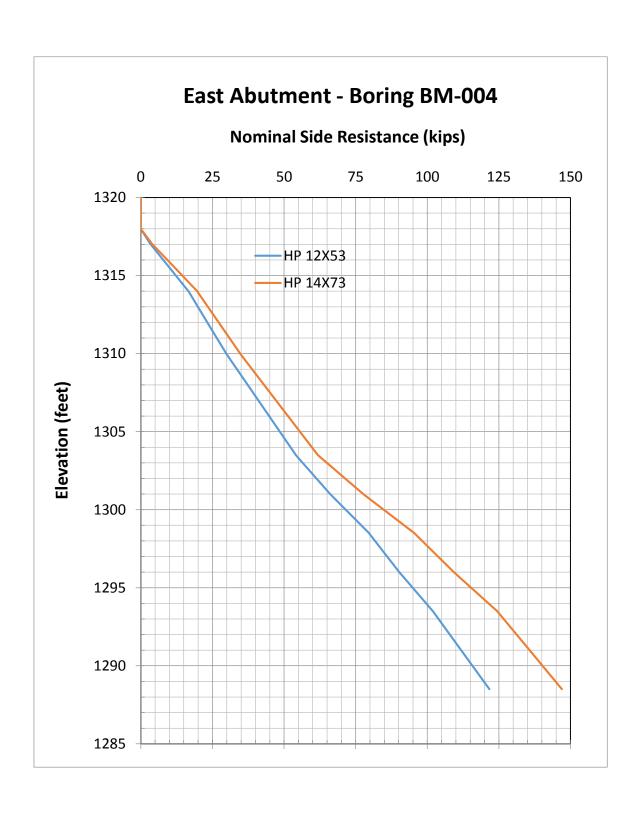


Pile:HP14X73Soil BoringBM-004Hammer:DELMAG D 30-32Hammer Efficiency:0.8


Depth	Ultimate Capacity	Friction	End Bearing	Set	Comp. Stress	Tensile Stress	Stroke	ENTHRU
ft	kips	kips	kips	in/10bl	ksi	ksi	ft	kips-ft
2	21.2	7.6	13.6					
4	28.8	15.2	13.6	75.0	10.2	0.0	3.83	44.6
6	36.4	22.8	13.6	57.1	12.3	0.0	4.12	42.6
8	67.8	32.3	35.5	28.6	19.7	0.0	5.02	38.1
10	82.8	47.3	35.5	22.2	22.1	0.0	5.37	36.6
12	97.8	62.3	35.5	18.2	23.9	0.2	5.67	35.5
14	112.8	77.3	35.5	15.0	24.9	0.2	5.89	34.1
16	127.8	92.3	35.5	12.9	26.0	0.1	6.15	33.3
18	142.8	107.3	35.5	11.1	26.7	0.0	6.38	32.7
20	496.9	122.4	374.5	2.7	41.9	2.8	8.83	33.6
22	528	138.9	389.1	2.4	42.2	2.6	8.96	33.8
24	261.4	154.7	106.6	5.6	30.3	0.2	7.48	31.1
26	276.1	164.3	111.8	5.2	30.8	0.2	7.56	30.9
28	291.3	174.4	116.9	4.8	31.9	0.1	7.64	30.7
30	196.3	182.7	13.6	8.5	30.0	0.4	6.86	31.6
32	203.9	190.3	13.6	8.0	30.5	0.7	6.95	30.6
33.5	209.6	196	13.6	7.7	31.0	1.0	7.1	30.2







APPENDIX E FRICTIONAL CAPACITY OF DRIVEN PILES

APPENDIX E LATERAL CAPACITY – LPILE PARAMETERS

	Recommended Design Parameters for Lateral Load Resistance										
Abutment / Pier	Elevation, feet ¹	p-y Curve Model	Effective Unit Weight (pcf) 1	Internal Friction Angle (degree)	Cohesion (psf) ²	E ₅₀	Static k Value for Subgrade Modulus (pci)	Uniaxial Compressive Strength (psi)			
West Abutment	1317 - 1309	Stiff Clay w/o Free Water	115	-	1,500	0.007	-	-			
(BM-001)	1309 - 1304	Stiff Clay w/o Free Water	115	-	3,500	0.005	-	-			
	1304 - 1295	Stiff Clay w/o Free Water	115	-	2,200	0.006	-	-			
	1295 - 1289	Stiff Clay w/o Free Water	55	-	2,600	0.006	-	-			
	1289 - 1285	Sand	55	30	-	ı	20	-			
	1285 - 1265	Strong Rock	140	-	-	-	-	2,500			

^{1.} Assumes groundwater level at EL. 1,295

^{2.} Lateral resistance should be neglected within the frost zone

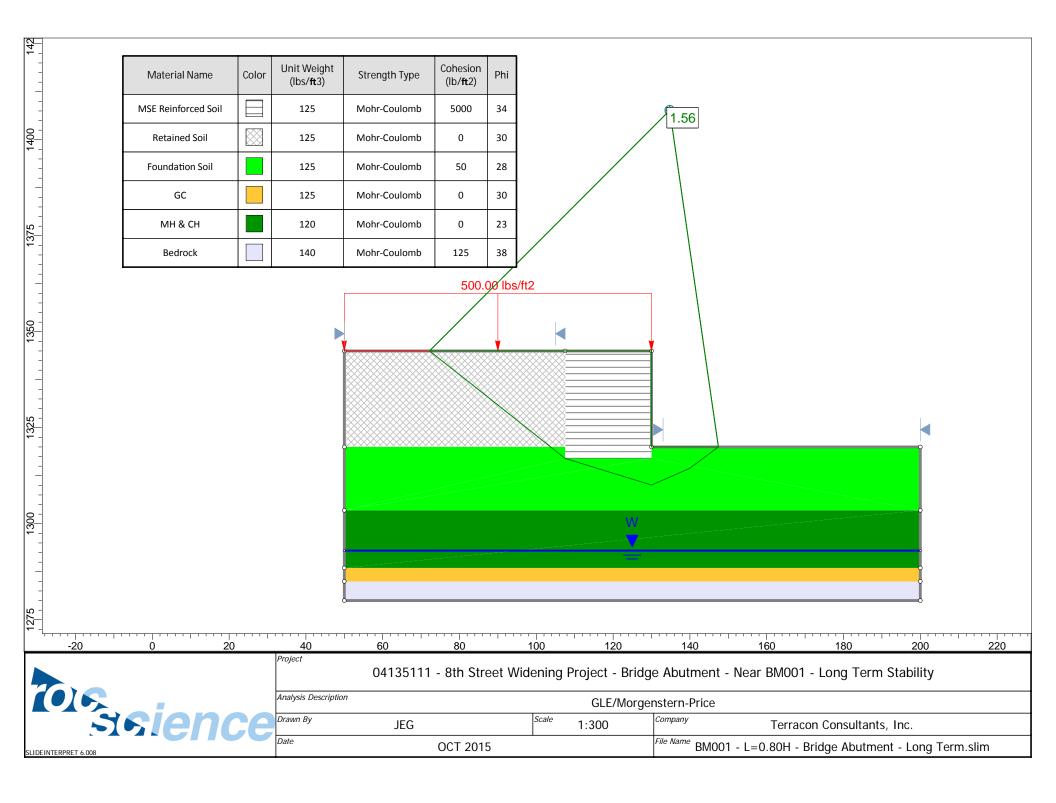
		Recomm	ended Design	Parameters for I	_ateral Load I	Resistance	e	
Abutment / Pier	Elevation, feet ¹	p-y Curve Model	Effective Unit Weight (pcf) 1	Internal Friction Angle (degree)	Cohesion (psf) ²	E ₅₀	Static k Value for Subgrade Modulus (pci)	Uniaxial Compressive Strength (psi)
Center Bent	1317 - 1312	Stiff Clay w/o Free Water	115	•	1,500	0.007	-	-
(BM-002)	1312 - 1303	Stiff Clay w/o Free Water	115	-	2,000	0.006	-	-
	1303 - 1298	Stiff Clay w/o Free Water	115	-	1,200	0.007	-	-
	1298 - 1293	Stiff Clay w/o Free Water	55	•	3,500	0.005	-	-
	1293 - 1287	Stiff Clay w/o Free Water	55	•	1,500	0.007	-	-
	1287 - 1267	Strong Rock	140	-	-		-	2,500

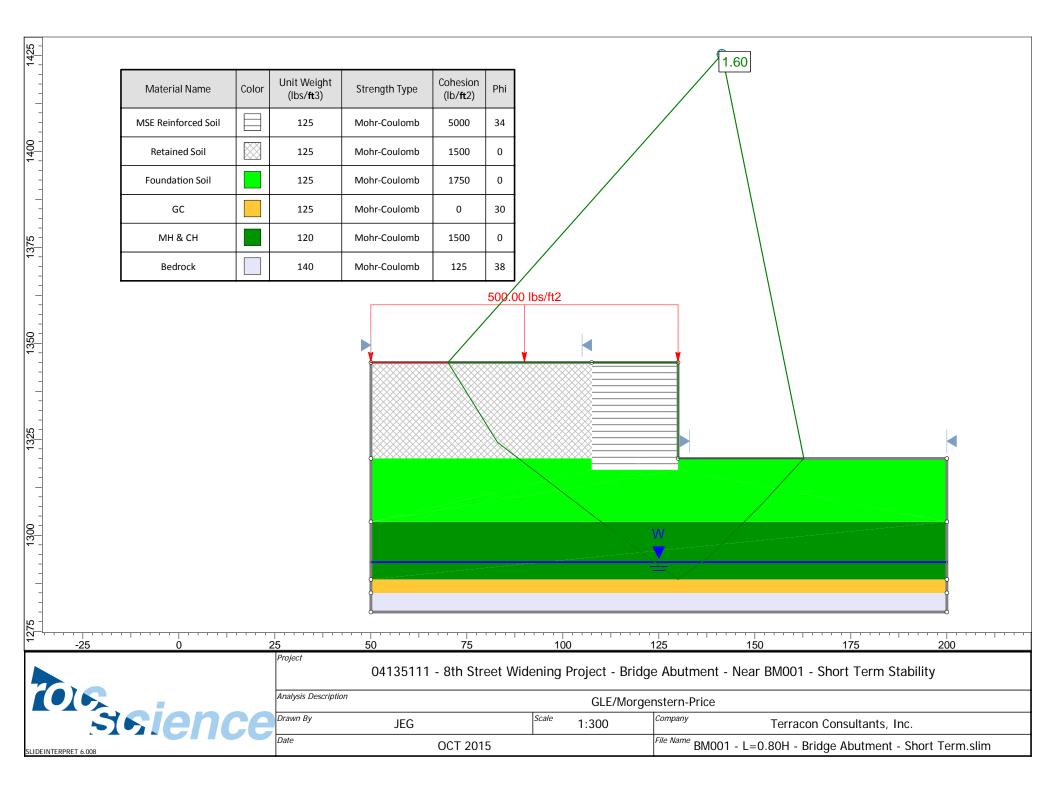
^{1.} Assumes groundwater level at EL. 1,298

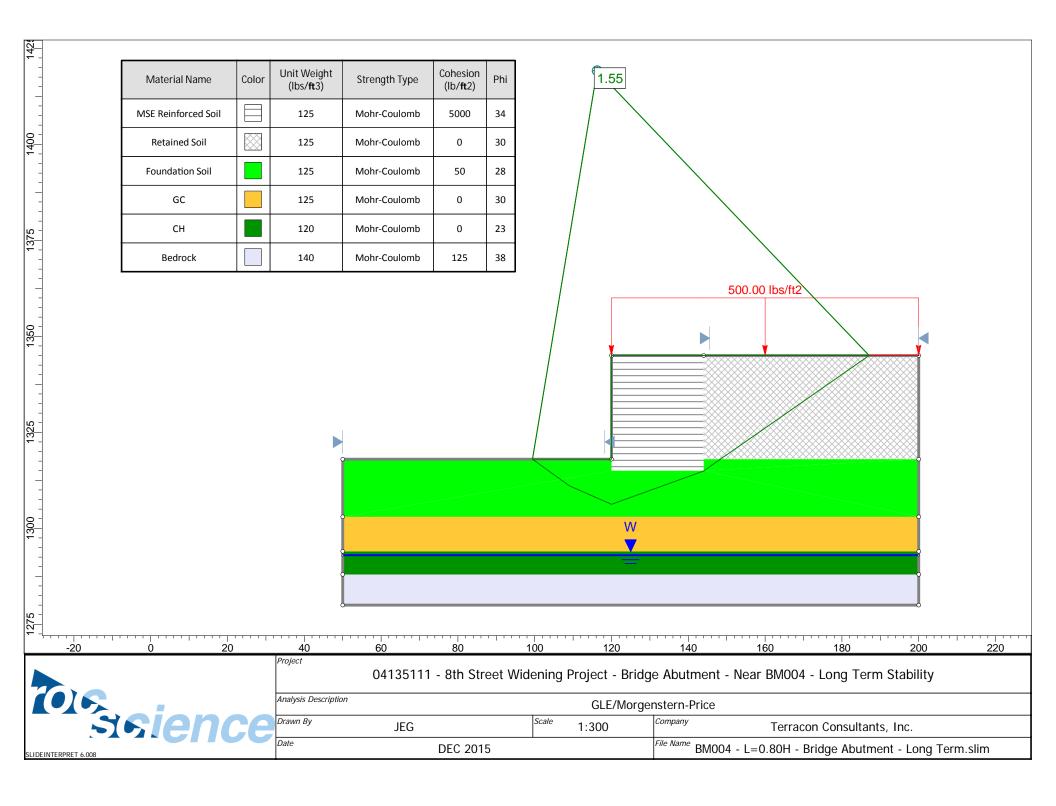
^{2.} Lateral resistance should be neglected within the frost zone

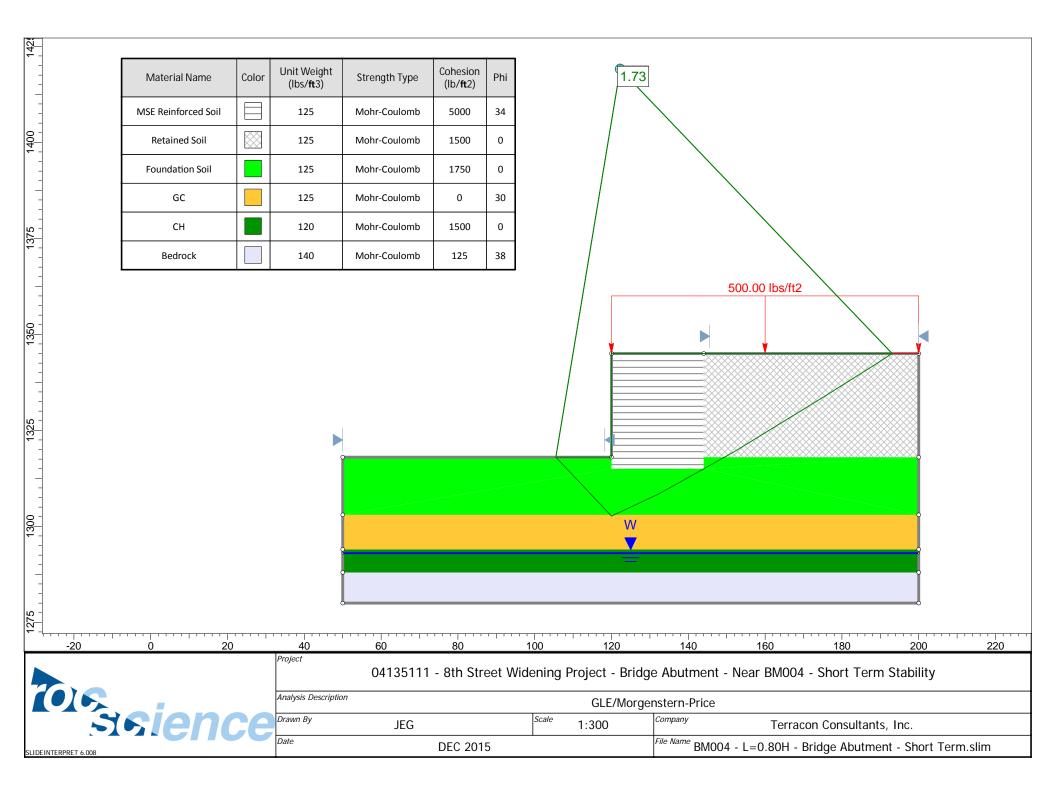
	Recommended Design Parameters for Lateral Load Resistance									
Abutment / Pier	Elevation, feet ¹	p-y Curve Model	Effective Unit Weight (pcf) 1	Internal Friction Angle (degree)	Cohesion (psf) ²	E ₅₀	Static k Value for Subgrade Modulus (pci)	Uniaxial Compressive Strength (psi)		
Center Bent	1315 - 1305	Stiff Clay w/o Free Water	115	1	2,500	0.006	-	-		
(BM-003)	1305 - 1296	Stiff Clay w/o Free Water	115	-	3,000	0.005	-	-		
	1296 - 1293	Sand	55	36	-	-	125	-		
	1293 - 1287	Sand	55	30	-	ı	60	-		
	1287 - 1267	Strong Rock	140	-	-	-	-	2,500		

^{1.} Assumes groundwater level at EL. 1,296


^{2.} Lateral resistance should be neglected within the frost zone


	Recommended Design Parameters for Lateral Load Resistance										
Abutment / Pier	Elevation, feet ¹	p-y Curve Model	Effective Unit Weight (pcf) 1	Internal Friction Angle (degree)	Cohesion (psf) ²	E ₅₀	Static k Value for Subgrade Modulus (pci)	Uniaxial Compressive Strength (psi)			
East Abutment	1322 - 1314	Stiff Clay w/o Free Water	115	-	1,250	0.007	-	-			
(BM-004)	1314 - 1304	Stiff Clay w/o Free Water	115	-	4,000	0.004	-	-			
	1304 - 1299	Sand	115	36	-	ı	225	-			
	1299 - 1294	Sand	115	32	-	ı	90	-			
	1294 - 1288	Stiff Clay w/o Free Water	55	-	1,000	0.007	-	-			
	1288 - 1268	Strong Rock	140	-	-	-	-	2,500			


^{1.} Assumes groundwater level at EL. 1,294


^{2.} Lateral resistance should be neglected within the frost zone

APPENDIX F GLOBAL STABILITY RESULTS

APPENDIX G SUPPORTING DOCUMENTS

GENERAL NOTES

DESCRIPTION OF SYMBOLS AND ABBREVIATIONS

				Water Initially Encountered		(HP)	Hand Penetrometer
	Auger	Split Spoon		Water Level After a Specified Period of Time		(T)	Torvane
NG.	Ohalba Taha	Marra 2	LEVEL	Water Level After a Specified Period of Time	ESTS	(b/f)	Standard Penetration Test (blows per foot)
IPLIN	Shelby Tube	Macro Core	<u> </u>	Water levels indicated on the soil boring logs are the levels measured in the	D TE	(PID)	Photo-Ionization Detector
SAMP	Ring Sampler	Rock Core	WATE	borehole at the times indicated. Groundwater level variations will occur over time. In low permeability soils, accurate determination of groundwater levels is not possible with short term	FIEL	(OVA)	Organic Vapor Analyzer
	Grab Sample	No Recovery		water level observations.			

DESCRIPTIVE SOIL CLASSIFICATION

Soil classification is based on the Unified Soil Classification System. Coarse Grained Soils have more than 50% of their dry weight retained on a #200 sieve; their principal descriptors are: boulders, cobbles, gravel or sand. Fine Grained Soils have less than 50% of their dry weight retained on a #200 sieve; they are principally described as clays if they are plastic, and silts if they are slightly plastic or non-plastic. Major constituents may be added as modifiers and minor constituents may be added according to the relative proportions based on grain size. In addition to gradation, coarse-grained soils are defined on the basis of their in-place relative density and fine-grained soils on the basis of their consistency.

LOCATION AND ELEVATION NOTES

Unless otherwise noted, Latitude and Longitude are approximately determined using a hand-held GPS device. The accuracy of such devices is variable. Surface elevation data annotated with +/- indicates that no actual topographical survey was conducted to confirm the surface elevation. Instead, the surface elevation was approximately determined from topographic maps of the area.

	(More than Density determine	NSITY OF COARSE-GRAI n 50% retained on No. 200 ed by Standard Penetration des gravels, sands and sil	sieve.) on Resistance	CONSISTENCY OF FINE-GRAINED SOILS (50% or more passing the No. 200 sieve.) Consistency determined by laboratory shear strength testing, field visual-manual procedures or standard penetration resistance					
TERMS	Descriptive Term (Density)	Standard Penetration or N-Value Blows/Ft.	Ring Sampler Blows/Ft.	Descriptive Term (Consistency)	Unconfined Compressive Strength, Qu, psf	Standard Penetration or N-Value Blows/Ft.	Ring Sampler Blows/Ft.		
뿔	Very Loose	0 - 3	0 - 6	Very Soft	less than 500	0 - 1	< 3		
	Loose	4 - 9	7 - 18	Soft	500 to 1,000	2 - 4	3 - 4		
TRENGT	Medium Dense	10 - 29	19 - 58	Medium-Stiff	1,000 to 2,000	4 - 8	5 - 9		
ြင	Dense	30 - 50	59 - 98	Stiff	2,000 to 4,000	8 - 15	10 - 18		
	Very Dense	> 50	<u>≥</u> 99	Very Stiff	4,000 to 8,000	15 - 30	19 - 42		
				Hard	> 8,000	> 30	> 42		

RELATIVE PROPORTIONS OF SAND AND GRAVEL

<u>Descriptive Term(s)</u>	Percent of	<u>Major Component</u>	Particle Size
of other constituents	Dry Weight	<u>of Sample</u>	
Trace With Modifier	< 15 15 - 29 > 30	Boulders Cobbles Gravel Sand Silt or Clay	Over 12 in. (300 mm) 12 in. to 3 in. (300mm to 75mm) 3 in. to #4 sieve (75mm to 4.75 mm) #4 to #200 sieve (4.75mm to 0.075mm Passing #200 sieve (0.075mm)

GRAIN SIZE TERMINOLOGY

PLASTICITY DESCRIPTION

RELATIVE PROPORTIONS OF FINES

Descriptive Term(s) of other constituents	Percent of Dry Weight	<u>Term</u>	Plasticity Index	
		Non-plastic	0	
Trace	< 5	Low	1 - 10	
With	5 - 12	Medium	11 - 30	
Modifier	> 12	Hiah	> 30	

UNIFIED SOIL CLASSIFICATION SYSTEM

_					Soil Classification	
Criteria for Assign	ning Group Symbols	s and Group Names	s Using Laboratory Tests ^A	Group Symbol	Group Name ^B	
Coarse Grained Soils: More than 50% retained on No. 200 sieve	Gravels: More than 50% of coarse fraction retained on No. 4 sieve	Clean Gravels: Less than 5% fines ^C	Cu ≥ 4 and 1 ≤ Cc ≤ 3 ^E	GW	Well-graded gravel F	
			Cu < 4 and/or 1 > Cc > 3 ^E	GP	Poorly graded gravel F	
		Gravels with Fines: More than 12% fines ^C	Fines classify as ML or MH	GM	Silty gravel F,G, H	
			Fines classify as CL or CH	GC	Clayey gravel F,G,H	
	Sands: 50% or more of coarse fraction passes No. 4 sieve	Clean Sands: Less than 5% fines ^D	Cu ≥ 6 and 1 ≤ Cc ≤ 3 ^E	SW	Well-graded sand I	
			Cu < 6 and/or 1 > Cc > 3 ^E	SP	Poorly graded sand I	
		Sands with Fines: More than 12% fines D	Fines classify as ML or MH	SM	Silty sand G,H,I	
			Fines Classify as CL or CH	SC	Clayey sand G,H,I	
Fine-Grained Soils: 50% or more passes the No. 200 sieve	Silts and Clays: Liquid limit less than 50	Inorganic:	PI > 7 and plots on or above "A" line J	CL	Lean clay K,L,M	
			PI < 4 or plots below "A" line J	ML	Silt K,L,M	
		Organic:	Liquid limit - oven dried < 0.75	OL	Organic clay K,L,M,N	
			Liquid limit - not dried		Organic silt K,L,M,O	
	Silts and Clays: Liquid limit 50 or more	Inorganic:	PI plots on or above "A" line	CH	Fat clay K,L,M	
			PI plots below "A" line	MH	Elastic Silt K,L,M	
		Organic:	Liquid limit - oven dried < 0.75		Organic clay K,L,M,P	
			Liquid limit - not dried		Organic silt K,L,M,Q	
Highly organic soils:	Primarily organic matter, dark in color, and organic odor			PT	Peat	

- ^A Based on the material passing the 3-in. (75-mm) sieve
- ^B If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.
- ^C Gravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with silt, GW-GC well-graded gravel with clay, GP-GM poorly graded gravel with silt, GP-GC poorly graded gravel with clay.
- D Sands with 5 to 12% fines require dual symbols: SW-SM well-graded sand with silt, SW-SC well-graded sand with clay, SP-SM poorly graded sand with silt, SP-SC poorly graded sand with clay

^E
$$Cu = D_{60}/D_{10}$$
 $Cc = \frac{(D_{30})^2}{D_{10} \times D_{60}}$

- $^{\text{F}}\,$ If soil contains \geq 15% sand, add "with sand" to group name.
- ^G If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

- ^H If fines are organic, add "with organic fines" to group name.
- If soil contains ≥ 15% gravel, add "with gravel" to group name.
- If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay.
- K If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel," whichever is predominant.
- L If soil contains ≥ 30% plus No. 200 predominantly sand, add "sandy" to group name.
- M If soil contains ≥ 30% plus No. 200, predominantly gravel, add "gravelly" to group name.
- N PI \geq 4 and plots on or above "A" line.
- ^o PI < 4 or plots below "A" line.
- P PI plots on or above "A" line.
- Q PI plots below "A" line.

GENERAL NOTES

Sedimentary Rock Classification

DESCRIPTIVE ROCK CLASSIFICATION:

Sedimentary rocks are composed of cemented clay, silt and sand sized particles. The most common minerals are clay, quartz and calcite. Rock composed primarily of calcite is called limestone; rock of sand size grains is called sandstone, and rock of clay and silt size grains is called mudstone or claystone, siltstone, or shale. Modifiers such as shaly, sandy, dolomitic, calcareous, carbonaceous, etc. are used to describe various constituents. Examples: sandy

shale; calcareous sandstone.

LIMESTONE Light to dark colored, crystalline to fine-grained texture, composed of CaCo₃, reacts readily

with HCI.

DOLOMITE Light to dark colored, crystalline to fine-grained texture, composed of CaMg(CO₃)₂, harder

than limestone, reacts with HCl when powdered.

CHERT Light to dark colored, very fine-grained texture, composed of micro-crystalline quartz (SiO₂),

brittle, breaks into angular fragments, will scratch glass.

Very fine-grained texture, composed of consolidated silt or clay, bedded in thin layers. The SHALE

unlaminated equivalent is frequently referred to as siltstone, claystone or mudstone.

SANDSTONE Usually light colored, coarse to fine texture, composed of cemented sand size grains of quartz,

feldspar, etc. Cement usually is silica but may be such minerals as calcite, iron-oxide, or some

other carbonate.

CONGLOMERATE Rounded rock fragments of variable mineralogy varying in size from near sand to boulder size

but usually pebble to cobble size (1/2 inch to 6 inches). Cemented together with various cementing agents. Breccia is similar but composed of angular, fractured rock particles cemented

together.

PHYSICAL PROPERTIES:

Moderate

High

Hard

Soft

BEDDING AND JOINT CHARACTERISTICS DEGREE OF WEATHERING

Slight decomposition of parent Sliaht **Bed Thickness** Joint Spacing **Dimensions** material on joints. May be color Very Thick Very Wide >10' Thick Wide 3' - 10'

change. Medium

Some decomposition and color

Thin change throughout. Very Thin Very Close

Rock highly decomposed, may be ex-

tremely broken.

Bedding Plane

A plane dividing sedimentary rocks of the same or different lithology.

HARDNESS AND DEGREE OF CEMENTATION Joint Fracture in rock, generally more or

Laminated

less vertical or transverse to bedding, Limestone and Dolomite: along which no appreciable move-

Difficult to scratch with knife. ment has occurred.

Moderately Can be scratched easily with knife, Generally applies to bedding plane Seam Hard cannot be scratched with fingernail.

with an unspecified degree of

Soft weathering. Can be scratched with fingernail.

Shale, Siltstone and Claystone

Hard Can be scratched easily with knife. cannot be scratched with fingernail. Solid Contains no voids.

Moderately Vuggy (Pitted)

Rock having small solution pits or Hard Can be scratched with fingernail. cavities up to 1/2 inch diameter, fre-

quently with a mineral lining.

SOLUTION AND VOID CONDITIONS

Can be easily dented but not molded with fingers. Porous Containing numerous voids, pores, or

other openings, which may or may

not interconnect.

Capable of scratching a knife blade. Cavernous Containing cavities or caverns, some-

times quite large.

Moderately Close

Close

1' -3'

2" -1′

.4" -

.1" -

2"

Sandstone and Conglomerate Well Cemented

Cemented Can be scratched with knife.

Poorly Can be broken apart easily with

Cemented fingers.

8th Street Widening Project
Proposed Mechanically Stabilized Earth (MSE) Walls
Bentonville, Arkansas
February 3, 2016
Terracon Project No. 04135111

Prepared for:

Burns & McDonnell Engineering Company, Inc. Kansas City, Missouri

Prepared by:

Terracon Consultants, Inc.
Tulsa, Oklahoma

Offices Nationwide Employee-Owned Established in 1965 terracon.com

February 3, 2016

Burns & McDonnell Engineering Company, Inc. 9400 Ward Parkway Kansas City, MO 64114

Attn:

Mr. David Hurt, P.E.

P: (816) 822 3426

E: dhurt@burnsmcd.com

Re:

Geotechnical Engineering Report

8th Street Widening Project

Proposed Mechanically Stabilized Earth (MSE) Walls

Bentonville, Arkansas

Terracon Project No. 04135111

Dear Mr. Hurt:

Terracon Consultants, Inc. (Terracon) has completed the geotechnical engineering services for the above referenced project. This geotechnical study was performed in general accordance with our Proposal No. P04090495 dated February 26, 2010 and the Amendment to Consultant Agreement dated May 21, 2010 between Burns & McDonnell Engineering Company, Inc. and Terracon Consultants, Inc. for Project No. 090218.

This report presents the findings of the subsurface exploration and provides geotechnical recommendations concerning earthwork and the design and construction of MSE Walls for the proposed project.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report, or if we may be of further service, please contact us.

Sincerely,

Terracon Consultants, Inc. Cert. Of Auth. #CA-223 exp. 12/31/17

Jaime E. Granados

Geotechnical Engineer

JEG:MHH:lo Enclosures

Copies to: Addressee (3 via US mail and 1 via email)

Michael H. Homan, P.E.

Arkansas No. 7052

TABLE OF CONTENTS

					Page		
1.0		_	_				
2.0				ION			
	2.1	•	•	ion			
		2.2 Site Location					
3.0				ITIONS			
	3.1	, ,		ace Profile			
	3.2	٠.		ace Profile			
	3.3						
4.0				DMMENDATIONS FOR DESIGN AND CONSTRUCTION			
	4.1			onsiderations			
	4.2						
		4.2.1	•	paration			
		4.2.2		ill Materials			
		4.2.3	•	tion Requirements			
		4.2.4		ction Considerations for MSE Walls			
	4.3		-	y Analysis of MSE Walls			
		4.3.1	3 3				
		4.3.2					
		4.3.3	5 1 7				
		4.3.4		iding			
		4.3.5		ing			
		4.3.6		tability			
		4.3.7		y of Long Term External Stability Analyses			
		4.3.8		y of Short Term Global Stability Analyses			
		4.3.9		n Recommended Reinforcement Lengths			
	4.4			erations			
	4.5	Settlement of Reinforced Zone					
	4.6		U	Recommendations			
5.0	GEN	ERAL C	OMMENT	S	22		
APPE	ENDIX .	A – FIEL	.D EXPLO	PRATION			
	Exhib	oit A-1		Site Location Map			
	Exhib	oit A-2		Boring Location Plans			
	Exhibit A-3			Field Exploration Description			
	Exhibit A-4 to A-93			Boring Logs			
		oit A-94 t		Subsurface Profiles			
	Exhib	oit A-104	А	pproximate Boring Elevations and Coordinates			
APPE	ENDIX	B – LAB	ORATOR	Y TESTING			

Laboratory Test Description

Hydrometer Test Results

Grain Size Distribution Curves

Exhibit B-2 to B-53

Exhibit B-54 to B-60

Exhibit B-1

TABLE OF CONTENTS (continued)

Exhibit B-61 to B-66 Consolidated Undrained Triaxial Test Results
Exhibit B-67 to B-69 Unconsolidated Undrained Triaxial Test Results
Exhibit B-70 to B-72 One-Dimension Consolidation Test Results

APPENDIX C - GLOBAL STABILITY

Exhibit C-1 to C-23 Global Stability Analyses – Long Term

Exhibit C-24 and C-25 Global Stability Analyses – Long Term – Tiered Walls

Exhibit C-26 to C-32 Global Stability Analyses – Short Term

APPENDIX D – SUPPORTING DOCUMENTS

Exhibit D-1 General Notes

Exhibit D-2 Unified Soil Classification System

Exhibit D-3 General Notes – Description of Rock Properties

GEOTECHNICAL ENGINEERING REPORT 8TH STREET WIDENING PROJECT PROPOSED MECHANICALLY STABILIZED EARTH (MSE) WALLS BENTONVILLE, ARKANSAS

Terracon Project No. 04135111 February 3, 2016

1.0 INTRODUCTION

This geotechnical engineering report has been completed as a part of the 8th Street widening project in Bentonville, Arkansas. We presented a preliminary geotechnical engineering report to Burns & McDonnell on June 19, 2014 with preliminary information and results for 9 MSE walls. Based on the updated 60% design plans provided to us, revised plans dated July 13, 2015, we understand that two walls within the southern area have been eliminated. Thus, a total of seven Mechanically Stabilized Earth (MSE) walls, designated Wall 1 through Wall 7, will be constructed for the project. The walls will be constructed along the northbound and southbound of Interstate 49 near 8th Street.

A total of 90 borings were proposed for the project; however, we only performed 86 borings to depths of about 20 to 63.5 feet below the existing ground surface. A description of the proposed MSE Walls and the borings performed for each wall is provided in the table below. Logs of the borings along with a site location map and boring location plans are included in Appendix A of this report.

MSE Wall	Borings
	BW-101 through BW-108
Wall 1 – Sta. 1036+16.5 to 1053+70.58 – South Bound ¹	BW-301 through BW-309
	BW-501 through BW-505
Well 0 - 0(+ 4040-00 FF (+ 40F0-00 00 - Next) Dec. 14	BW-201 through BW-206
Wall 2 – Sta. 1040+62.55 to 1052+39.00 – North Bound ¹	BW-401 through BW-409
Wall 3A – Sta. 1044+25 to 1053+00 – 8th Street	BW-510 through BW-515
Wall 3B – Sta. 1047+32.04 to 1058+17.43 – South Bound ²	BW-501 through BW-509
Wall 4 – Sta. 1055+50 to 1060+13.48 – North Bound	BW-601 through BW-607
Wall 5A – Sta. 1054+00 to Sta. 1060+05.82 – South Bound	BW-701 through BW-706
Wall 5B – Sta. 1059+41.15 Sta. 1069+03.67 – South Bound	BW-706 through BW-715
Wall 6A – Sta. 1057+40 to Sta. 1061+86.41 – North Bound	BW-801 through BW-805
Wall 6B – Sta. 1061+49.77 to 1069+28.45 – North Bound	BW-806 through BW-814
Well 7 - 01- 4007-00 to 01- 4070-00 00 - 0- (LD) - L	BW-715 through BW-718
Wall 7 – Sta. 1067+00 to Sta. 1072+36.89 – South Bound	BW-901 through BW-904

^{1.} Borings BW-107, BW-108, and BW-206 were not drilled due to drill rig access constrains and their proximity to the railroad right of way.

8th Street Widening Project – Proposed MSE Walls ■ Bentonville, AR February 3, 2016 ■ Terracon Project No. 04135111

Continued from page 1

2. Boring BW-306 was not drilled due to presence of underground utilities and drill rig access constrains.

The purpose of these services is to provide information and geotechnical engineering recommendations relative to:

- subsurface soil and rock conditions
- groundwater conditions
- external and global stability analyses of select MSE wall cross sections
- general earthwork
- estimated foundation settlement
- general design and construction recommendations for MSE walls

2.0 PROJECT INFORMATION

2.1 Project Description

Item	Description		
Site layout	See Appendix A, Figure A-2, Boring Location Plans.		
Proposed structures	The 8 th Street Widening project will consist of constructing an interchange at Interstate 49 over 8 th Street in Bentonville, AR. Based on the 60% design plans provided to us, we understand that the project will require the construction of seven (7) Mechanically Stabilized Earth (MSE) retaining walls. The proposed MSE walls will be constructed on both the west and east sides of the existing Interstate 49. The approximate total project length is 8,000 feet. We understand that the walls must be designed using the AASHTO Load and Resistance Factor Design (LFRD) method.		
Proposed grading	The proposed MSE walls will have maximum exposed heights of about 30 feet. Some of the walls will be constructed over existing slopes configured at about 3H:1V slopes. Some of the walls will be constructed on flat areas.		

2.2 Site Location

Item	Description
Location	The project is located along Interstate 49 near 8 th Street in Bentonville, Arkansas. The proposed MSE walls will start near the intersection of I-49 and SE 14 th Street (Route 62) and will extend north approximately 5,350 feet.
Existing improvements	Interstate 49

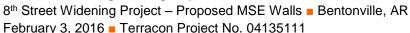
8th Street Widening Project – Proposed MSE Walls ■ Bentonville, AR February 3, 2016 ■ Terracon Project No. 04135111

Item	Description
Current ground cover	Grass, asphalt pavements, and areas of thick vegetation. Bulldozed pads were required to gain access to some of our borings.
Existing topography	The project alignment generally slopes downward from south to north.

3.0 SUBSURFACE CONDITIONS

3.1 Typical Subsurface Profile

Based on information obtained from the Arkansas Geological Survey website (www.geology.ar.gov), the geology of the project site is underlain by the Boone Formation, which consists of gray, fine- to coarse-grained fossiliferous limestone interbedded with chert. Some sections may be predominantly limestone or chert. The cherts are dark in color in the lower part of the sequence and light in the upper part. The quantity of chert varies considerably both vertically and horizontally. The Boone Formation is well known for dissolutional features, such as sinkholes, caves, and enlarged fissures. The thickness of the Boone Formation is 300 to 350 feet in most of northern Arkansas.


As reported on our boring logs and summarized in section **3.2 Typical Subsurface Profile**, voids were observed at some boring locations within the upper elevation of the bedrock. Based on the results of our analyses, the location and depths of the voids observed during our field exploration will not have an apparent impact on our external stability analyses for the proposed MSE walls. However, it should be realized that voids might exist at locations away from our borings and that our scope of work is limited to the information collected from our borings.

According to the US Geological Survey (USGS), the Peak Ground Acceleration (PGA) for the City of Bentonville, Arkansas corresponds to 0.049g. Thus, seismic analyses for the MSE wall structures are not required for external stability.

3.2 Typical Subsurface Profile

Based on the results of the borings, subsurface conditions along the project alignment can be generalized as follows:

Stratum	Approximate Depth to Bottom of Stratum	Material Encountered	Consistency/Density
11	2 to 33.5 feet	Fill: Chert gravel and sand with various amounts of fines and medium to highly plastic clay with various amounts of chert gravel and sand	N/A

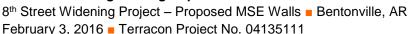
Stratum	Approximate Depth to Bottom of Stratum	Material Encountered	Consistency/Density
2	2 to 20 feet	Low to medium plastic clays with various amounts of silt, sand, and chert gravel	Soft to very stiff
3 ²	Underlying Stratum 2 to top of bedrock	Chert gravel and sand with various amounts of silt and clay, interbedded with layers of medium to highly plastic clay and silt	Granular soils: Loose to very dense Fine soils: Very soft to very stiff
4 ³	Underlying Stratum 2 to boring termination depths	Cherty limestone and limestone 5	Predominantly hard

- Fill materials exist at the bridge approaches and may exist in the vicinity of the construction areas at locations away from our borings. Actual fill depths are sometimes difficult to identify due to similarities of the fill with the native soils and preliminary earthwork activities. Existing fill materials were encountered in 20 borings: BW-101/102/103/106, BW-201/203/204, BW-301/308/309, BW-501/502/515, and BW-702/703/704/705/709/714/715.
- 2. Granular soils with different gradations in a clay matrix of relatively medium to high plasticity. Chert seams of various thicknesses were encountered at different depths in our borings.
- 3. Thirty six (36) borings were extended into the hard cherty limestone or limestone bedrock using rock coring techniques: BW105/106, BW301 through BW305, BW-401/402/405, BW-503 through BW-510, BW-604, BW-701/702/705 through BW-708/712/718, BW-804 through BW-808/BW811/812/814, and BW-901 through BW-903.
- 4. Elevation of top of rock varies between approximately 1281.5 and 1301.5 feet along the project alignment. Bottom of stratum was not determined.
- 5. Voids were observed near the top of the bedrock or within the upper 10 feet of the bedrock at borings BW-505/509, BW-702, and BW-903. Voids might be associated with clay layers within the rock that were washed out during rock coring operations.

Conditions encountered at each boring location are indicated on the individual boring logs. Stratification boundaries on the boring logs represent the approximate location of changes in soil and rock types; in-situ, the transition between materials may be gradual.

3.3 Groundwater

The majority of the boreholes were observed while drilling and immediately after boring completion for the presence and level of groundwater. Select borings were also observed 24 hours after boring. In general, the borings were extended into the overburden soils using a combination of dry and wash boring techniques. Rock core techniques, which use water, were used to extend the borings into the bedrock materials. Thus, water introduced into these boreholes can mask the presence and level of groundwater. Groundwater observations made during our field exploration are summarized in the following table.


8th Street Widening Project – Proposed MSE Walls ■ Bentonville, AR February 3, 2016 ■ Terracon Project No. 04135111

		•	Approximate Groundwa	ter
Boring No.	Elevation	While Drilling (feet)	After Boring (feet)	24 Hours after Boring (feet)
BW-101	1333.3	not encountered	not determined	not determined
BW-102	1311.8	18 / 1293.8	not determined	not determined
BW-103	1338.6	not encountered	not encountered	not determined
BW-104	1312.1	none to 6.5	not determined	not determined
BW-105	1312.7	19 / 1293.7	not determined	not determined
BW-106	1341.7	48 / 1293.7	not determined	not determined
BW-107	not drilled			
BW-108	not drilled			
BW-201	1337.1	not encountered	not encountered	not determined
BW-202	1306.7	13.5 / 1293.2	20 / 1286.7	not determined
BW-203	1340.5	38.5 / 1302.0	not determined	not determined
BW-204	1339.9	none to 6.5	not determined	not determined
BW-205	1308.6	18 / 1290.6	18 / 1290.6	not determined
BW-206	not drilled			
BW-301	1342.2	50 / 1292.2	not determined	not determined
BW-302	1314.7	20 / 1294.7	13 / 1301.7	not determined
BW-303	1316.0	19.5 / 1296.5	not determined	19.5 / 1296.5
BW-304	1315.4	none to 8.5	not determined	not determined
BW-305	1315.0	19 / 1296.0	not determined	10 / 1305.0
BW-306	not drilled			
BW-307	1315.0	22 / 1293.0	not determined	16 / 1299.0
BW-308	1322.0	10 / 1312.0	12 / 1310.0	not determined
BW-309	1323.0	2 / 1321.0	2 / 1321.0	not determined
BW-401	1311.8	13 / 1298.8	not determined	not determined
BW-402	1312.5	19 / 1293.5	not determined	not determined
BW-403	1313.2	19 / 1294.2	13 / 1300.2	not determined
BW-404	1314.5	20 / 1294.5	15 / 1299.5	not determined
BW-405	1314.3	18 / 1296.3	10 / 1304.3	not determined
BW-406	1315.2	22 / 1293.2	23 / 1292.2	not determined
BW-407	1315.8	not encountered	not determined	not determined
BW-408	1317.8	not encountered	not determined	not determined
BW-409	1317.8	not encountered	not encountered	not determined
BW-501	1338.3	not encountered	not encountered	not determined
BW-502	1337.3	40 / 1297.3	42 / 1295.3	not determined
BW-503	1315.0	22 / 1293.0	not determined	22 / 1293.0
BW-504	1315.0	23.5 / 1291.5	not determined	16 / 1299.0
BW-505	1315.7	not determined	not determined	not determined
BW-506	1316.6	23 / 1293.6	not determined	not determined
BW-507	1316.0	23 / 1293.0	not determined	not determined
BW-508	1317.6	28 / 1289.6	not determined	not determined
BW-509	1318.0	28 / 1290.0	not determined	not determined
BW-510	1319.7	33 / 1286.7	not determined	not determined

8th Street Widening Project – Proposed MSE Walls ■ Bentonville, AR February 3, 2016 ■ Terracon Project No. 04135111

		A	Approximate Groundwa	ter		
		Level / Elevation				
Boring No. Elevation		While Drilling (feet)	After Boring (feet)	24 Hours after Boring (feet)		
BW-511	1322.2	none to 10	not determined	not determined		
BW-512	1323.1	23 / 1300.1	28 / 1295.1	not determined		
BW-513	1319.0	not encountered	not determined	not determined		
BW-514	1322.7	not encountered	not encountered	not encountered		
BW-515	1319.1	25 / 1294.1	24.5 / 1294.6	24 / 1295.1		
BW-601	1318.7	24.5 / 1294.2	not determined	not determined		
BW-602	1319.8	23.5 / 1296.5	25 / 1295	not determined		
BW-603	1321.0	28.5 / 1292.5	27.5 / 1293.5	not determined		
BW-604	1320.8	28.5 / 1292.5	18 / 1303	not determined		
BW-605	1322	28.5 / 1293.5	26 / 1296	not determined		
BW-606	1322.6	not encountered	not encountered	not determined		
BW-607	1324.0	29.5 / 1294.5	not determined	not determined		
BW-701	1315.9	22 / 1293.9	not determined	23 / 1292.9		
BW-702	1328.1	none to 8.5	not encountered	not determined		
BW-703	1327.1	38.5 / 1288.6	36.5 / 1290.6	36 / 1291.1		
BW-704	1320.1	none to 8.5	32 / 1288.1	not determined		
BW-705	1320.4	25 / 1295.4	27 / 1293.4	26 / 1294.4		
BW-706	1316.6	25 / 1291.6	23 / 1293.6	not determined		
BW-707	1320.4	30 / 1290.4	19 / 1301.4	16 / 1304.4		
BW-708	1320.8	28.5 / 1292.3	16 / 1304.8	13 / 1307.8		
BW-709	1320.9	28.5 / 1292.4	29.5 / 1291.4	not encountered		
BW-710	1319.8	not encountered	not encountered	not encountered		
BW-711	1320.9	not encountered	not encountered	not encountered		
BW-712	1306.0	10 / 1296.0	13 / 1293.0	not determined		
BW-713	1322.2	33.5 / 1288.7	16 / 1306.2	not encountered		
BW-714	1303.7	15 / 1288.7	not encountered	not determined		
BW-715	1303.0	16.5 / 1286.5	16.5 / 1286.5	not determined		
BW-716	1323.5	not encountered	not encountered	not encountered		
BW-717	1324.4	38.5 / 1285.9	not encountered	not encountered		
BW-718	1302.0	16.5 / 1285.5	16.5 / 1285.5	not determined		
BW-801	1318.8	24.5 / 1294.3	not encountered	not determined		
BW-802	1317.0	24.5 / 1292.5	not encountered	not determined		
BW-803	1322.1	33.5 / 1288.6	28 / 1294.1	27 / 1295.1		
BW-804	1313.5	25 / 1288.5	25 / 1288.5	23 / 1290.5		
BW-805	1320.3	28.5 / 1291.8	26 / 1294.3	16 / 1304.3		
BW-806	1318.8	28.5 / 1290.3	25 / 1293.8	21 / 1297.8		
BW-807	1317.6	22.5 / 1295.1	26 / 1291.6	22 / 1295.6		
BW-808	1317.3	28.5 / 1288.8	27 / 1290.3	25 / 1292.3		
BW-809	1317.1	28.5 / 1288.6	27 / 1290.1	not encountered		
BW-810	1317.6	23 / 1294.6	not encountered	not determined		
BW-811	1303.4	15 / 1288.4	9 / 1294.4	9 / 1294.4		
BW-812	1302.0	15 / 1287.0	14 / 1288.0	14 / 1288.0		

		Approximate Groundwater Level / Elevation		
Boring No.	Elevation	While Drilling (feet)	After Boring (feet)	24 Hours after Boring (feet)
BW-813	1319.3	29.5 / 1289.8	not encountered	not encountered
BW-814	1300.7	15 / 1285.7	not encountered	not encountered
BW-901	1325.2	none to 26.4	not encountered	not encountered
BW-902	1301.0	15 / 1286.0	17.5 / 1283.5	not determined
BW-903	1300.5	10 / 1290.5	not encountered	not encountered
BW-904	1324.1	not encountered	not encountered	not encountered

Groundwater Level Monitoring Wells

To obtain longer-term groundwater levels, temporary piezometers (groundwater level monitoring wells) were installed at select boring locations. Upon installation of the temporary piezometers, water was bailed from the piezometers the same day. Groundwater levels were then measured between October 10, 2013 and April 16, 2014. Results of groundwater levels observed in piezometers/monitoring wells can be representative of water levels observed during drilling operations. Therefore, the groundwater elevations given in the following table were used for external stability analyses of MSE Walls.

				Groundwater vation (feet)	
Boring No.	Boring Elevation	October 10, 2013	December 14, 2013	January 29, 2014	April 16, 2014
BW-105	1312.7	5.0 / 1307.7	4.5 / 1308.2	4.6 / 1308.1	4.5 / 1308.2
BW-205	1308.6	2.8 / 1305.8	Not determined	1.8 / 1306.8	13 / 1295.6
BW-302	1314.7	8.5 / 1306.2	8.5 / 1306.2	8.6 / 1306.1	8 / 1306.7
BW-407	1315.8	11.5 / 1304.3	Not determined	11.4 / 1304.4	11 / 1304.8
BW-512	1323.1	27.2 / 1295.9	27.5 / 1295.6	27.1 / 1296.0	27.8 / 1295.3
BW-706	1316.6	23.8 / 1292.8	29.5 / 1287.1	23.0 / 1293.6	24.5 / 1292.1
BW-712	1306	17.8 / 1288.2	19.5 / 1286.5	17.4 / 1288.6	18.5 / 1287.5
BW-811	1303.4	14.5 / 1288.9	Not determined	13.1 / 1290.3	14.6 / 1288.8
BW-902	1301	18.0 / 1283.0	16.5 / 1284.5	17.2 / 1283.8	18 / 1283.0
BT-102	1323.4	28.0 / 1295.4	Not determined	26.9 / 1296.5	28.3 / 1295.1
BT-004	1320.1	Not determined	24.5 / 1295.6	27.8 / 1292.3	Not determined ¹

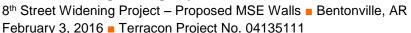
^{1.} The pipe was broken by others between our January 29 and April 16, 2014 readings.

During our field exploration and visits to the project site, we observed that surficial water tends to accumulate near the bottom of the existing bridge embankments near retaining walls No. 1 through No. 5. There is also a relatively shallow ditch running in the north-south direction near the bottom of proposed retaining walls No. 3 and No. 5.

8th Street Widening Project – Proposed MSE Walls ■ Bentonville, AR February 3, 2016 ■ Terracon Project No. 04135111

Fluctuations in the groundwater level should be expected due to seasonal variations in the amount of rainfall, runoff and other factors not apparent at the time the borings were drilled. Evaluation of these factors and their effect on the groundwater levels is beyond the scope of this report. The possibility of groundwater level fluctuations and the presence of perched water should be considered when designing and developing the construction plans for the project.

4.0 ANALYSIS AND RECOMMENDATIONS FOR DESIGN AND CONSTRUCTION


4.1 Geotechnical Considerations

We presented a preliminary Geotechnical Engineering Report for the MSE Walls for the 8th Street Widening project on June 19, 2014. The report included geotechnical recommendations for design and construction of 9 MSE Walls. Based on the 60% design, we understand that some of the walls were combined and that the updated design includes 7 MSE Walls. Changes to the geometry of the updated walls include reduction in some of the wall heights. Minor changes to the general location of the walls were observed. This final report includes revisions to the results of our wall external and global stability analyses to account for the changes to the preliminary wall geometry and additional information requested via email on various dates.

Based on the results of our geotechnical exploration, native soils within the upper elevations (2 to 20 feet below existing ground surface) generally consist of low to medium plasticity clays. Chert gravel materials in a relatively high plasticity clay matrix were encountered below the low to medium plasticity native clays and extended to top of bedrock. The amounts of fine and granular soils along the proposed wall alignments are variable. This is in agreement with our past experience with projects near this site. The results of our borings were used to develop generalized subsurface profiles for each wall.

Bedrock materials consisted of cherty limestone and limestone, which is in agreement with the geological description provided by the Arkansas Geological Survey website. At some boring locations, the top of the rock has a slight to high degree of weathering. Voids or apparent voids were observed at some borings near the top of the rock as indicated on the attached boring logs and section 3.2 Typical Subsurface Profile. Based on the results of our borings and our analyses, conditions do not warrant further exploration such as seismic refraction testing to identify potential voids. However, if taller walls or different structures are planned for the site, Terracon should be consulted to reconsider this assessment.

Based on the cross sections provided to us by Burns & McDonnell Engineering Company, Inc., we understand that several portions of the proposed MSE walls will be constructed on existing embankment slopes with configurations of 3H:1V, or flatter, and native cuts with configurations of 2H:1V, or flatter. Existing slopes should be benched prior to placement and compaction of new fill materials. Based on the cross sections, we also understand that exposed wall faces can be

up to approximately 30 feet in height. The tallest wall sections were observed near the proposed 8th Street bridge over Interstate 49.

Relatively low strength, high moisture content, near surface soils were encountered in some of our borings. Similar soils can exist away from our borings. The consistency of the near surface soils might vary depending on the time of construction and their actual moisture content. Surficial, low strength soils identified during earthwork and subgrade preparation should be removed full-depth and the resultant excavations should be backfilled with tested and approved fill materials, if unstable soils cannot be adequately stabilized in-place. Close observation and testing will be required during earthwork activities and construction of MSE walls to verify that suitable bearing materials are encountered and new fills properly placed.

Recommendations regarding earthwork preparation and design and construction of MSE walls are provided in the following sections.

4.2 Earthwork

4.2.1 Site Preparation

Areas to be graded should be stripped and cleared of surface vegetation, topsoil, trees, bushes, debris, and any other deleterious material. Considering the thick vegetation that exists along some of the proposed retaining walls, striping depths greater than 6 inches should be expected to remove soils that contain roots and organic matter. Also, any loose soils at the surface, tree stumps, and major root systems should be removed full-depth and the resultant excavations should be cleaned of all loose material and water and properly backfilled.

Wherever existing slopes steeper than 4:1 (H:V) will be covered by new fill materials, the existing slope must be benched. Benches should be wide enough to accommodate compaction and earth moving equipment, and to allow placement of horizontal lifts of fill. New fill should be placed starting at the toe of the slope. The fill should be benched into the exposed soils.

After stripping and completing any required cuts and undercuts, and before placing any new fill, the exposed subgrade should be proofrolled with a fully-loaded dump truck, scraper, or other rubber-tired construction equipment weighing at least 25 tons to evaluate the presence of any low strength, unstable soils. Any low strength, unstable soils identified by the proofrolling should be overexcavated and replaced with tested and approved fill as indicated in section **4.2.2 Material Types**, if they cannot be adequately stabilized in-place.

After completing a successful proofroll, and before placing any fill, the exposed subgrade should be scarified to a minimum depth of 9 inches, moisture conditioned, and compacted as recommended in section **4.2.3 Compaction Requirements**.

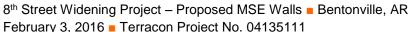
8th Street Widening Project – Proposed MSE Walls ■ Bentonville, AR February 3, 2016 ■ Terracon Project No. 04135111

It is critical that the earthwork be performed in strict conformance with the geotechnical recommendations.

4.2.2 Select Fill Materials

We anticipate that fill materials will be divided into 1) soils for the reinforced zone and 2) retained soils.

We recommend that backfill materials used within the reinforced zone meet American Association of State Highway and Transportation Officials (AASHTO), Federal Highway Administration (FHWA), and/or Arkansas Highway Transportation Department (AHTD) standard specifications for design and construction of MSE walls. In general, we recommend that a relatively clean (with a maximum content of fines of 10 percent), free draining material with a minimum effective friction angle of 34 degrees be used.


We assume that retained backfill soils will consist of materials similar to the soils encountered in the existing embankments, which consist of low to high plasticity clays and granular soils with different amounts of fines. We understand that these soil types are typically available near the project site and have been used in similar projects. We recommend that soils having Plasticity Index (PI) values greater than 20 be blended with lower PI soils before being used as new fill.

4.2.3 Compaction Requirements

The scarified and compacted subgrade and new fills should be moisture conditioned and compacted using the recommendations presented in the following table.

Item	Description
Subgrade Scarification Depth	9-inches
Fill Lift Thickness ¹	12-inches or less in loose thickness
Compaction Requirements ²	At least 95% of the material's maximum dry density based on AASHTO T-99 or AASHTO T-180 standard specifications, depending on the content of fines (AHTD Specifications section 210.10).
Moisture Content	A level within minus 2 to plus 2 of the material's optimum moisture content, determined in accordance with AASHTO T-99/T-180. ³

- 1. Thinner lifts are recommended in confined areas or when hand-operated compaction equipment is used.
- 2. The scarified and compacted subgrade and new fills should be tested for moisture content and compaction during placement. Should the results of the in-place density tests indicate the specified moisture or compaction limits have not been met, the area represented by the test should be reworked and retested as required until the specified moisture and compaction requirements are achieved.
- 3. Granular materials should be compacted at a workable moisture content.

The recommended moisture content should be maintained in the scarified and compacted subgrade and new fills, until fills are completed.

Although the moisture content and density relationship of free-draining backfill materials cannot be suitably tested using the AASHTO T-99 or T-180 standards, these materials should still be constructed in a controlled manner and tested during construction. An observation-based procedure in which the granular material is densified by multiple passes of the compaction equipment until the maximum achievable density is reached or relative density test procedures should be performed to verify that adequate compaction of clean granular material has been achieved.

The fill material should be placed on a relatively level surface. Existing slopes configured at ratios greater than 4H:1V should be continuously benched to avoid placing fill on a sloped surface. The benches should be of sufficient width for easy access to placement and compaction equipment.

4.2.4 Construction Considerations for MSE Walls

The construction specifications should provide the backfill material description and design strength parameters that are required for the different fill zones so that unsuitable materials are not used in the reinforced backfill zone during construction.

Prior to starting construction of the MSE wall, fill material proposed for constructing the reinforced zone of the wall should be sampled and tested in the laboratory to confirm that the engineering properties of the backfill satisfy the assumed properties used in design. Observation and field testing during earthwork activities and construction of MSE walls should be provided by qualified geotechnical personnel.

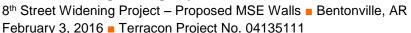
If the subgrade should become frozen, excessively wetted or dried, or disturbed, the affected material should be removed or scarified, moisture conditioned, and recompacted prior to construction of new fill layers.

Any overexcavations for compacted backfill placement below the retaining wall should extend laterally a minimum of 5 feet beyond the front of the retaining wall toe to a minimum distance behind the wall equal to the width of the reinforced zone. The overexcavation should then be backfilled to the foundation base elevation with approved fill materials as recommended in section **4.2.3 Compaction Requirements**.

If soils encountered during construction differ from the soils described in this report, Terracon should be consulted so proper adjustments and/or reevaluation of our analyses can be performed.

The grading contractor, by his contract, is usually responsible for designing and constructing stable, temporary excavations and should shore, slope or bench the sides of the excavations as required, to maintain stability of both the excavation sides and bottom. All excavations should

8th Street Widening Project – Proposed MSE Walls • Bentonville, AR February 3, 2016 • Terracon Project No. 04135111



comply with applicable local, state and federal safety regulations, including the current OSHA Excavation and Trench Safety Standards.

4.3 External Stability Analysis of MSE Walls

Our external stability analyses of select MSE wall sections included bearing capacity, direct sliding, overturning, and global stability. Our analyses were performed at multiple wall sections based on the plans, profiles, and cross sections provided to us by Burns & McDonnell, 60% Plans, Rev. July 31, 2015. We evaluated MSE wall sections with total heights between about 10 and 33.5 feet. Our external stability analyses included the following criteria and considerations:

- Long term stability analyses for the proposed MSE wall structures were performed based upon drained parameters.
- Short term stability analyses for the proposed MSE wall structures were performed based upon undrained parameters. The short term stability was checked for select cross sections based on the lowest global stability Factor of Safety (FOS) values or the longest reinforcement lengths as calculated during our long term stability analyses.
- Direct sliding was evaluated at the base of the reinforced zone for the interface between the foundation soils and the new reinforced soils. We assume that the first reinforcement layer will not be placed between the interface of the bearing materials and reinforced soils to avoid generating a weak sliding surface.
- Generally, overturning is not a concern for MSE walls. However, we evaluated the Capacity Demand Ratio (CDR) for select cross sections.
- A traffic surcharge load of 240 psf was used for traffic parallel to the wall alignments and 500 psf for traffic perpendicular to the wall alignments (abutment walls), in accordance with AASHTO LRFD.
- The reinforced zone is considered to act as a rigid block. We used a theoretical cohesion (c') value of 5,000 psf to prevent the failure surface from extending through the reinforced zone.
- Our global stability analyses were performed using GLE/Morgenstern-Price method.
- We used a minimum embedment depth of 3.0 feet as shown on the 60% Plans, Rev. July 31, 2015.
- A minimum reinforcement length of 8 feet or 70% of the design wall height, whichever is greater, should be used. Longer reinforcement lengths will be required at various locations.

- Several MSE walls will be constructed over existing embankments with slope inclinations at the toe of the walls of 3H:1V, or flatter. Some MSE walls will be constructed over native cuts with slope inclinations of 2H:1V, or flatter.
- To simulate the effect of the existing residential houses near borings BW-716 and BW-902 on the external stability, we included additional permanent loads of 750 psf.
- Internal stability analyses will be performed by others (e.g. wall manufacturer).

Geotechnical parameters used in our analyses and the description of the AASHTO *LRFD Bridge Design Specifications, 6th Edition, 2012* methodology are given in the following sections. Section **4.3.7 Summary of External Stability Analyses** summarizes the results of the Capacity Demand Ratio (CDR) values calculated for select cross sections under long term conditions. A CDR value is defined as the result of the factored driving forces over the factored resisting forces. A CDR of 1.0 is generally considered in design. Section **4.3.8 Summary of Global Stability Analyses under Short Term Conditions** summarizes the results of the Factor of Safety (FOS) values calculated for select cross sections under short term conditions.

4.3.1 Design Parameters

In general, soil and rock strength parameters for our external stability analyses were estimated based on the results of our field exploration, visual classification of soils and rock materials, laboratory test results (soil classification tests, Unconsolidated Undrained Triaxial, Consolidated Undrained Triaxial, and consolidation tests), literature review, and our experience with similar materials and projects with similar scope.

Based on the results of our laboratory testing program, effective friction angle values between approximately 28 and 34 degrees and effective cohesion values between approximately 100 and 800 pounds per square foot (psf) were calculated for the clay soils. Based on a "drained-fully softened condition" approach, effective friction angle and cohesion values of the low to high plasticity clay soils range from approximately 23 to 32 degrees and 0 to 100 psf, respectively.

Undrained shear strength values in the range of 500 psf to 2,000 psf were used for the clay soils for our short term global stability analyses. Total and effective friction angle values for granular soils were assumed to be the same under short term and long term conditions.

The following design parameters were used for the stability analysis of the proposed MSE walls. The shear strength parameters (effective friction angle and cohesion) shown below are based on drained conditions to account for the long-term stability.

8th Street Widening Project – Proposed MSE Walls ■ Bentonville, AR February 3, 2016 ■ Terracon Project No. 04135111

Effective Shear Strength Parameters and Soil/Rock Unit Weights for Analysis and Design

Soil Type	Soil Classification	Effective Friction Angle, Φ' (degrees)	Effective Cohesion, c' (psf)	Total Unit Weight, γ (pcf)
Reinforced Zone (Aggregate base)	AHTD Class 7	34	01	125
Existing Fill Materials: (Low to high plasticity	Retained Soil	28 – 30	0	125
clays and granular soils with fines)	Foundation Soil	28 – 32	0 - 100	115 - 125
	Medium plasticity, lean and lean to fat clay	26 – 32	0 – 100 ²	110 – 130
Fine Soils	High plasticity, fat clay	23 – 28	0 – 25 ²	105 – 120
	Low plasticity, silty clay	25 – 28	0	105 – 120
	Non-plastic, silt	26 – 30	0	105 – 120
	High plasticity, elastic silt	23 – 28	0	105 – 120
Granular soils	Poorly graded sand and silty sand	28 – 34	0	115 - 130
	Chert gravel with fines	28 – 34	0	115 – 130
Bedrock	Cherty limestone and limestone	38	125	140 - 145

^{1.} For global stability analysis, the reinforced zone was treated as a rigid body with an apparent cohesion of 5,000 psf to prevent the critical failure surface from extending through the reinforced zone.

4.3.2 Load and Resistance Factors

The following load and resistance factors should be applied during the analysis and design of MSE walls, as indicated in the AASHTO *LRFD Bridge Design Specifications, 6th Edition, 2012.*

Load Factor for vertical earth pressure, EV, from Table 3.4.1-2 and Figures C11.5.6-1 & 2:

 $\gamma_{\text{p-EV}} = 1.00$ Direct Sliding and Eccentricity $\gamma_{\text{p-EV}} = 1.35$ Bearing Capacity

^{2.} Cohesion parameters range valid for this project due to the overconsolidation ratios (OCR) of the surficial lean and lean to fat clay soils. Fat clays, which were encountered at deeper elevations at this site, would normally exhibit lower OCR values.

8th Street Widening Project – Proposed MSE Walls ■ Bentonville, AR February 3, 2016 ■ Terracon Project No. 04135111

Load factor for active earth pressure, EH, from Table 3.4.1-2 and Figures C11.5.6-1 & 2:

■ Load Factor for live load surcharge, LS, from Table 3.4.1-1 and Figure C11.5.6-3:

$$\gamma_{\text{p-LL}}$$
 = 1.75 Bearing Capacity, Direct Sliding, and Eccentricity

Resistance factor for bearing resistance of MSE walls from Table 11.5.7-1:

$$\varphi_b = 0.65$$

Resistance factor for sliding of MSE walls from Table 11.5.7-1:

$$\phi_{\tau}$$
 = 1.0 Reinforced Soil and Foundation

Resistance factor for global (overall) stability of MSE walls from Section 11.6.2.3:

$$\phi$$
 = 0.75 for structures that do not support structural elements ϕ = 0.65 for structures that support structural elements (e.g. abutment walls)

The equivalent minimum factor of safety (FOS) using limiting equilibrium methods of analysis (i.e. Allowable Stress Design – ASD) for the above global stability resistance factors correspond to 1.3 and 1.5, respectively

4.3.3 Foundation Bearing Capacity

The factored bearing resistance (q_R) was evaluated using the following equation:

$$q_R = \phi_b q_n$$
 (Equation 10.6.3.1.1-1)

where: $\varphi_b = \text{resistance factor}$

 q_n = nominal bearing resistance, which is defined as

$$q_n = c N_{cm} + \gamma D_f N_{qm} C_{wq} + 0.5 \gamma B N_{\gamma m} C_{w\gamma}$$
 (Equation 10.6.3.1.2a-1)

where: c : cohesion

 γ : total unit weight

 N_{cm} , N_{gm} and N_{vu} : dimensionless bearing capacity factors

B: total reinforcement length

 C_{wq} and C_{wy} : correction factors to account for the location of groundwater

table

The bearing capacity equations given above are dependent on soil properties, foundation shape, foundation embedment, loads acting on the wall, load inclination, groundwater level, and the design

8th Street Widening Project – Proposed MSE Walls ■ Bentonville, AR February 3, 2016 ■ Terracon Project No. 04135111

reinforcement length (total and effective foundation width). We have also taking into account the effects of the relatively shallow bedrock in our analyses. A summary of the Capacity Demand Ratio (CDR) values for bearing capacity for the cross sections analyzed is given in section **4.3.7 Summary of External Stability Analyses**.

4.3.4 Direct Sliding

The factored resistance against failure by sliding was determined using the following equation.

 $R_R = \phi_\tau R_\tau$ (Equation 10.6.3.4-1)

where: φ_{τ} = resistance factor for shear resistance between soil and foundation

 R_{τ} = nominal sliding resistance between soil and foundation

 $R_{\tau} = V \tan \delta$ (Equation 10.6.3.4-2)

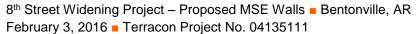
where: V = total vertical force

 δ = interface friction angle between foundation soil and reinforced zone

We used the assumption that the interface friction angle between the foundation soil and the reinforced zone corresponds to the minimum of the foundation friction angle and the reinforced zone friction angle. Generally, the friction angle of the foundation soil is lower than the friction angle of the reinforced zone and therefore, we used $\tan \delta = \tan \varphi$, where φ corresponds to the effective (drained) friction angle of the foundation soil. A summary of the Capacity Demand Ratio (CDR) values for direct sliding for the cross sections analyzed is given in section **4.3.7 Summary of External Stability Analyses**.

4.3.5 Overturning

According to AASHTO *LRFD Bridge Design Specifications*, generally overturning due to eccentricity does not govern the design of MSE walls. However, MSE structures shall be proportioned to satisfy eccentricity. To satisfy overturning, the location of the resultant of the reaction forces shall be within the middle two-thirds of the base width. The following general equation provides for the calculation of eccentricity:


$$e = \frac{(\Psi_{EHA}) (F_1) (H/3) + (\Psi_{LS}) (F_2) (H/2)}{(\Psi_{EV}) (V_1)}$$

where: Ψ_{EHA} = load factor for horizontal earth pressure (i.e. 1.50)

 Ψ_{LS} = load factor for traffic surcharge load (i.e. 1.75) Ψ_{EV} = load factor for dead load of earth fill (i.e. 1.0)

H = design height wall

V = factorized vertical load due to reinforced zone

 $F_1 \& F_2 =$ factorized horizontal loads due to retained soil and traffic surcharge

The Capacity Demand Ratio (CDR) for overturning is calculated as the ratio between the factored resistance forces and the factored driving forces. A summary of the Capacity Demand Ratio (CDR) values for overturning for the cross sections analyzed is given in section **4.3.7 Summary of External Stability Analyses**.

4.3.6 Global Stability

AASHTO LRFD Bridge Design Specifications, 6th Edition, 2012 recommends that global (overall) stability of the retaining wall, retained slope, and foundation soil be evaluated using limiting equilibrium methods of analysis, in which a single Factor of Safety (FOS) is generated by slope stability software.

The computer program SLIDE v6.0 (by Rocscience, Inc.) was used to evaluate the global stability of select cross sections. We used the GLE/Morgenstern-Price limit equilibrium method to perform our analyses. This stability analysis method requires satisfying equilibrium of forces and moments acting on individual blocks. MSEW – Mechanically Stabilized Earth Walls (by ADAMA Engineering, Inc.) was also used to evaluate the influence of loads located away from the top of the walls due to the existence of residential houses near boring locations BW-716 and BW-902.

A summary of the Capacity Demand Ratio (CDR) values for global stability for the cross sections analyzed is given in section **4.3.7 Summary of External Stability Analyses**.

4.3.7 Summary of Long Term External Stability Analyses

Based on the subsurface conditions encountered in the borings and the design considerations mentioned in this report, the minimum required reinforcing strap lengths for this project vary between 70 and 85 percent of the wall height, or 8 to 26.5 feet. The wall height corresponds to the exposed height of the wall plus the embedment depth.

The minimum reinforcement length required to satisfy the external stability of a section of an MSE walls corresponds to the length that satisfies Capacity Demand Ratio (CDR) values equal to or greater than 1.0 for bearing capacity (BC), direct sliding (DS) and overturning (OT) and factor of safety (FOS) values for global stability (GS) greater than 1.3 for non-critical MSE walls and 1.5 for critical MSE walls.

The following table shows the summary of the Capacity Demand Ratio (CDR) and Factor of Safety (FS) values for each external stability condition and the minimum reinforcement lengths to satisfy the external stability of the cross sections analyzed. The values presented for the combined sections correspond to the factor of safety for the global stability of the tiered walls. The wall manufacturer is responsible for evaluating internal stability. Longer reinforcements might be required to satisfy internal stability.

8th Street Widening Project – Proposed MSE Walls • Bentonville, AR February 3, 2016 • Terracon Project No. 04135111

MSE	Boring /	H _D	CDR	CDR	CDR	FOS	Controls	(L/H) _{min}	L _{MIN}
Wall	Approx. Sta.	(feet)	вс	DS	ОТ	GS	Controls	(L/II)min	(feet)
Wall 1	BW-106 Sta. 1042+00	12.0	1.1	1.0	2.1	1.4	L _{DS}	75%	9.0
	BW-301 Sta. 1045+50	17.5	1.0	1.3	3.1	1.6	L _{BC}	85%	14.9
	BW-305 Sta. 1049+50	11.0	1.8	1.0	2.7	1.5	L _{DS}	85%	9.4
Wall 2	BW-205 Sta. 1043+50	12.0	13	1.1	2.1	1.4	L _{DS}	75%	9.0
	BW-402 Sta. 1047+50	12.0	1.1	1.0	2.1	1.3	L _{DS/GS}	75%	9.0
	BW-405 Sta. 1049+50	15.5	1.1	1.0	2.8	1.6	L _{DS}	85%	13.0
Wall 3A	BW-511 Sta. 138+00	21.0	1.3	1.0	2.2	1.6	L _{DS}	70%	14.7
	BW-502 Sta. 1049+50	12.5	1.1	1.0	2.1	1.4	L _{BC}	75%	9.4
Woll 2D	BW-503 Sta. 1052+50	16.0	1.3	1.1	2.1	1.4	L _{MIN}	70%	11.2
Wall 3B	BW-506 Sta. 1054+50	17.0	1.4	1.1	2.1	1.4	L _{MIN}	70%	11.9
	BW-509 Sta. 1056+50	26.0	1.5	1.1	2.3	1.5	L _{MIN}	70%	18.2
Woll 4	BW-603 Sta. 1057+00	11.0	1.1	1.0	2.1	1.4	L _{DS}	75%	8.3
Wall 4	BW-606 Sta. 1059+00	25.0	1.2	1.2	3.0	1.3	L _{GS}	80%	20.0
Wall 5A	BW-509 Sta. 1056+50	16.0	2.2	1.0	2.4	1.4	L _{DS}	85%	13.6
wall 5A	BW-705 Sta. 1058+00	24.5	1.6	1.1	2.3	1.5	L _{MIN}	70%	17.2
)A/- II 5D	BW-708 Sta. 1061+00	28.0	1.0	1.0	2.9	1.3	L _{GS}	85%	23.8
Wall 5B	BW-715 Sta. 1067+50	10.5	1.9	1.0	2.7	1.5	L _{DS}	85%	8.9
Wall 6A	BW-802/606 Sta. 1059+00	18.5	1.5	1.0	2.2	1.4	L _{DS}	85%	15.7
Wall 6B	BW-806 Sta. 1062+00	31	1.3	1.1	3.6	1.3	L _{GS}	85%	26.4
	BW-809 Sta. 1064+50	16.5	1.3	1.2	2.4	1.3	L _{GS}	75%	12.4
	BW-812 Sta. 1067+00	14	1.2	1.0	2.6	1.4	L _{DS}	80%	11.2
Wall 7	BW-716 Sta. 1067+50	14.0	1.6	1.1	2.0	2.3	L _{MIN}	70%	9.8
	BW-902 Sta. 1070+50	18.5	1.1	1.4	2.9	1.5	L _{GS}	85%	15.7
Combined (Tiprod)	BW-305/502 Sta. 1049+50		N/A	N/A	N/A	1.6			
(Tiered) Walls	BW-715/716 Sta. 1067+50		N/A	N/A	N/A	1.9			

8th Street Widening Project – Proposed MSE Walls ■ Bentonville, AR February 3, 2016 ■ Terracon Project No. 04135111

Continued from page 18

Table notes:

H_D: Design height (total wall height = Face of the wall plus embedment depth)

CDR: Capacity Demand Ratio in accordance to AASHTO LRFD 2012

FOS: Factor of Safety for global stability based on Allowable Stress Design

(ASD) methodology, in accordance with AASHTO LRFD 2012

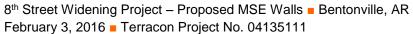
BC: Bearing Capacity
DS: Direct Sliding
OT: Overturning
GS: Global Stability

(L/H)_{min}: Minimum Reinforcement Length (L) – Wall Height (H) ratio

L_{min}: Minimum Reinforcement Length

E_m: Minimum Embedment depth is 3 feet for Abutment Walls

4.3.8 Summary of Short Term Global Stability Analyses


The global stability of select cross sections was analyzed under short term conditions as indicated in the table below. Based on the results of our geotechnical exploration and analyses, the cross sections meet the minimum factor of safety required under short term conditions.

MSE Wall No.	Approximate Station	Boring	FOS _{GS}
Wall 1	Sta. 1042+00	BW-106	2.4
Wall 2	Sta. 1047+50	BW-402	2.2
Wall 3B	Sta. 1054+50	BW-506	2.8
Wall 4	Sta. 1059+00	BW-606	2.2
Wall 5B	Sta. 1061+00	BW-708	1.7
Wall 6B	Sta. 1064+50	BW-809	1.9
Wall 7	Sta. 1070+50	BW-902	1.6

4.3.9 Minimum Recommended Reinforcement Lengths

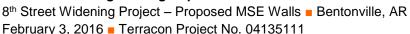
We prepared the following minimum recommended reinforcement length versus approximate project stations based on the results of our external and global stability analyses for the proposed MSE Walls.

MSE Wall	Approximate Total Wall Height (H)	Approximate Stations	Min. Recommended Reinforcement Length
Wall 1	G E to 17 E foot	Sta. 1038+16.55 to Sta. 1043+00	Greater of 0.75H or 8.0'
vvali i	6.5 to 17.5 feet	Sta. 1043+00 to Sta. 1053+70.58	Greater of 0.85H or 8.0'
Wall 2	5.5 to 23.5 feet	Sta. 1040+62.55 to Sta. 1048+00	Greater of 0.75H or 8.0'
vvali 2	5.5 to 25.5 feet	Sta. 1048+00 to Sta. 1052+39	Greater of 0.85H or 8.0'
Wall 3A	3.5 to 25 feet	Sta. 1038+16.55 to Sta. 1043+00	Greater of 0.70H or 8.0'
Wall 3B	6 to 26 feet	Sta. 1047+32.04 to Sta. 1051+00	Greater of 0.75H or 8.0'
vvali 3D	0 to 20 feet	Sta. 1051+00 to Sta. 1058+17.43	Greater of 0.70H or 8.0'
Wall 4	4 to 31.5 feet	Sta. 1055+50 to Sta. 1058+00	Greater of 0.75H or 8.0'
		Sta. 1058+00 to Sta. 1060+13.48	Greater of 0.80H or 8.0'

MSE Wall	Approximate Total Wall Height (H)	Approximate Stations	Min. Recommended Reinforcement Length
Wall 5A	6 to 33 feet	Sta. 1054+00 to Sta. 1057+50	Greater of 0.85H or 8.0'
Wall 5A	0 to 33 feet	Sta. 1057+50 to Sta. 1060+05.82	Greater of 0.70H or 8.0'
Wall 5B	7.5 to 31.5 feet	Sta. 1059+41.15 to Sta. 1069+03.67	Greater of 0.85H or 8.0'
Wall 6A	5 to 32.5 feet	Sta. 1057+40 to Sta. 1059+50	Greater of 0.85H or 8.0'
		Sta. 1059+50 to Sta. 1061+86.41	Greater of 0.80H or 8.0'
Wall 6B	5.5 to 33 feet	Sta. 1061+49.77 to Sta. 1064+00	Greater of 0.85H or 8.0'
Wall OD	5.5 to 55 feet	Sta. 1064+00 to Sta. 1069+28.45	Greater of 0.80H or 8.0'
Wall 7	4.5 to 20 feet	Sta. 1067+00 to Sta. 1068+00	Greater of 0.70H or 8.0'
		Sta. 1068+00 to Sta. 1072+36.89	Greater of 0.85H or 8.0'

4.4 Seismic Considerations

Code Used	Site Classification	
2012 AASHTO LRFD ¹	С	


^{1.} In general accordance with the 2012 AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, Table 3.10.3.1-1 – Site Class Definitions.

4.5 Settlement of Reinforced Zone

Total settlement of an earth structure is caused by compression of the earth structure due to its own weight and by compression of the foundation soils due to the weight of the new structure. Based on our understanding of the project, we anticipate that retained fill materials will be similar to the soils encountered in the existing embankments and that reinforced fill materials will consist of higher quality soil types. Thus, settlement of the proposed MSE walls will depend upon variations within the subsurface soil profile, fill material types, structural loading conditions, construction length, and quality of the earthwork operations. Because of the variations associated with these parameters, we cannot accurately estimate settlements under all design scenarios.

In order to estimate the settlement of the proposed MSE walls, we assumed the following considerations:

- Foundation bearing conditions generally match our subsurface data.
- Any low strength, unstable soils identified during construction will be overexcavated and replaced with tested and approved fill as indicated in Section 4.4 Compaction Requirements, if they cannot be adequately stabilized in-place.
- Settlement time rates of fine-grained soils are higher than settlement rates of granular materials. Therefore, differential settlement can occur when transitioning from one soil type to another.

- Part of the settlement of the new fills will occur during construction as compaction is performed and pore water pressure is dissipated. We anticipate that about 75% of the new fill settlement will occur during construction.
- Construction of a single MSE wall will take about 2 to 3 months.
- Based on limited, one-dimensional consolidation tests performed on select soil samples, the upper native clays exhibit overconsolidation ratios (OCR) on the order of approximately 6 to 7. Lower OCR values can be expected for clays located at deeper elevations.

The results of our analyses indicate that maximum total settlement will occur near the center line of the walls or near the toe of the existing embankments. Total post-construction settlement along the facing panels will be on the range of 1 to $3\frac{1}{2}$ inches with differential settlements not expected to exceed a slope of 1:200.

The settlement of the foundation soils was computed based on the results of limited one-dimensional consolidation tests, available empirical correlations between compressibility and Standard Penetration Test (SPT) values obtained from our borings, and our experience with similar soils. Estimation of new fill settlement included recommendations provided by the U.S. Army Corps of Engineers (Manual 1110-1-1904 – 11/1990) and NAVFAC DM 7.2 (Design Manual 7.02 – 11/1986) for settlement analysis of compacted fills.

The following table summarizes the range of post-construction settlement values that can be expected due to construction of the proposed MSE walls. If the designer considers that total and differential settlement values exceed the design requirements, ground improvement methods can be considered. We will be pleased to provide ground improvement alternatives upon request.

Estimated Post-Construction Total and Differential Settlement (inches)				
MSE Wall	Total Settlement Along Wall Facing	Differential Settlement Over 100 Feet ¹		
Wall 1 - Sta. 1036+16.5 to 1053+70.58 - South Bound	1 to 3	½ to 1		
Wall 2 - Sta. 1040+62.55 to 1052+39.00 - North Bound	1 to 3	½ to 1		
Wall 3A - Sta. 1044+25 to 1053+00 - 8th Street	1 to 2 ½	½ to 1		
Wall 3B - Sta. 1047+32.04 to 1058+17.43 - South Bound	2 to 3	½ to 1		
Wall 4 - Sta. 1055+50 to 1060+13.48 - North Bound	1 to 2 ½	½ to 1		
Wall 5A - Sta. 1054+00 to Sta. 1060+05.82 - South Bound	1 to 2 ½	½ to 1		
Wall 5B - Sta. 1059+41.15 Sta. 1069+03.67 - South Bound	1 ½ to 3 ½	½ to 1 ½		
Wall 6A - Sta. 1057+40 to Sta. 1061+86.41 - North Bound	1 to 2 ½	½ to 1		
Wall 6B - Sta. 1061+49.77 to 1069+28.45 - North Bound	1 to 2 ½	½ to 1		
Wall 7 – Sta. 1067+00 to Sta. 1072+36.89 – South Bound	1 to 2 ½	½ to 1		

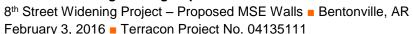
8th Street Widening Project – Proposed MSE Walls ■ Bentonville, AR February 3, 2016 ■ Terracon Project No. 04135111

Continued from page 21

1. Differential settlement will be the greatest where transitioning between relatively soft and stiff bearing materials or fine soils and granular soils.

4.6 Wall Drainage Recommendations

Care should be taken in the design and during construction to develop and maintain rapid, positive drainage away from the retaining wall area. Water should not be allowed to pond adjacent to either the upslope or downslope sides of the retaining wall. We recommend that drainage swales with sufficient gradients be constructed along both the upslope and downslope sides of the wall to direct surface water away from the wall. Proper surface drainage is needed to prevent water from flowing over the face of the wall and saturating either the fill behind the wall or the subgrade soils at the base of the wall.

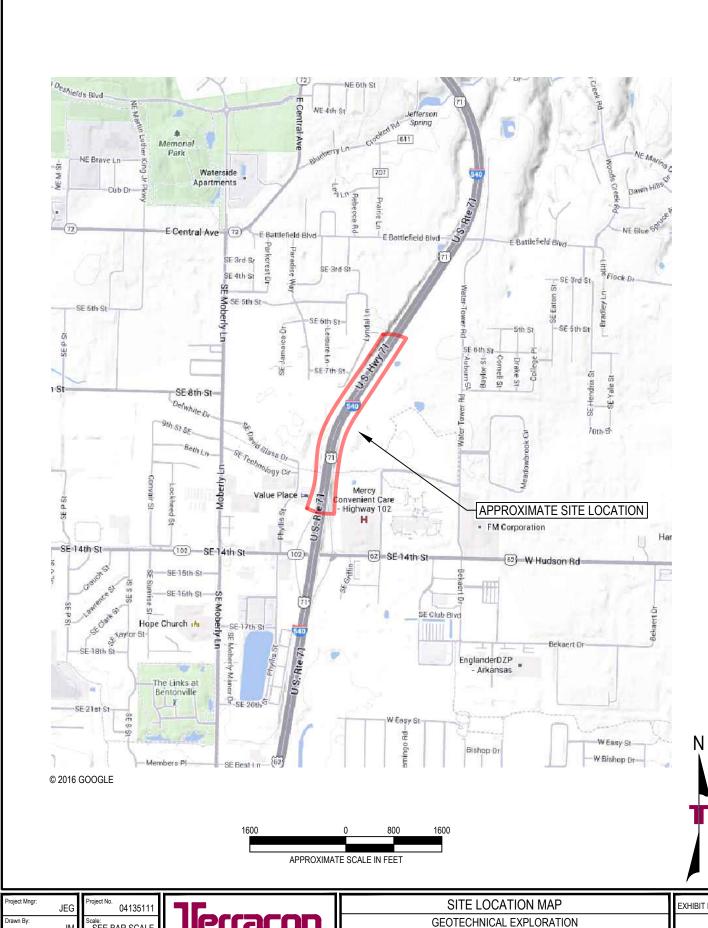

If Arkansas Highway Transportation Department (AHTD) "Class 7" aggregate base material is used to construct the reinforced zone, we recommend that a backslope drain, comprised of a geocomposite drainage blanket, such as Miradrain or equivalent, be attached to the face of the cut backslope and extend down to a collector drain pipe placed along the bottom of the reinforced zone at the base of the cut slope. The collector drain should consist of a perforated PVC pipe that is placed in free-draining aggregate such as No. 57 stone, with the stone wrapped in a geotextile filter fabric. The collector drain should be sloped to drain out beyond one or both ends of the retaining wall. The geocomposite drainage blanket should be cut off at a depth of 2 feet below the finished ground surface at the back of the reinforced backfill zone to allow a minimum cover of 2 feet of compacted clayey soil over the drain to prevent the infiltration of surface water into the backslope drain.

Alternatively, select drainable aggregate fill material consisting of crushed No. 57 stone could be imported to construct the entire reinforced zone. If the crushed No. 57 stone is used to construct the reinforced backfill zone, we recommend that a geotextile filter fabric, such as Mirafi 140N be placed between the face of the cut slope and the reinforced backfill zone to prevent the migration of fines from the native soils into the free-draining No. 57 stone.

5.0 GENERAL COMMENTS

Terracon should be retained to review the final design plans and specifications so comments can be made regarding interpretation and implementation of our geotechnical recommendations in the design and specifications. Terracon also should be retained to provide testing and observation during excavation, grading, foundation and construction phases of the project.

The analysis and recommendations presented in this report are based upon the data obtained from the borings performed at the indicated locations and from other information discussed in this



report. This report does not reflect variations that may occur between the borings, across the site, or due to the modifying effects of weather. The nature and extent of such variations may not become evident until during or after construction. If variations appear, we should be immediately notified so that further evaluation and supplemental recommendations can be provided.

The scope of services for this project does not include either specifically or by implication any environmental assessment of the site or identification or prevention of pollutants, hazardous materials or conditions. If the owner is concerned about the potential for such contamination or pollution, other studies should be undertaken.

This report has been prepared for the exclusive use of our client for specific application to the project discussed and has been prepared in accordance with generally accepted geotechnical engineering practices. No warranties, either express or implied, are intended or made. Site safety, excavation support, and dewatering requirements are the responsibility of others. In the event that changes in the nature, design, or location of the project as outlined in this report are planned, the conclusions and recommendations contained in this report shall not be considered valid unless Terracon reviews the changes and either verifies or modifies the conclusions of this report in writing.

APPENDIX A FIELD EXPLORATION

JM Checked By: JEG Approved By MHH

SEE BAR SCALE 04135111 JAN 2016

Consulting Engineers and Scientists 9522 EAST 47TH PLACE, UNIT D TULSA, OKLAHOMA 74145

FAX. (918) 250-4570

PH. (918) 250-0461

GEOTECHNICAL EXPLORATION 8TH STREET WIDENING PROJECT - MSE WALLS BENTONVILLE, ARKANSAS

EXHIBIT NO.

JM Checked By: JEG Approved By: MHH

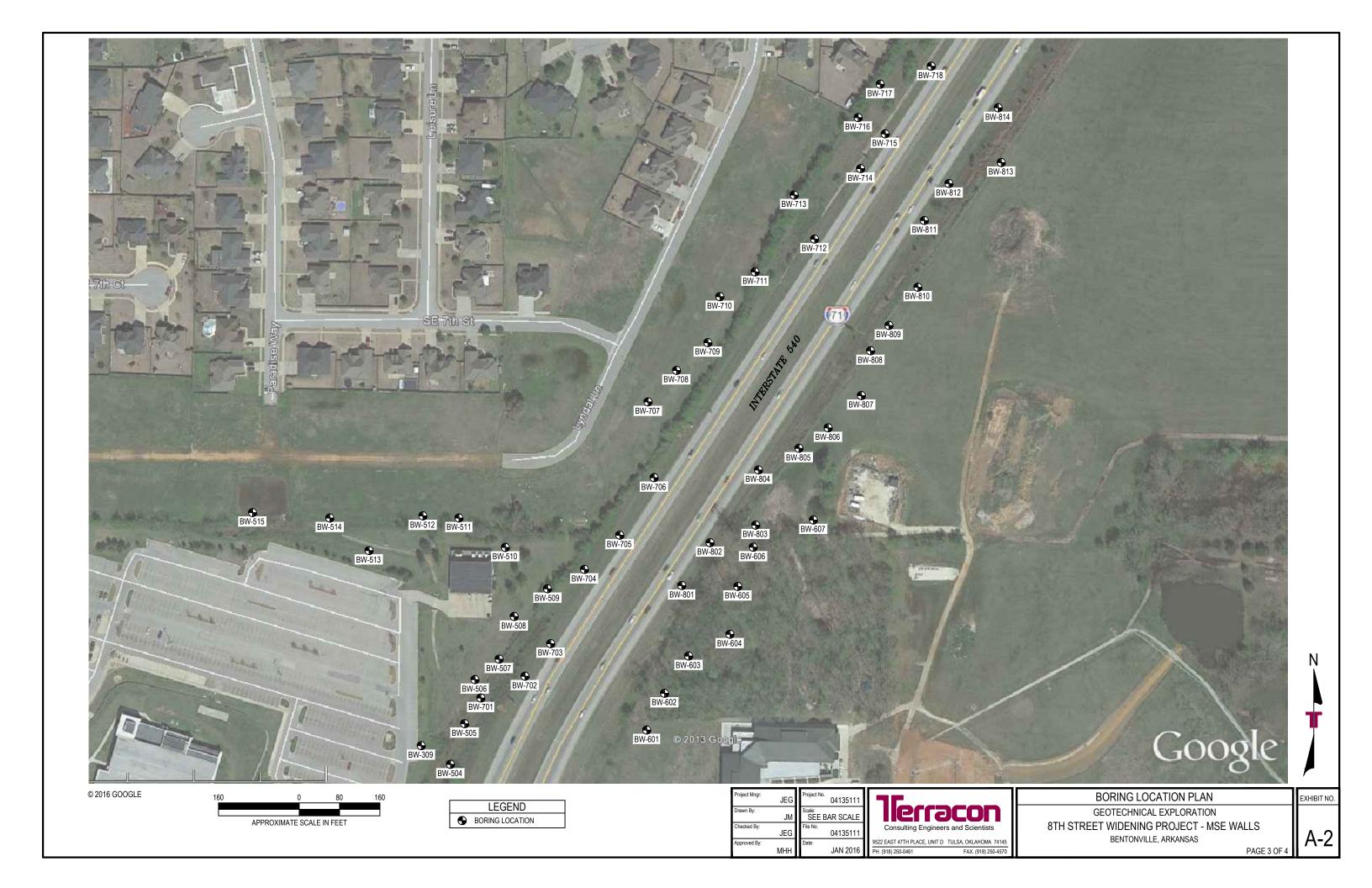
SEE BAR SCALE 04135111 JAN 2016

Consulting Engineers and Scientists

9522 EAST 47TH PLACE, UNIT D TULSA, OKLAHOMA 74145 PH. (918) 250-0461 FAX. (918) 250-4570

8TH STREET WIDENING PROJECT - MSE WALLS BENTONVILLE, ARKANSAS

PAGE 1 OF 4



Checked By: JEG Approved By MHH 04135111 JAN 2016

Consulting Engineers and Scientists 9522 EAST 47TH PLACE, UNIT D TULSA, OKLAHOMA 74145 PH. (918) 250-0461 FAX. (918) 250-4570

8TH STREET WIDENING PROJECT - MSE WALLS BENTONVILLE, ARKANSAS

PAGE 2 OF 4

Project Mngr: JEG

Drawn By: JM

Checked By: JEG

Approved By: MHH

Project No. 04135111

Scale: SEE BAR SCALE

File No. 04135111

Date: JAN 2016

TIEGGEORIAN CONSULTING Engineers and Scientists

9522 EAST 47TH PLACE, UNIT D TULSA, OKLAHOMA 74145
PH. (918) 250-0461 FAX. (918) 250-4570

GEOTECHNICAL EXPLORATION

8TH STREET WIDENING PROJECT - MSE WALLS
BENTONVILLE, ARKANSAS

|| A-2

PAGE 4 OF 4

8th Street Widening Project – Proposed MSE Walls ■ Bentonville, AR February 3, 2016 ■ Terracon Project No. 04135111

Field Exploration Description

The boring locations and elevations were established in the field by B & F Engineering, Inc. prior to commencement of our field activities. Several borings were offset in the field due to rig access constrains and/or the presence of underground utilities. Borings located in the mid-slope were offset perpendicular to the proposed MSE wall alignments to either the toe or the crest of the existing slopes. The actual ground elevations at the majority of the boring locations and boring coordinates were recalculated in the field by B & F Engineering, Inc. upon field exploration completion. At some locations, Terracon recalculated ground elevations and coordinates based on the relative elevation and distances between the staked (proposed) boring and the actual boring location using an engineer's level and tape. Elevations given to us by B & F Engineering, Inc. have been rounded to the nearest 0.1 and elevations calculated using our in-house engineer's level have been rounded to the nearest 0.5 feet. The boring locations and elevations should be considered accurate only to the degree implied by the methods used to define them.

We drilled the borings with ATV-mounted rotary drill rigs using continuous flight augers and rotary cutting bits to advance the boreholes. Representative samples were obtained by the split-barrel and thin-walled tube sampling procedures. In the split-barrel sampling procedure, the number of blows required to advance a standard 2-inch O.D. split-barrel sampler the last 12 inches of the typical total 18-inch penetration by means of a 140-pound auto-hammer with a free fall of 30 inches, is the standard penetration resistance value (SPT-N). The N-value is used to estimate the in-situ relative density of cohesionless soils, and to a lesser degree of accuracy, the consistency of cohesive soils and hardness of weathered bedrock. The thin-walled sampling procedure uses a standard 3-inch, O.D. tube (Shelby tube) that is pushed hydraulically into the soil to recover relatively undisturbed samples of cohesive soils.

An automatic SPT hammer was used to advance the split-barrel sampler in the borings. Generally, a greater efficiency is achieved with the automatic hammer compared to the conventional safety hammer operated with a cathead and rope. The effect of the automatic hammer's efficiency has been considered in the interpretation and analysis of the subsurface information for this report.

The sampling depths, penetration distances, and N-values are reported on the boring logs. The samples were tagged for identification, sealed to reduce moisture loss and returned to the laboratory for further examination, testing and classification.

We cored the bedrock at select boring locations using a NQ-size, diamond-bit core barrel. After the core samples were retrieved, the cores were placed in a box and logged. The rock was visually classified, and the "percent recovery" and rock quality designation (RQD) was determined for each run. The "percent recovery" is the ratio of the recovered sample length to the cored length, expressed as a percent. An indication of the actual in-situ rock quality is provided by calculating the core's RQD. The RQD is the percentage of the total length of core retrieved that are in segments at least 4 inches in length compared to each core run length.

8th Street Widening Project – Proposed MSE Walls • Bentonville, AR February 3, 2016 • Terracon Project No. 04135111

Field Exploration Description (Continued)

In addition to split-barrel and thin-walled tube samples, bulk samples were obtained within the soils from different interval depths at the majority of the boring locations to aid in soil classification and to develop generalized strength parameters.

A field log of each boring was prepared by the drill crew. These logs included visual classifications of the materials encountered during drilling as well as the driller's interpretation of the subsurface conditions between samples. Final boring logs included with this report represent the engineer's interpretation of the field logs and include modifications based on observation and laboratory tests of the samples retrieved.

04135111 - BW.

GEO SMART LOG-NO WELL

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT.

04135111 - BW.GP.

GEO SMART LOG-WELL

04135111 - BW.GP.

GEO SMART LOG-NO WELL

04135111 - BW.GP.

GEO SMART LOG-WELL

BORING LOG NO. BW-402 Page 2 of 2													
PR	PROJECT: 8th Street Widening Project - MSE Walls			CLIENT: Burns & McDonell Engineering Company, Inc.									
SIT													
	Bentonville, Arkansas	ı		1						1	ATTERBERG		
GRAPHIC LOG	LOCATION See Exhibit A-2 Latitude: 36.360531° Longitude: -94.176734°		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	UNCONFINED COMPRESSIVE STRENGTH (psi)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LIMITS	PERCENT FINES	
GRAPI		Elev.: 1312.5 (Ft.)	DEPT	WATER OBSER\	SAMPL	RECOVI	FIELD RESI	UNCOR	CONTE	DRY WEIGH	LL-PL-PI	PERCEN	
	CHERTY LIMESTONE+, light gray (10YR 7/1) ar gray (10YR 6/1), hard	ELEVATION (Ft.)						11,490					
			_	-			REC=85% RQD=73%						
0 0			30-										
-0-0			_	-			REC=95%						
H_0			- 35–				RQD=80%						
100	37.0	1275.5	_	-		-	REC=100% RQD=100%						
	Boring Terminated at 37 Feet	1275.5	_				T(QD-10070						
Advand Holl Dian Aband Bac bac													
	Stratification lines are approximate. In-situ, the transition may be	e gradual.					Hammer Type: A +Classification es Petrographic ana	stimated fron					
Advan Holl Dia	Advancement Method: Hollow Stem Auger to 27 feet Diamond Core Bit below 27 feet See Exhibit A-3 for des procedures. See Appendix B for des procedures and additio					ory	Notes:						
Aband Bac bac	onment Method: Sec	e Appendix D for expreviations.											
	WATER LEVEL OBSERVATIONS	7					Boring Started: 10/3	3/2013	Borir	ng Comi	pleted: 10/3/2	013	
✓ 19 ft while drilling Cff							Drill Rig: ATV	-		er: SB		-	
9522 East 47th Tulsa, Ok			7th Place	e, Unit		_	Project No.: 04135111			Exhibit: A-28			

04135111 - BW.GP.

GEO SMART LOG-NO WELL

REPORT

ORIGINAL

04135111 - BW.GP.

GEO SMART LOG-NO WELL

REPORT

04135111 - BW.GPJ

LOG IS NOT VALID IF SEPARATED FROM ORIGINAL

THIS BORING

GEO SMART LOG-NO WELL 04135111 - BW.GPJ

04135111 - BW.GPJ

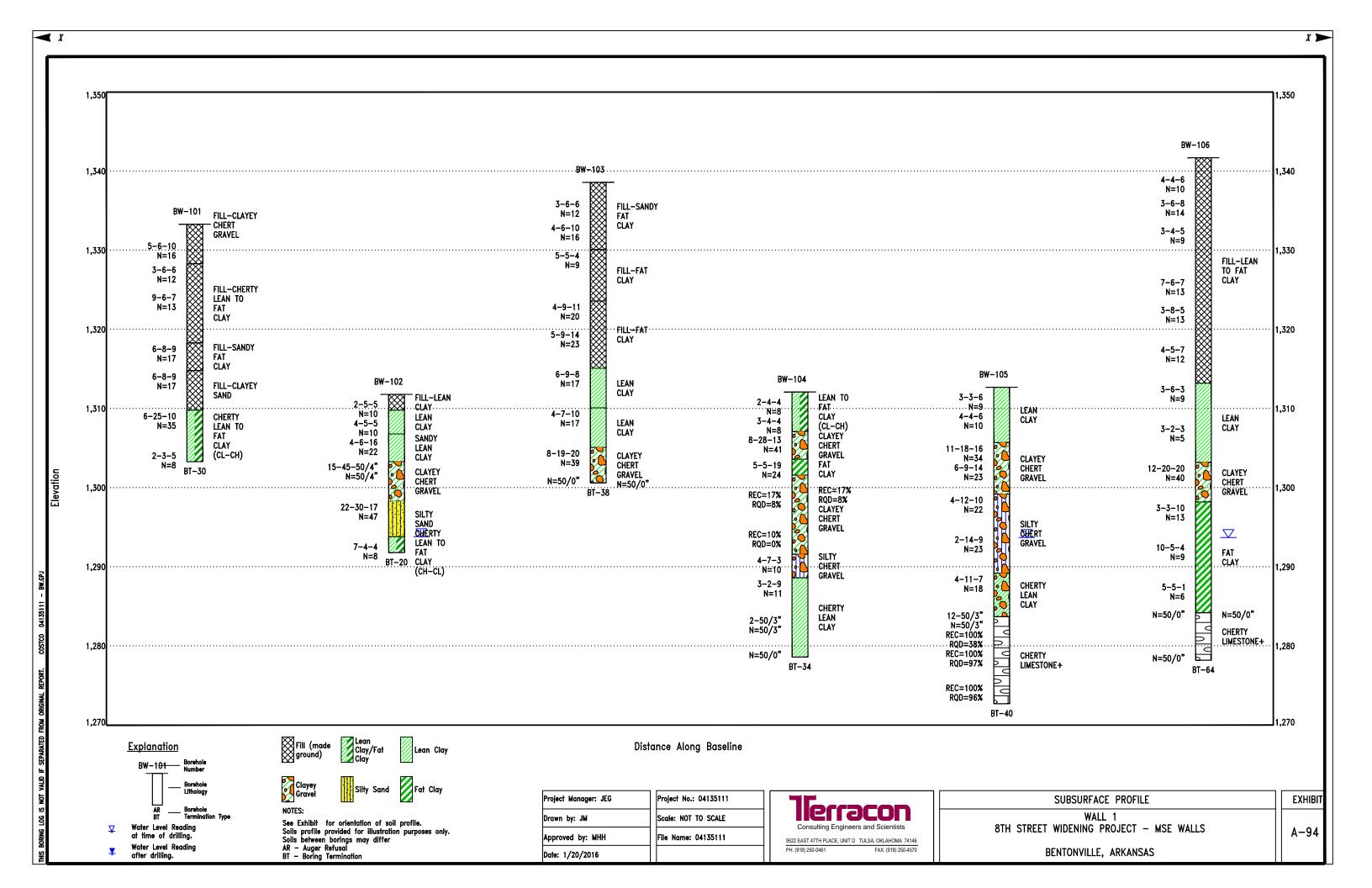
GEO SMART LOG-NO WELL

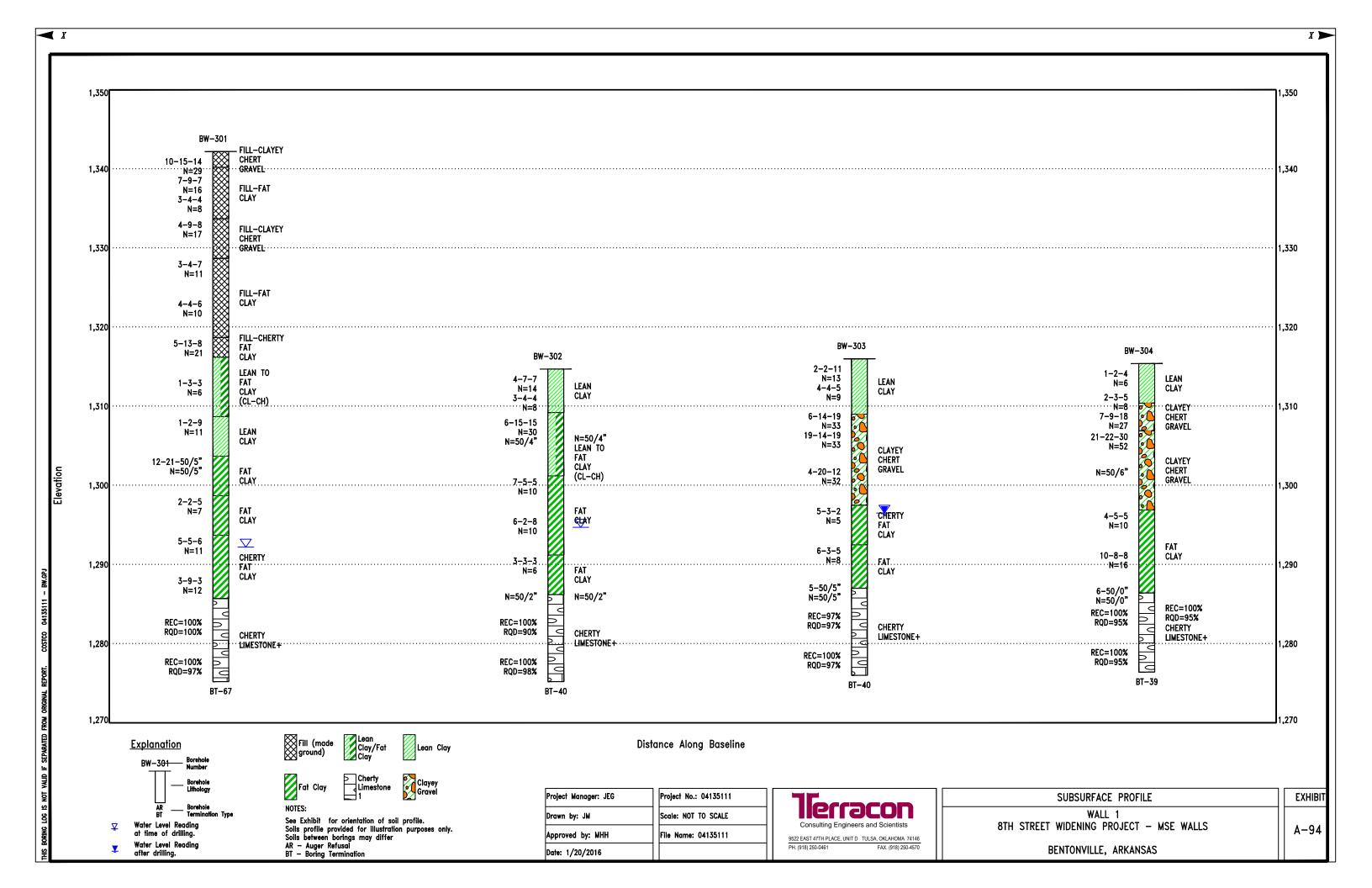
04135111 - BW.GPJ

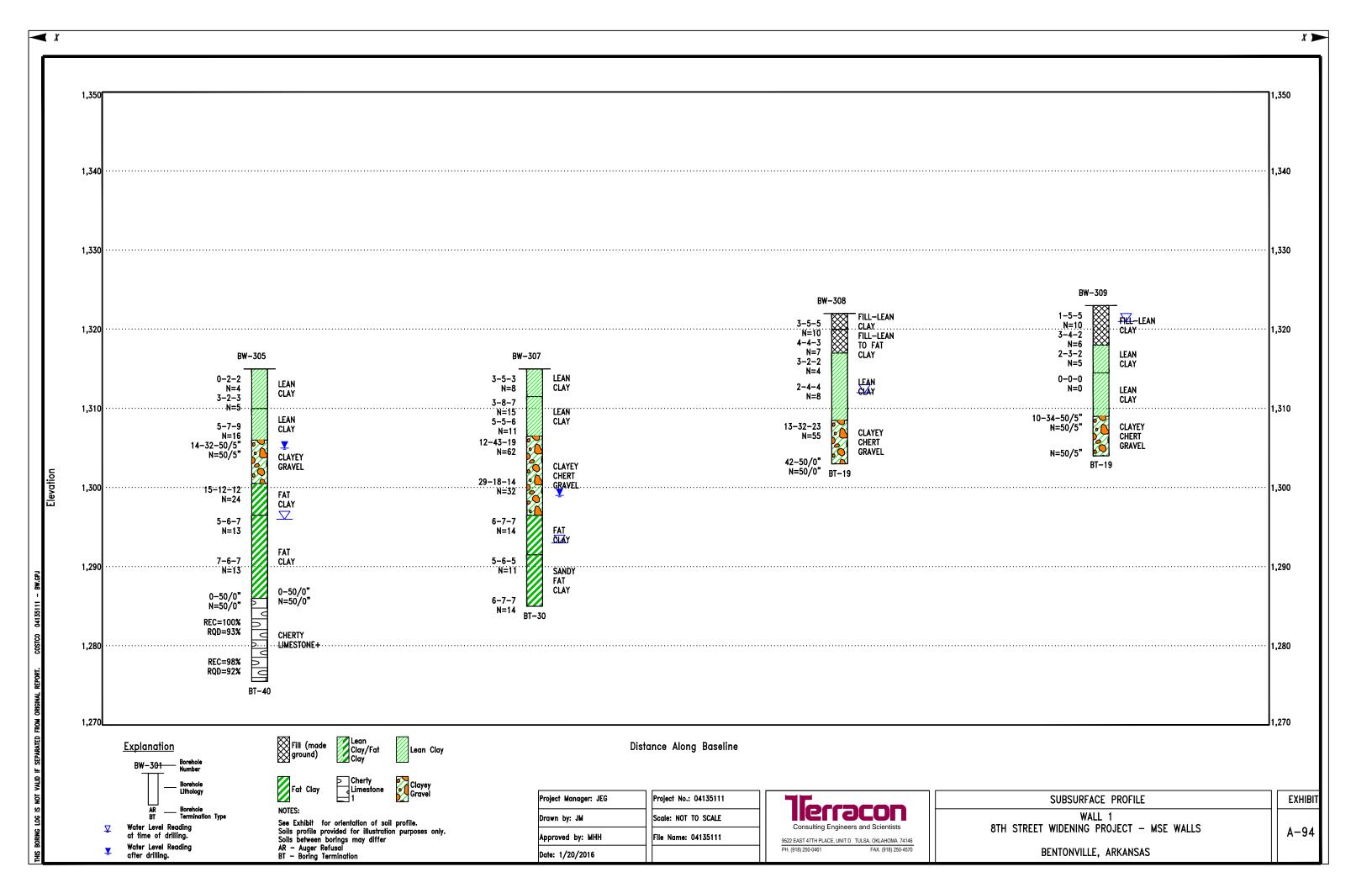
GEO SMART LOG-WELL

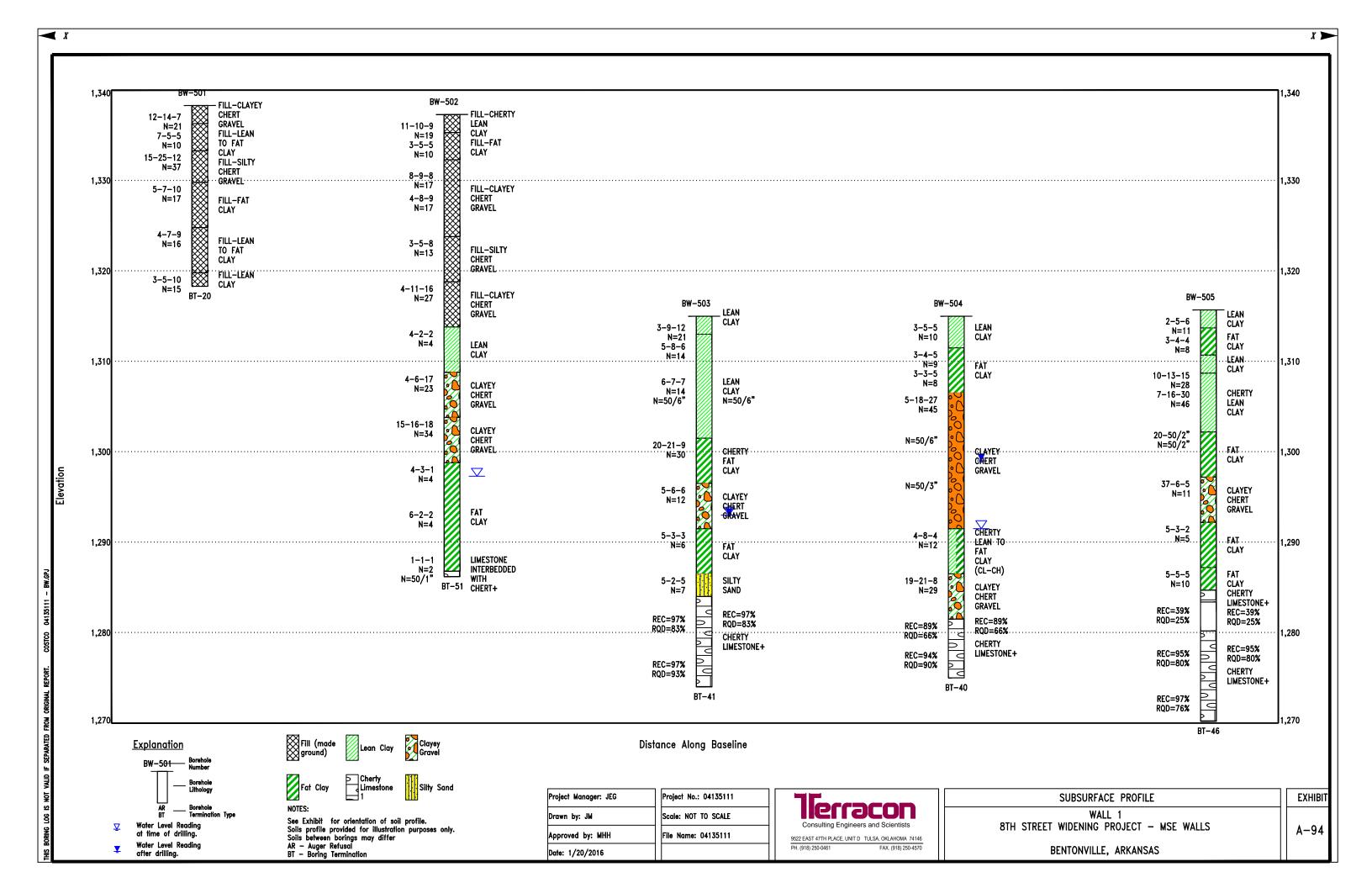
LOG IS NOT VALID IF SEPARATED FROM ORIGINAL

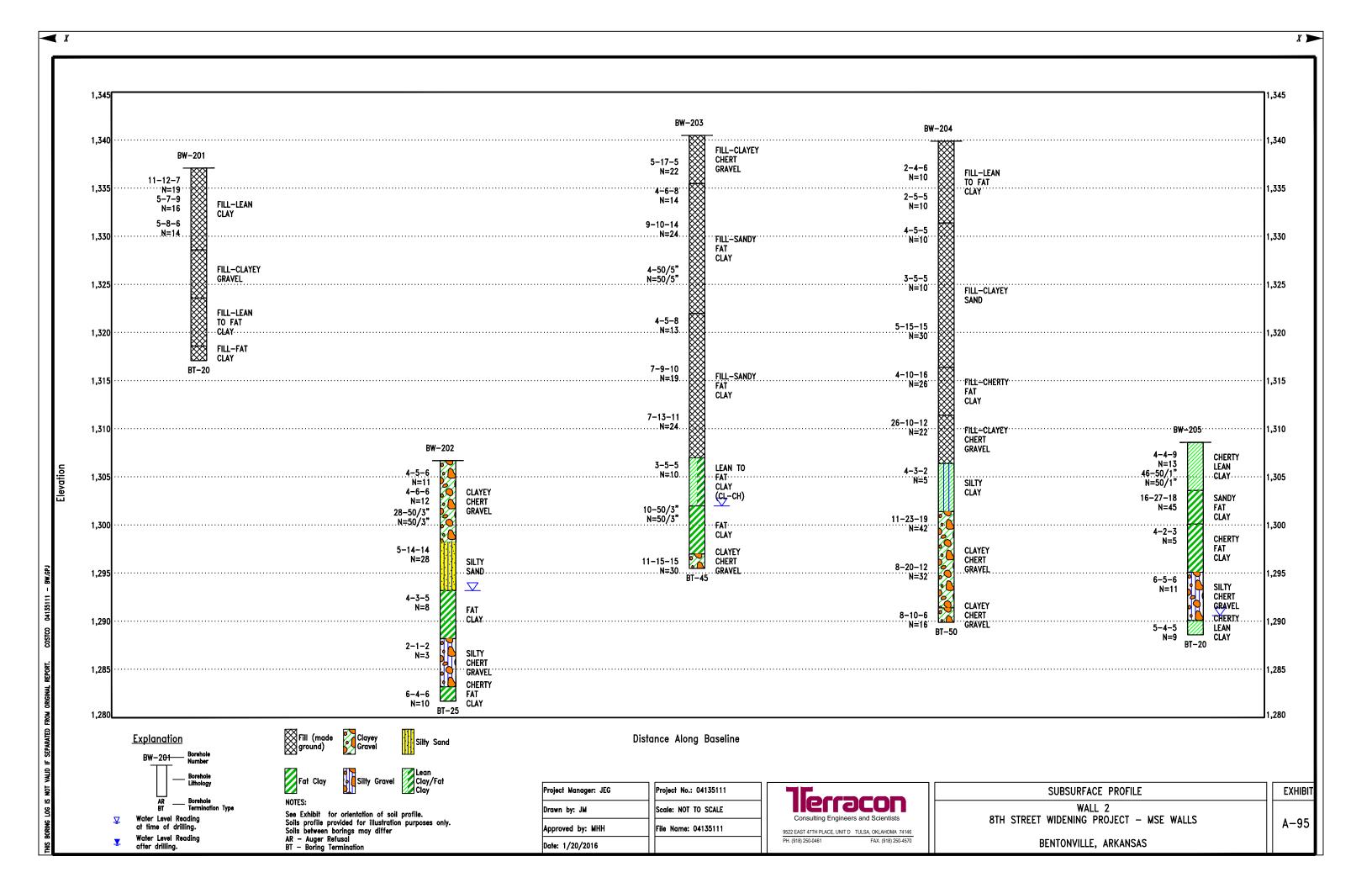
THIS BORING

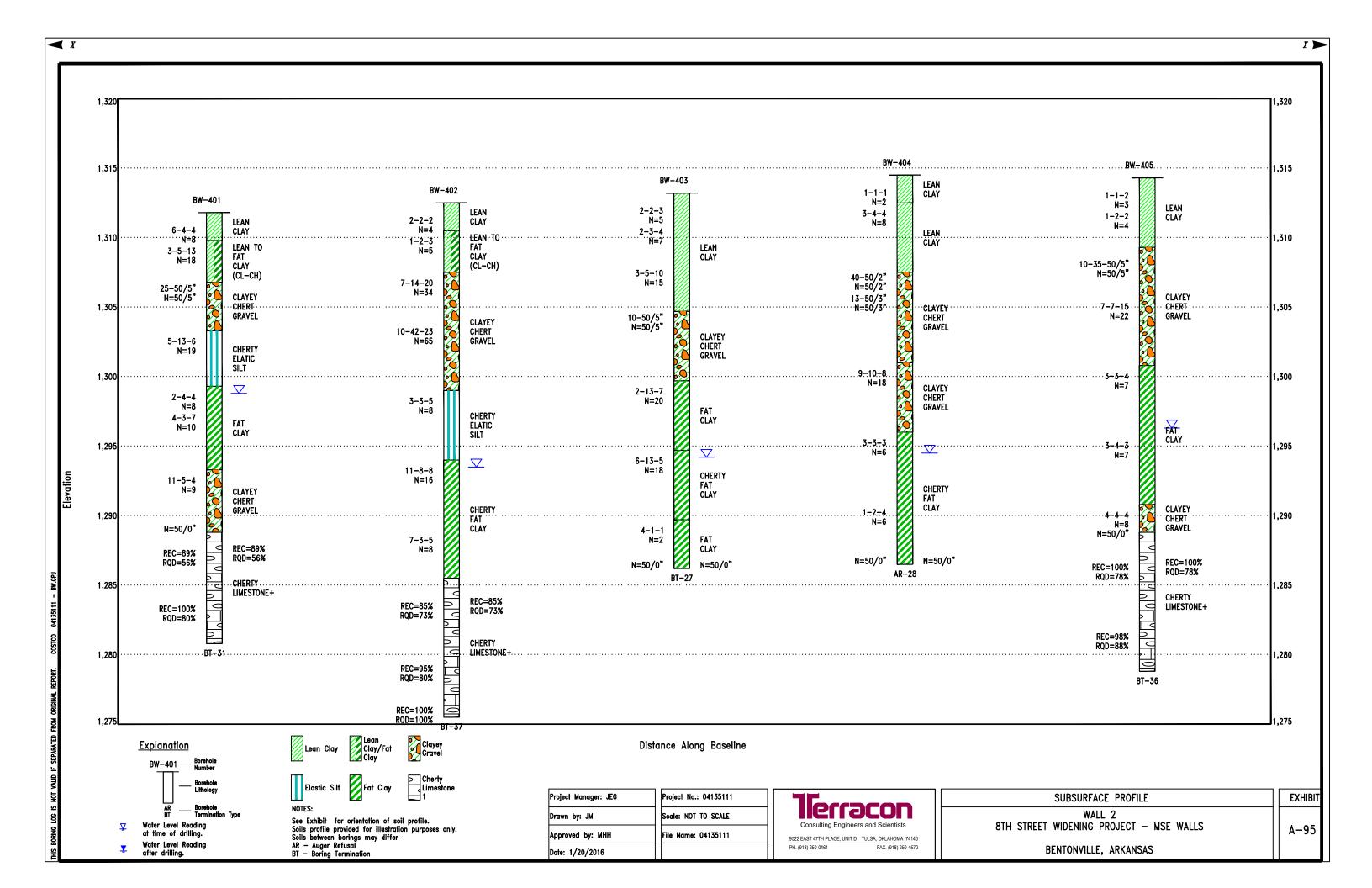

GEO SMART LOG-WELL 04135111 - BW.GPJ

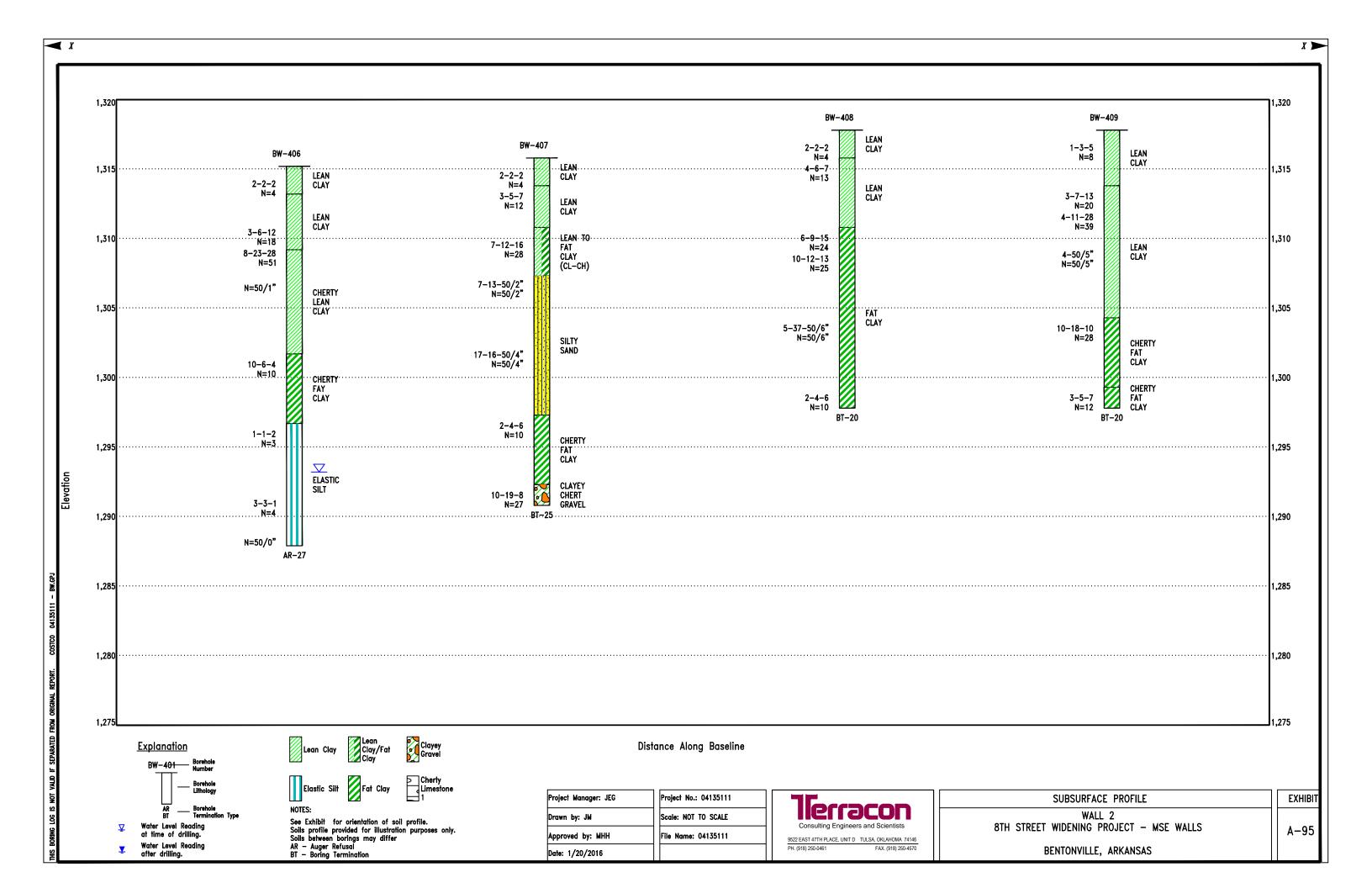

04135111 - BW.GP.

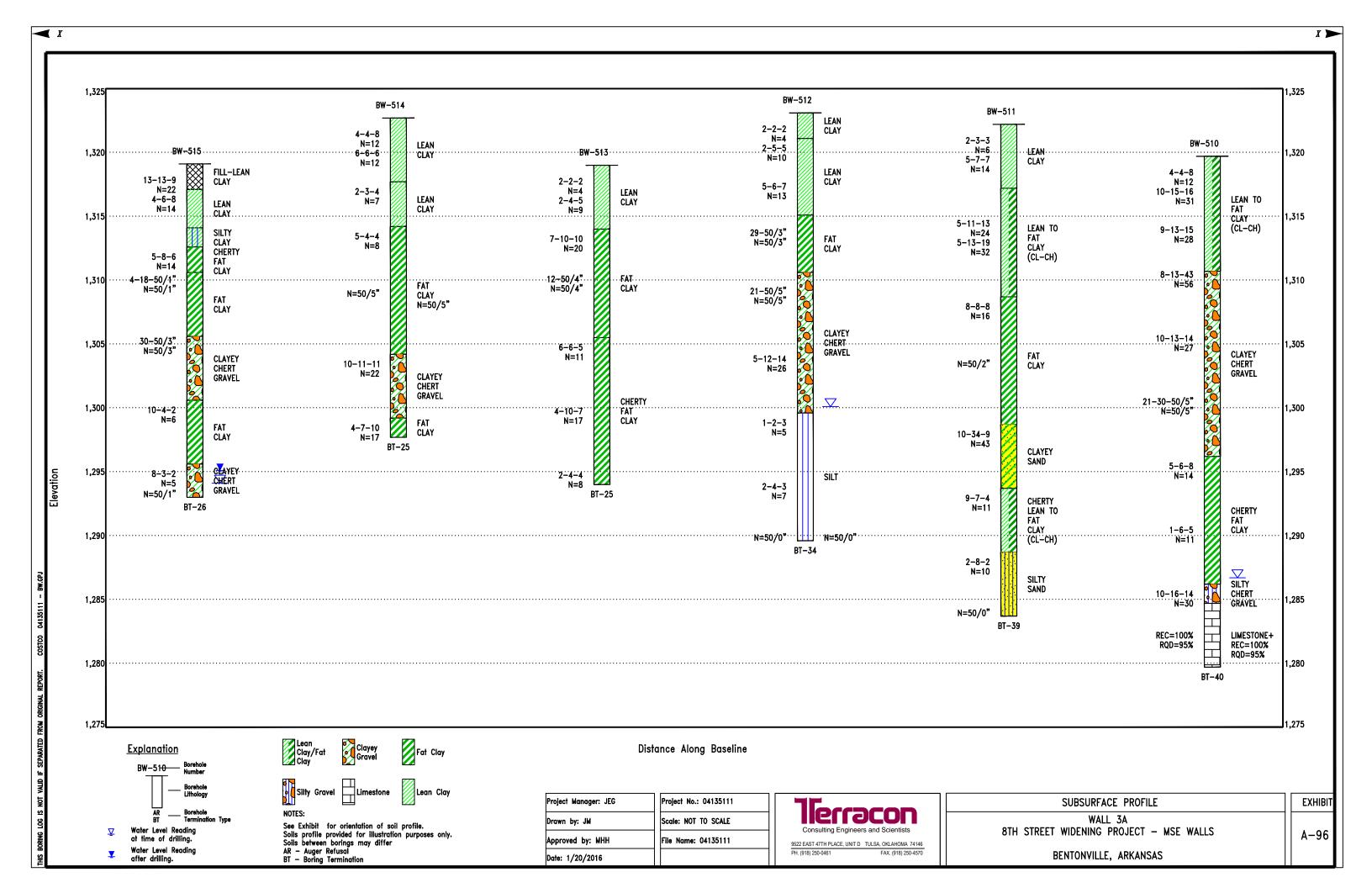

GEO SMART LOG-NO WELL

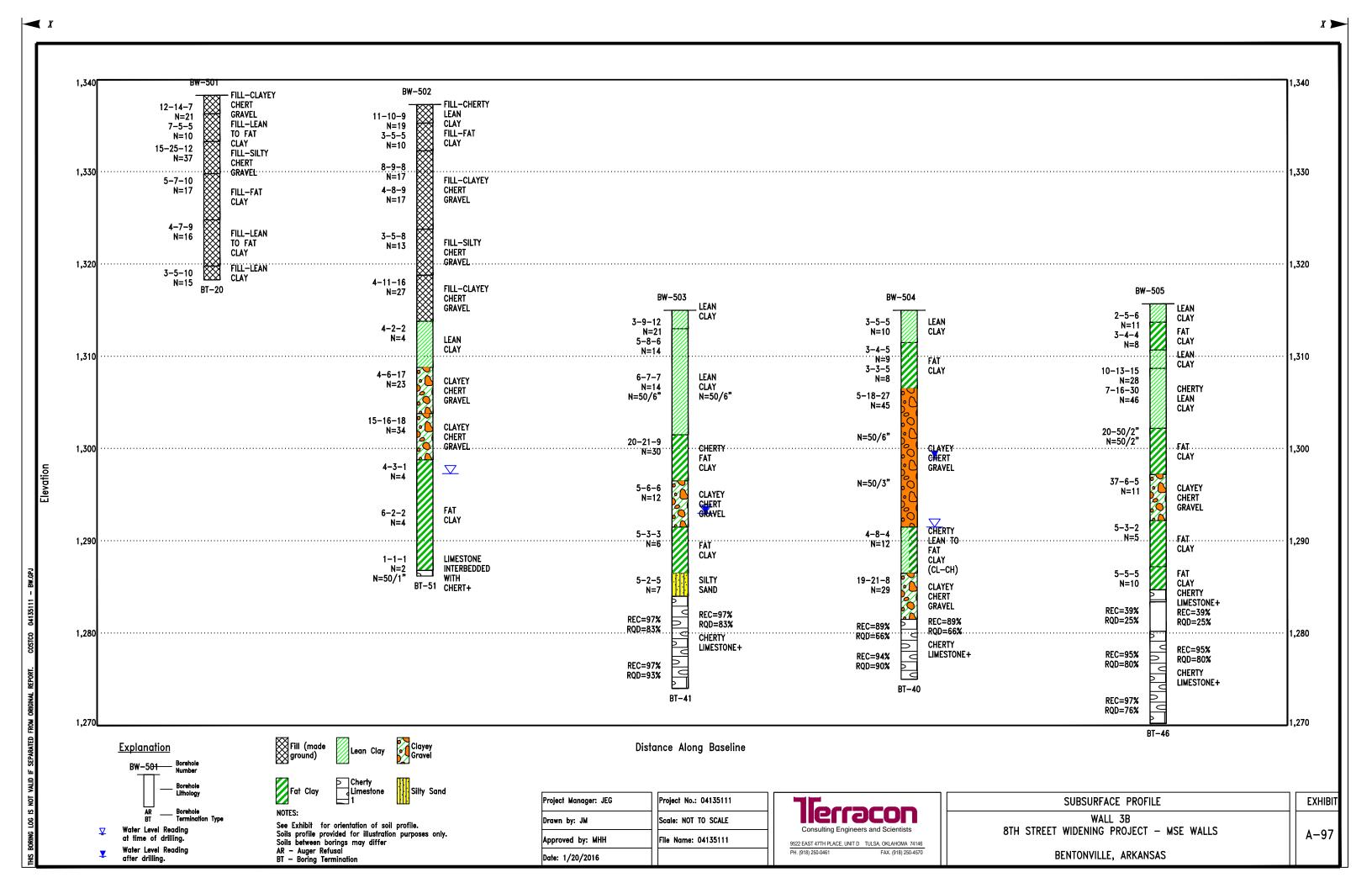

REPORT.

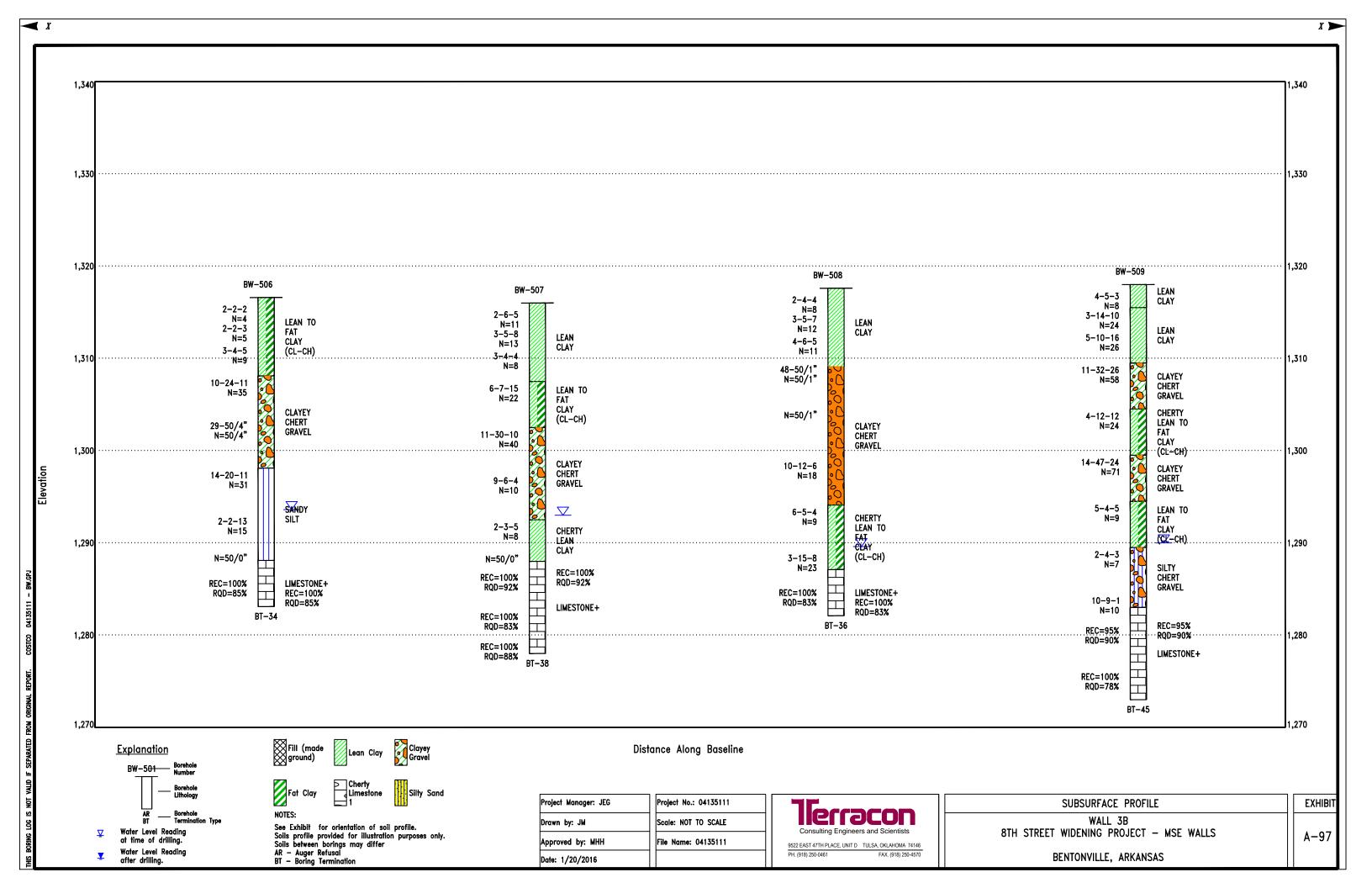

GEO SMART LOG-NO WELL 04135111 - BW.GP.

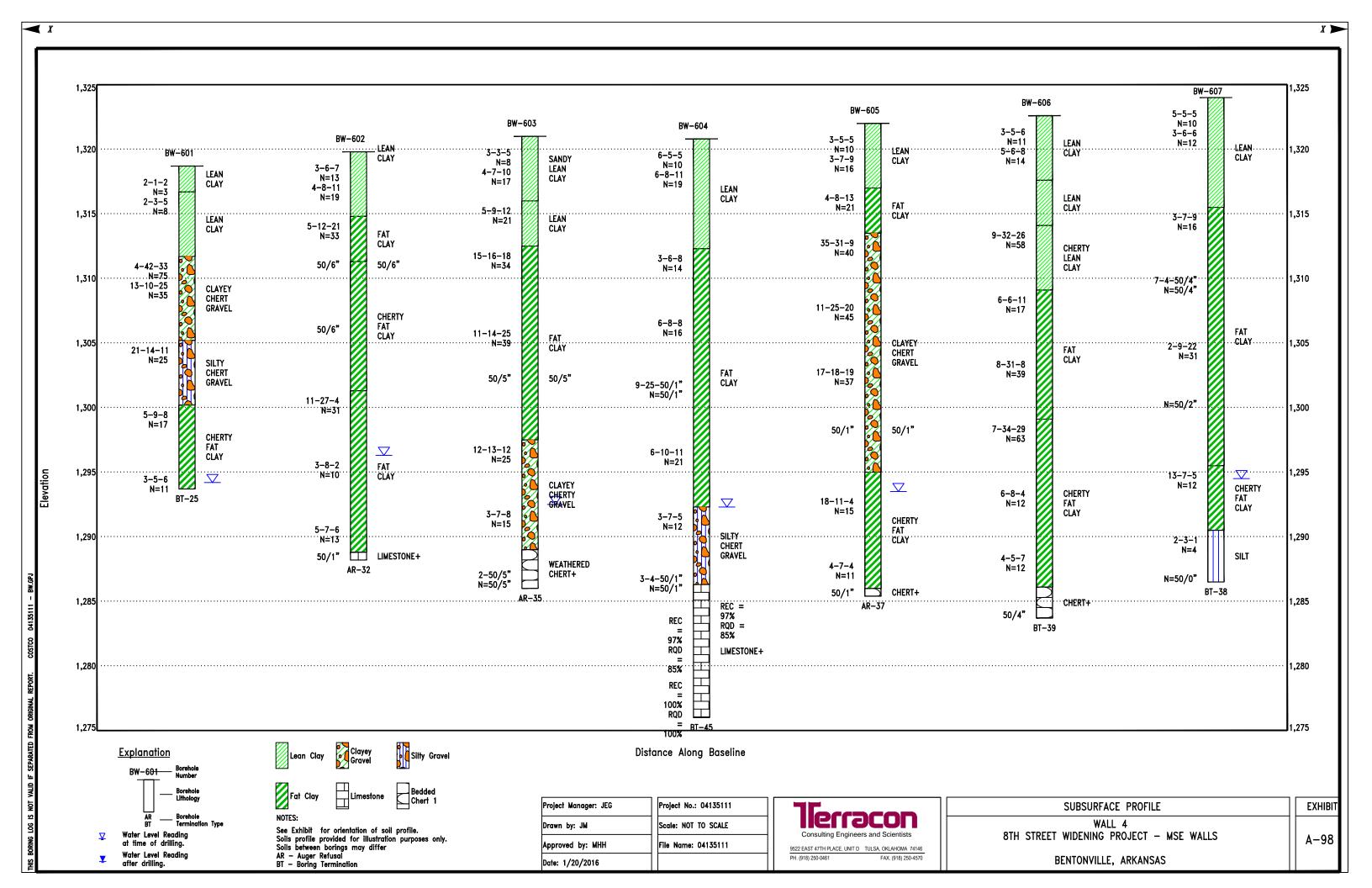


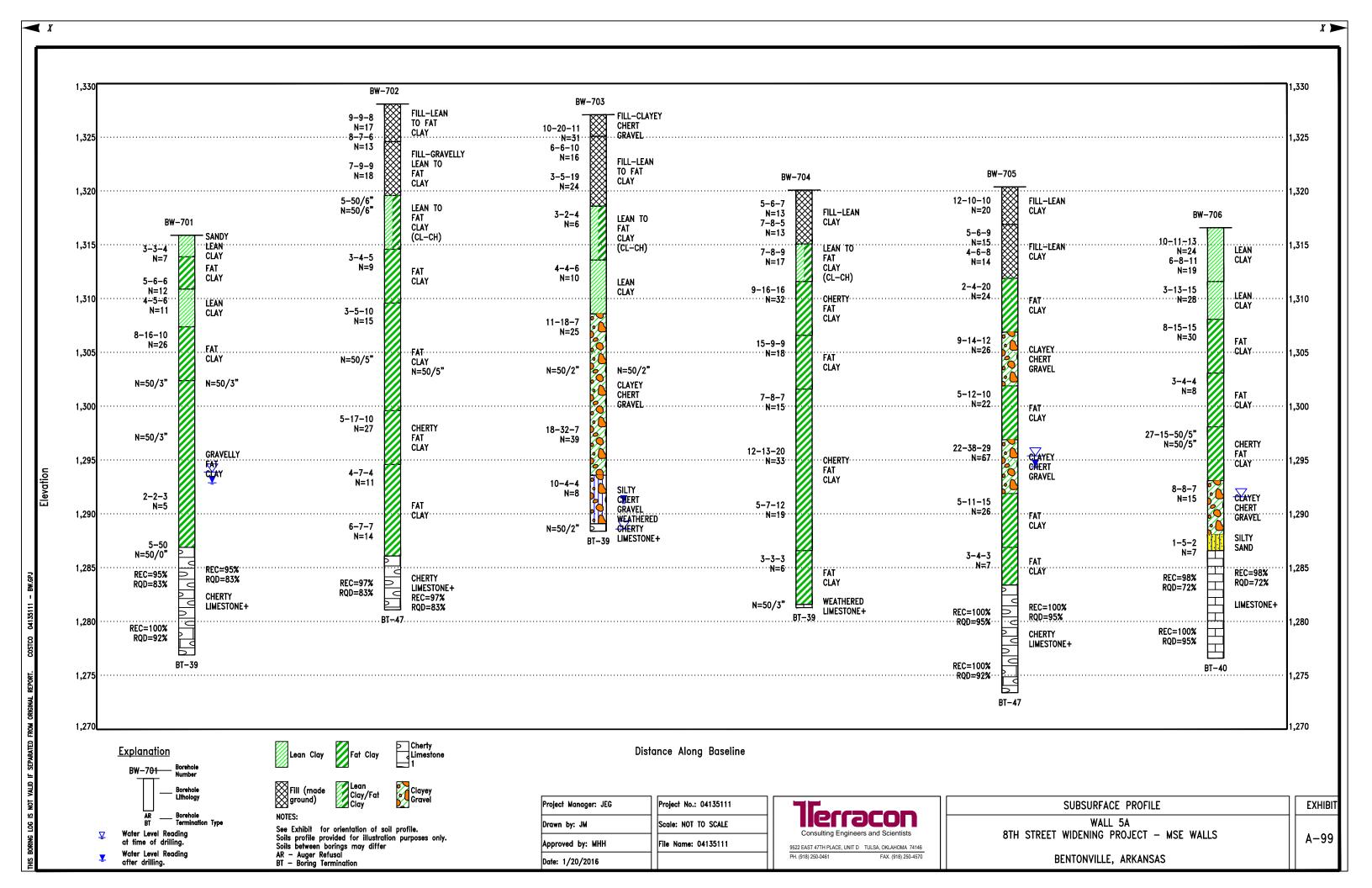


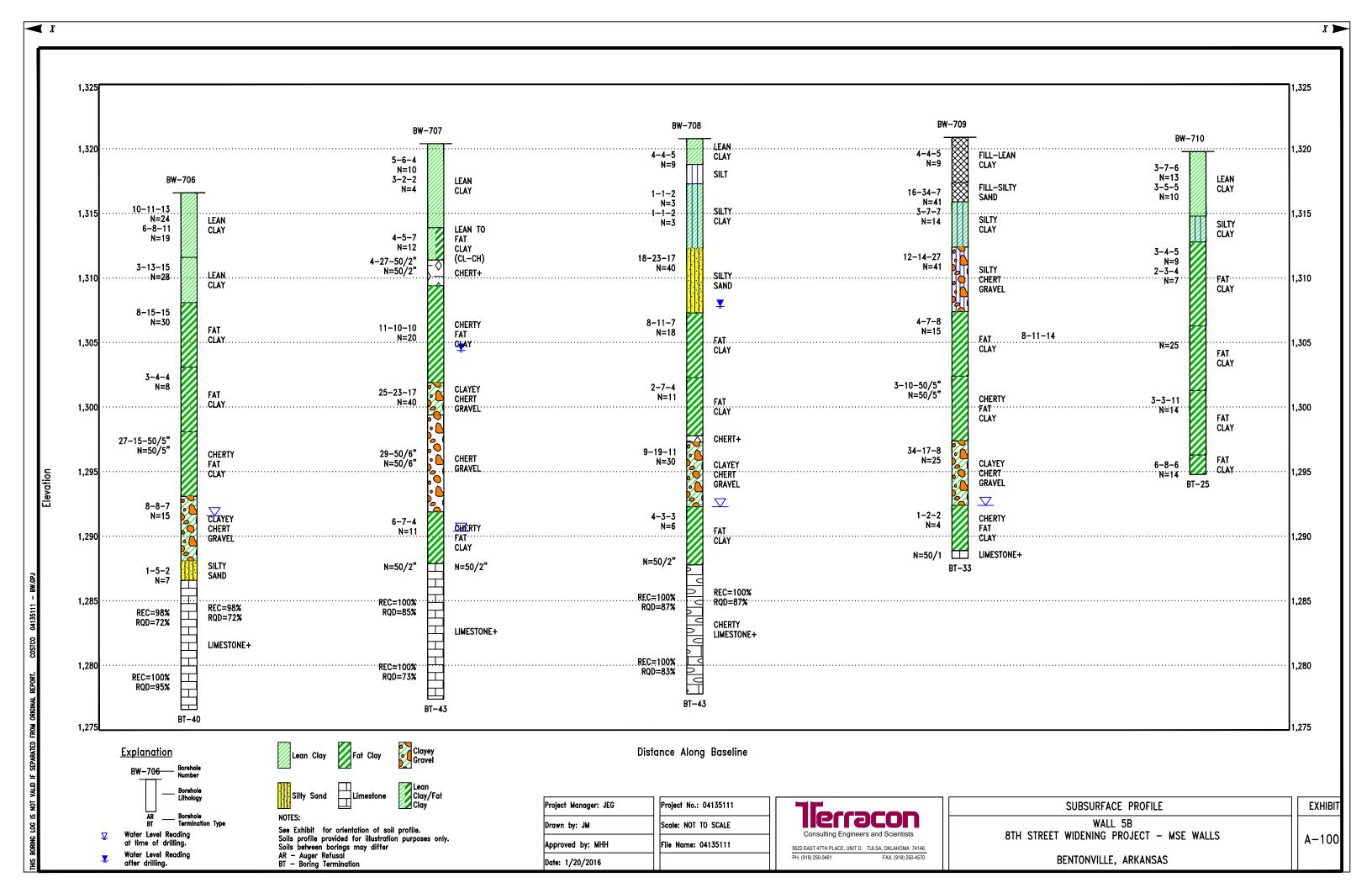


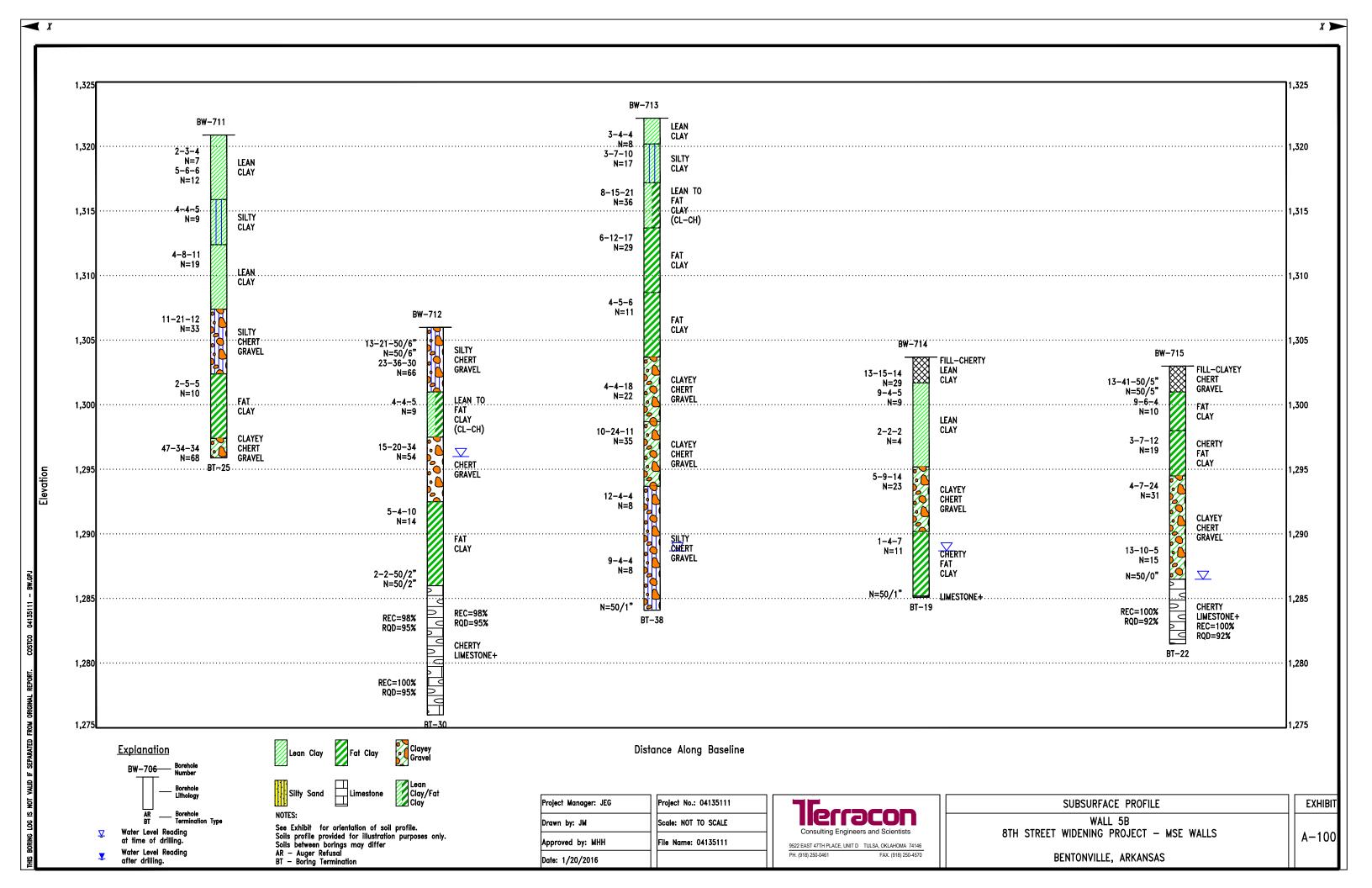


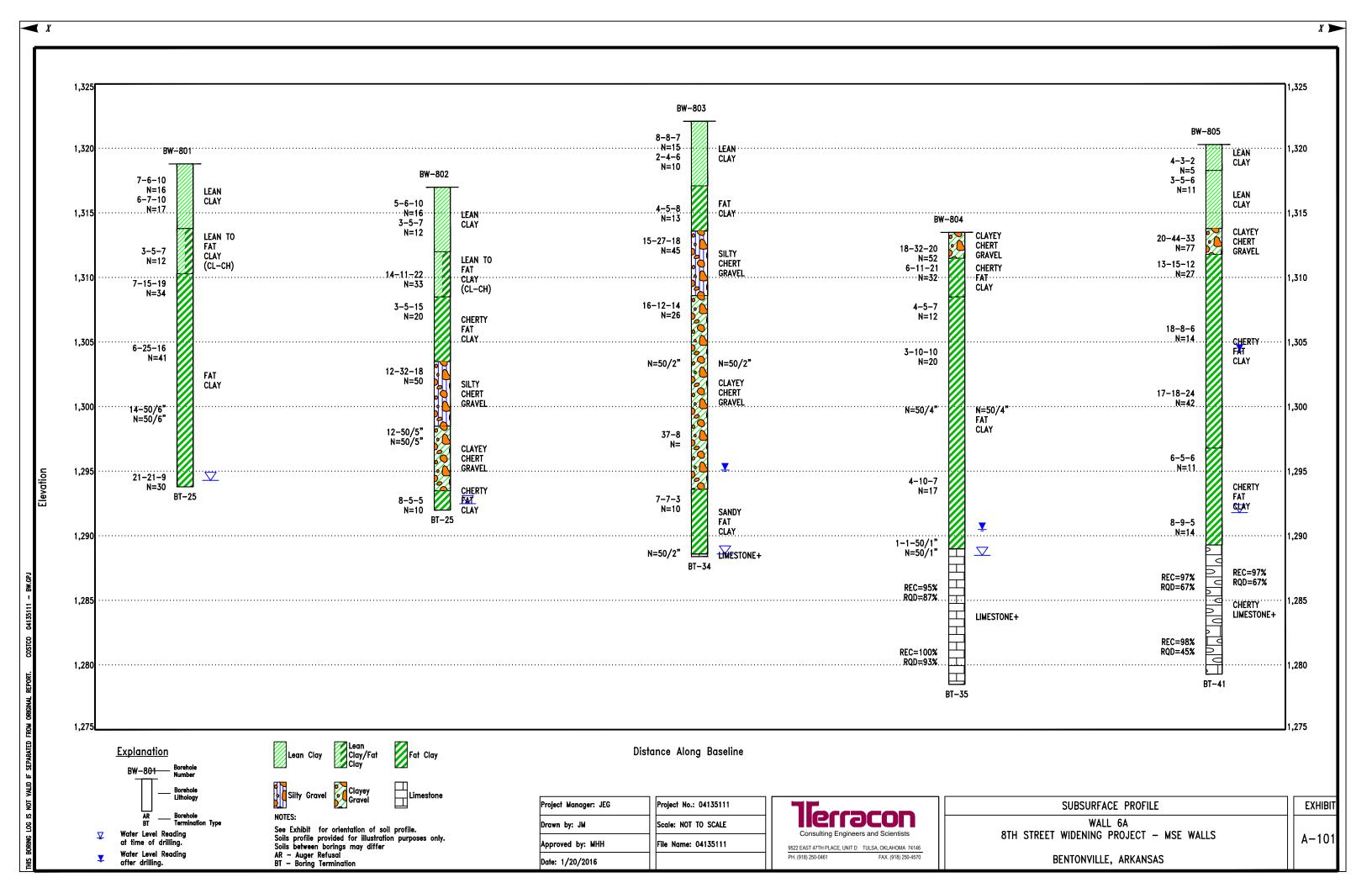


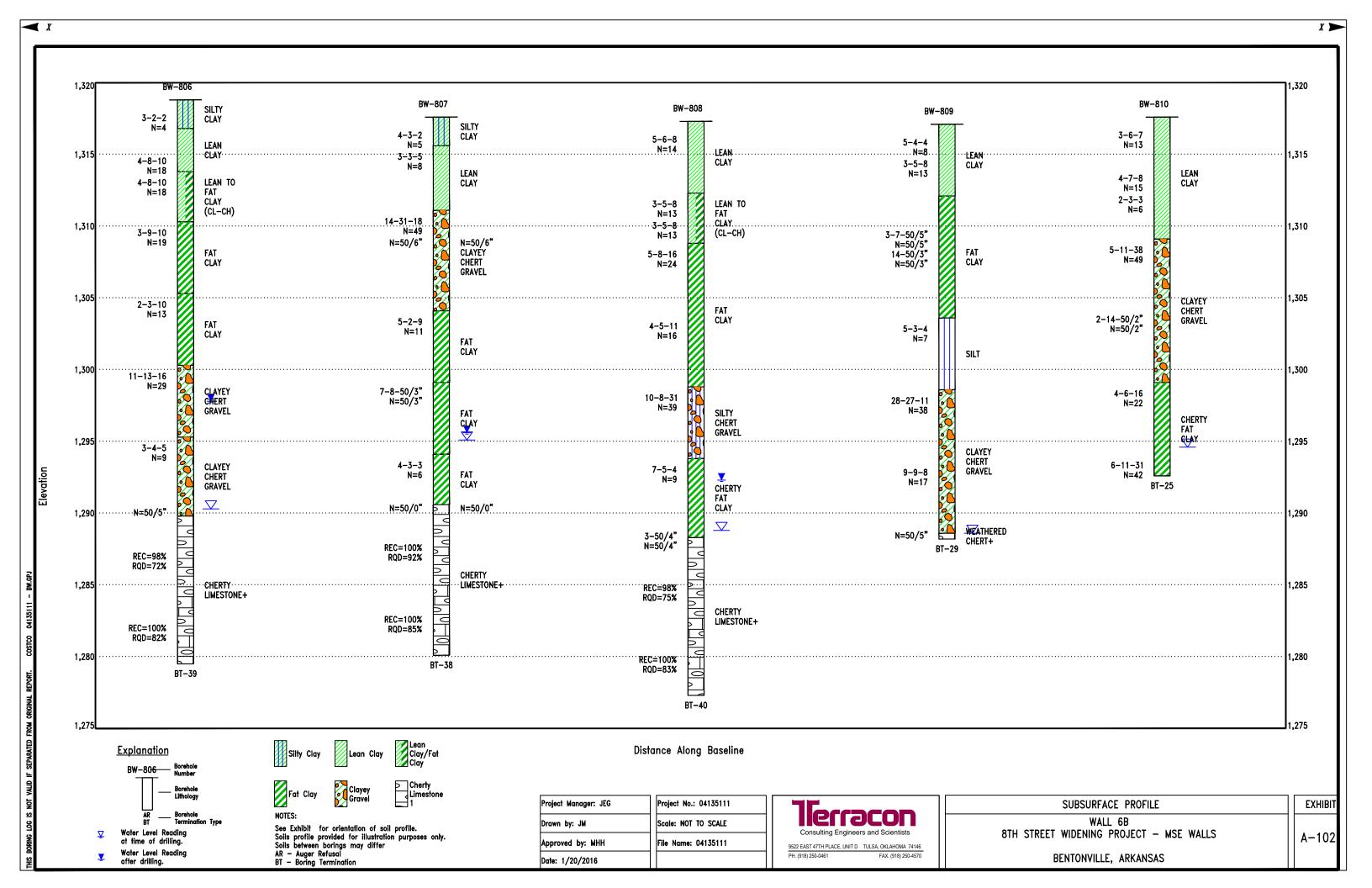


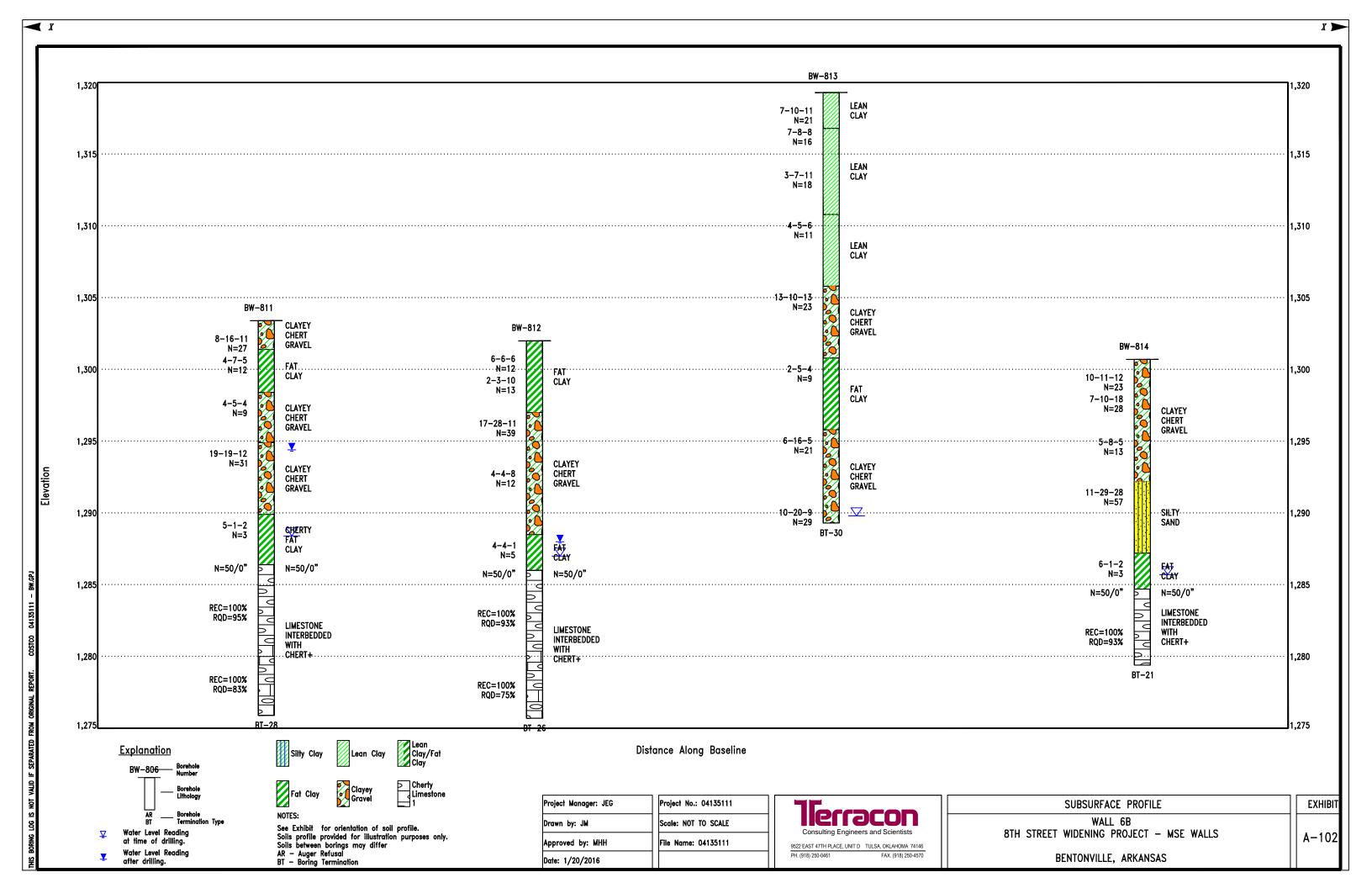


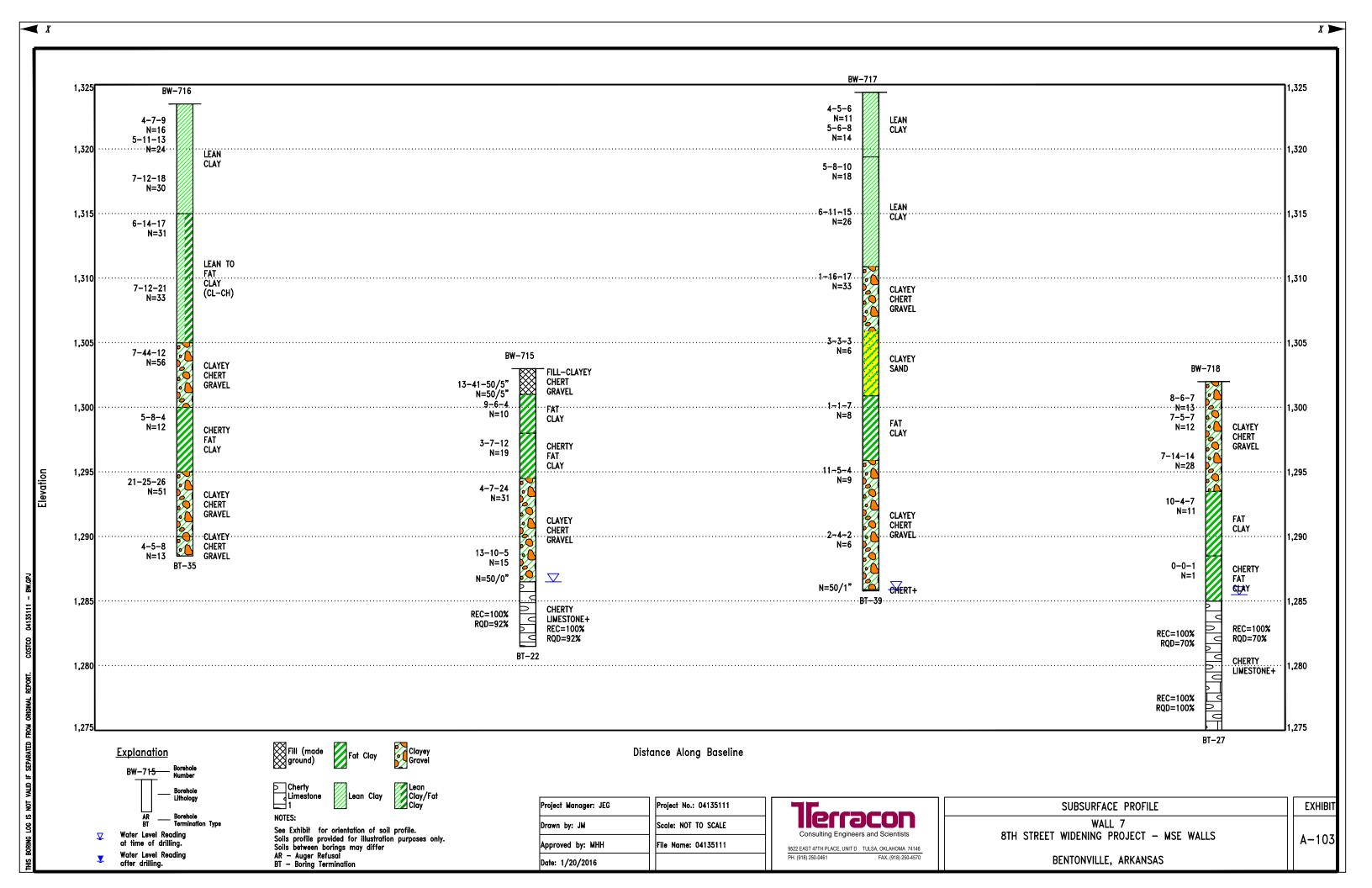


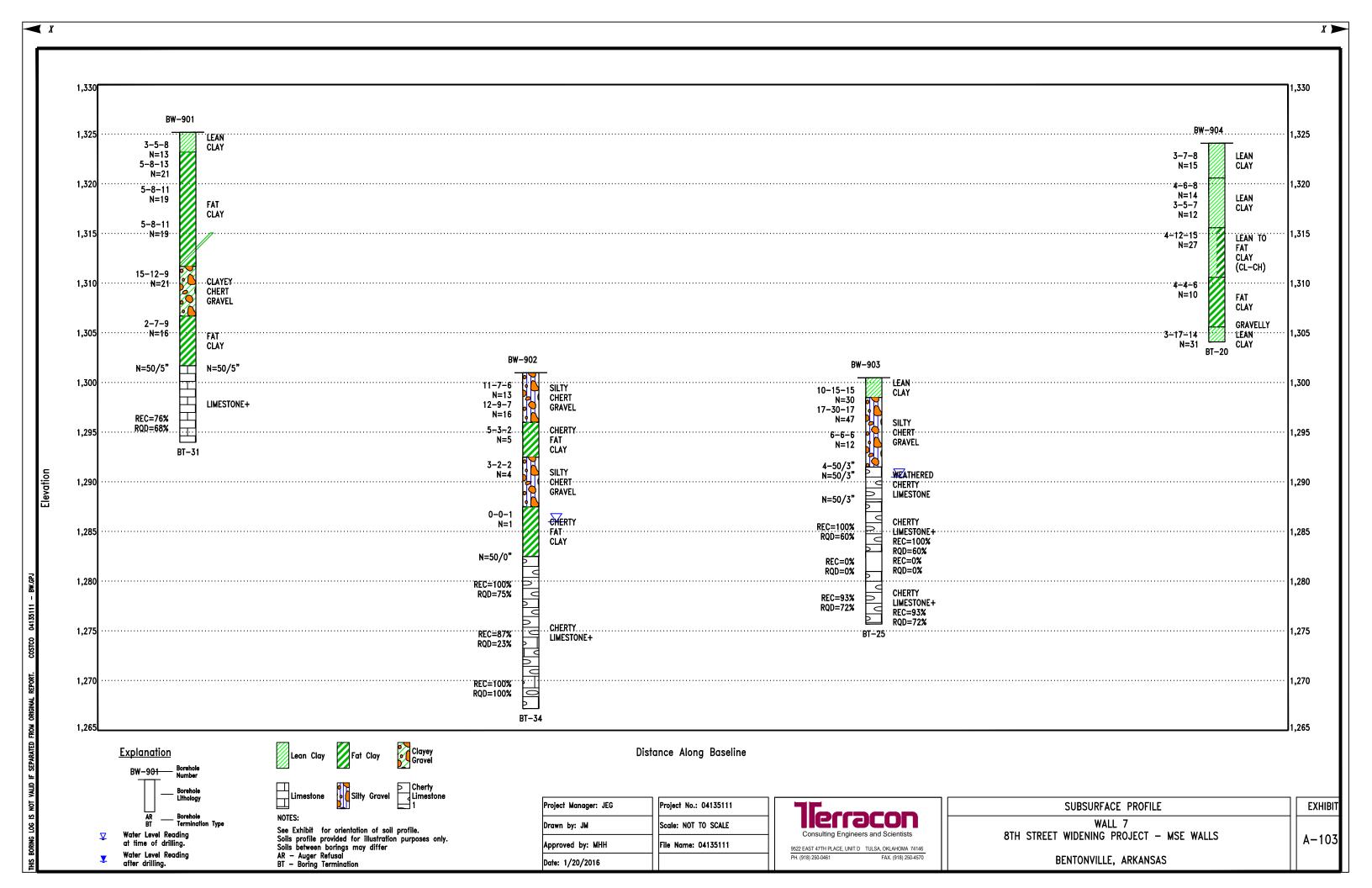












Approximate Boring Coordinates and Elevations

.	Approximate	Approximate Coordinates					
Boring	Boring Elevation		Longitude	Northing	Easting		
BW-101	1333.3	36.358251	-94.178257	744181	670960		
BW-102	1311.8	36.358526	-94.178434	744282	670910		
BW-103	1338.6	36.358711	-94.178081	744347	671016		
BW-104	1312.1	36.358984	-94.178329	744448	670947		
BW-105	1312.7	36.359218	-94.178261	744529	670967		
BW-106	1341.7	36.359383	-94.177881	744590	671080		
BW-107	Not drilled						
BW-108	Not drilled						
BW-201	1337.1	36.358631	-94.177321	744313	671239		
BW-202	1306.7	36.358865	-94.176971	744396	671344		
BW-203	1340.5	36.359119	-94.177367	744491	671229		
BW-204	1339.9	36.359367	-94.177315	744581	671246		
BW-205	1308.6	36.359579	-94.176897	744655	671371		
BW-206	Not drilled						
BW-301	1342.2	36.360357	-94.177703	744944	671140		
BW-302	1314.7	36.360602	-94.177983	745035	671060		
BW-303	1316	36.360861	-94.177908	745128	671084		
BW-304	1315.4	36.361109	-94.177834	745218	671108		
BW-305	1315	36.361367	-94.177741	745312	671137		
BW-306	Not drilled						
BW-307	1315	36.361872	-94.177556	745494	671195		
BW-308	1322	36.362152	-94.177613	745596	671181		
BW-309	1323	36.362413	-94.177495	745690	671218		
BW-401	1311.8	36.360265	-94.176748	744904	671420		
BW-402	1312.5	36.360531	-94.176734	745001	671427		
BW-403	1313.2	36.360755	-94.176725	745082	671431		
BW-404	1314.5	36.360955	-94.176689	745155	671443		
BW-405	1314.3	36.361165	-94.176641	745231	671459		
BW-406	1315.2	36.361397	-94.176577	745315	671480		
BW-407	1315.8	36.361617	-94.176517	745395	671499		
BW-408	1317.8	36.361785	-94.176333	745455	671555		
BW-409	1317.8	36.361996	-94.176218	745531	671590		
BW-501	1338.3	36.361382	-94.177482	745316	671213		
BW-502	1337.3	36.361601	-94.177406	745394	671237		
BW-503	1315	36.362088	-94.177411	745608	671241		
BW-504	1315	36.362306	-94.177297	745651	671275		
BW-505	1315.7	36.362531	-94.177204	745732	671304		
BW-506	1316.6	36.362769	-94.177132	745818	671328		
BW-507	1316	36.362888	-94.177008	745860	671365		
BW-508	1317.6	36.363113	-94.176865	745940	671409		
BW-509	1318	36.363266	-94.176655	745995	671472		
BW-510	1319.7	36.363486	-94.176935	746078	671391		
BW-511	1322.2	36.363646	-94.177241	746138	671303		
BW-512	1323.1	36.363655	-94.177484	746143	671231		
BW-513	1319	36.363472	-94.177841	746080	671125		
BW-514	1322.7	36.363645	-94.178111	746143	671046		
BW-515	1319.1	36.363671	-94.178632	746156	670893		

D'	Approximate	Approximate Coordinates					
Boring Elevation		Latitude	Longitude	Easting			
BW-601	1318.7	36.362491	-94.175976	745709	671666		
BW-602	1319.8	36.36269	-94.17581	745779	671715		
BW-603	1321	36.36289	-94.17565	745851	671763		
BW-604	1320.8	36.36304	-94.1754	745906	671838		
BW-605	1322	36.36328	-94.1753	745990	671871		
BW-606	1322.6	36.36351	-94.17522	746073	671896		
BW-607	1324	36.363661	-94.174861	746132	671999		
BW-701	1315.9	36.362668	-94.177091	745781	671339		
BW-702	1328.1	36.362789	-94.176793	745823	671427		
BW-703	1327.1	36.362968	-94.176622	745887	671479		
BW-704	1320.1	36.363367	-94.176389	746031	671551		
BW-705	1320.4	36.363554	-94.176154	746097	671622		
BW-706	1316.6	36.363864	-94.175923	746209	671692		
BW-707	1320.4	36.364273	-94.175963	746358	671684		
BW-708	1320.8	36.364446	-94.175772	746420	671741		
BW-709	1320.9	36.364597	-94.175558	746473	671806		
BW-710	1319.8	36.364845	-94.175474	746563	671832		
BW-711	1320.9	36.364982	-94.175241	746611	671902		
BW-712	1306	36.365159	-94.174841	746673	672021		
BW-713	1322.2	36.365398	-94.174977	746761	671983		
BW-714	1303.7	36.365541	-94.174531	746810	672115		
BW-715	1303	36.365725	-94.174367	746876	672165		
BW-716	1323.5	36.365818	-94.174544	746911	672114		
BW-717	1324.4	36.365998	-94.174396	746976	672159		
BW-718	1302	36.366097	-94.174055	747009	672260		
BW-801	1318.8	36.363291	-94.175717	745999	671748		
BW-802	1317	36.363507	-94.175542	746076	671801		
BW-803	1322.1	36.363643	-94.175271	746124	671882		
BW-804	1313.5	36.363903	-94.175217	746218	671901		
BW-805	1320.3	36.364021	-94.174944	746259	671982		
BW-806	1318.8	36.364132	-94.174748	746299	672040		
BW-807	1317.6	36.364311	-94.174526	746362	672107		
BW-808	1317.3	36.364557	-94.174464	746451	672127		
BW-809	1317.1	36.364689	-94.174339	746499	672165		
BW-810	1317.6	36.364903	-94.174145	746575	672224		
BW-811	1303.4	36.365257	-94.174097	746704	672241		
BW-812	1302	36.365463	-94.173932	746778	672291		
BW-813	1319.3	36.365574	-94.173582	746816	672395		
BW-814	1300.7	36.365872	-94.173599	746924	672392		
BW-901	1325.2	36.366251	-94.174202	747066	672218		
BW-902	1301	36.366352	-94.173846	747101	672324		
BW-903	1300.5	36.366563	-94.173681	747176	672374		
BW-904	1324.1	36.366869	-94.173697	747288	672372		

APPENDIX B LABORATORY TESTING

Geotechnical Engineering Report

8th Street Widening Project – Proposed MSE Walls ■ Bentonville, AR February 3, 2016 ■ Terracon Project No. 04135111

Laboratory Testing

Samples retrieved during the field exploration were taken to the laboratory for further observation by the project geotechnical engineer and were classified in accordance with the Unified Soil Classification System (USCS) described in Appendix D. Bedrock materials were classified according to the General Notes and described using commonly accepted geotechnical terminology. The field descriptions were modified as necessary and an applicable laboratory testing program was formulated to determine engineering properties of the subsurface materials.

Laboratory tests were conducted on selected soil and rock samples. The laboratory test results are presented on the boring logs next to the respective samples and attached to this appendix. Laboratory tests were performed in general accordance with the applicable ASTM, AASHTO, local or other accepted standards.

The following tests were performed on selected soil and rock samples:

- Water content
- Atterberg limits
- Percent passing the No. 200 sieve
- Particle size distribution
- Hydrometer
- Dry unit weight
- One-dimensional consolidation of cohesive soils
- Unconsolidated Undrained (UU) triaxial compression
- Consolidated Undrained (CU) triaxial compression
- Rock unconfined compressive strength

Summary of One-Dimensional Consolidation Test Results

Boring	Depth (ft.)	Sample Type	σ _o (psf)	σ _c (psf)	OCR	Сс	Cr	e o
BT-007 (near BW- 706)	5	Undisturbed	720	4,200	5.9	0.06	0.01	0.60
BW-511	5	Undisturbed	680	4,800	7.1	0.12	0.01	0.75
BW-809	5	Undisturbed	700	4,200	6.0	0.08	0.01	0.74

Notes:

 $\begin{array}{lll} \sigma_{\text{o}}: & \text{Initial pressure} & \text{Cc: Compression Index} \\ \sigma_{\text{c}}: & \text{Preconsolidation pressure} & \text{Cr: Recompression Index} \\ \text{OCR: Overconsolidation ratio} & e_{\text{o}}: & \text{Initial void ratio} \\ \end{array}$

Geotechnical Engineering Report

8th Street Widening Project – Proposed MSE Walls ■ Bentonville, AR February 3, 2016 ■ Terracon Project No. 04135111

Laboratory Testing (Continued)

Summary of Unconsolidated Undrained (UU) Shear Test Results

Boring	Depth (ft.)	Sample Type	C _u (psf)	
BW-106	13.5	Undisturbed	4,900	
BW-511	5	Undisturbed	2,000	
BW-809	5	Undisturbed	3,000	

Notes:

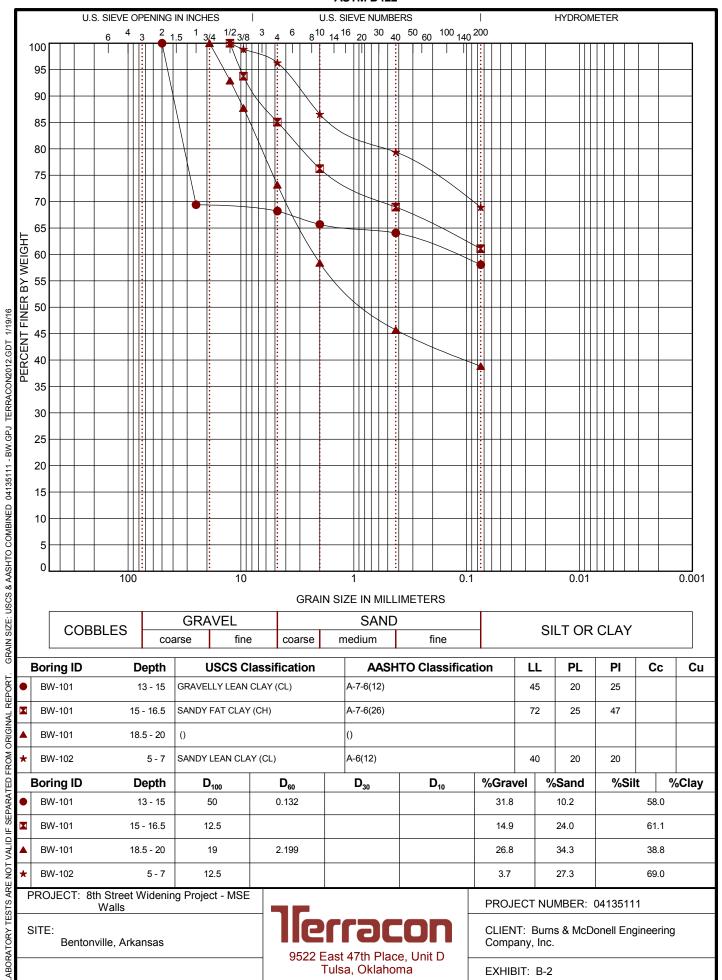
C_u: Undrained cohesion

Summary of Consolidated Undrained Shear Test Results

Boring	Dept h (ft.)	Sample Type	Test	φ' (degrees)	C' (psf)	LL	PL	PI	Clay (%)
BW-301	15	Remolded	3 samples	31.1	340	69	24	45	37
BW-407	3.5	Undisturbed	3 samples	28.4	820	43	20	23	31
BT-007 (near BW- 706)	5	Undisturbed	Staged	33.9	420	39	19	20	28
BW-511	5	Undisturbed	Staged	34.8	680	46	23	23	34
BW-809	5	Undisturbed	Staged	33.4	520	52	21	31	40
BW-902	6	Remolded	3 samples	29.0	100	67	24	43	24

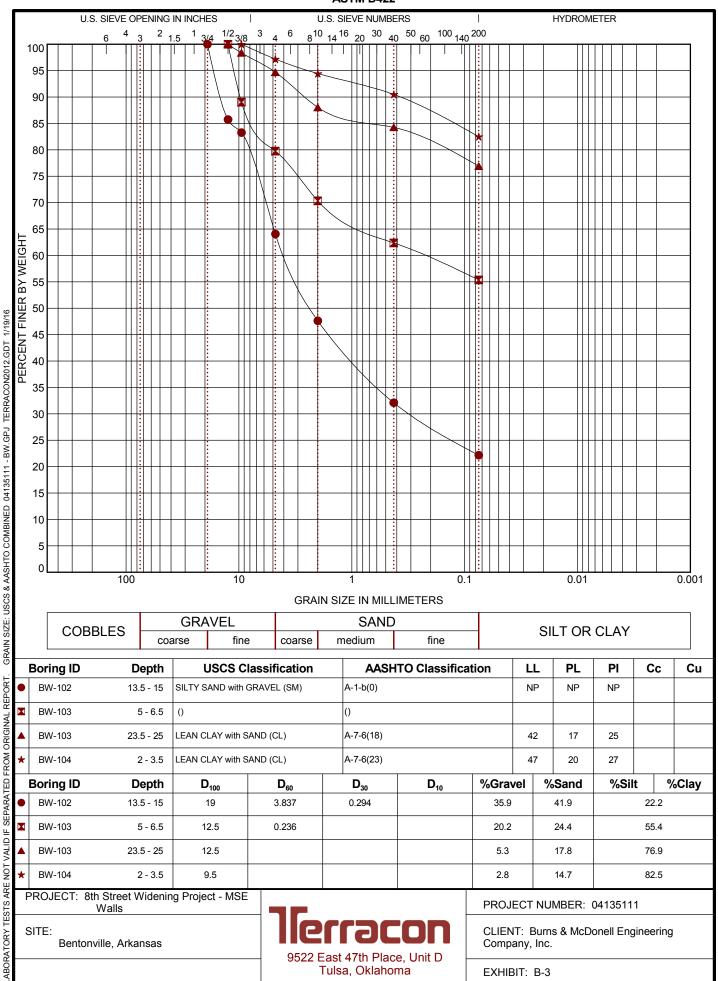
Notes:

Effective strength parameters were calculated based on peak principal stresses from p-q diagrams


φ': Effective friction angleC': Effective cohesion

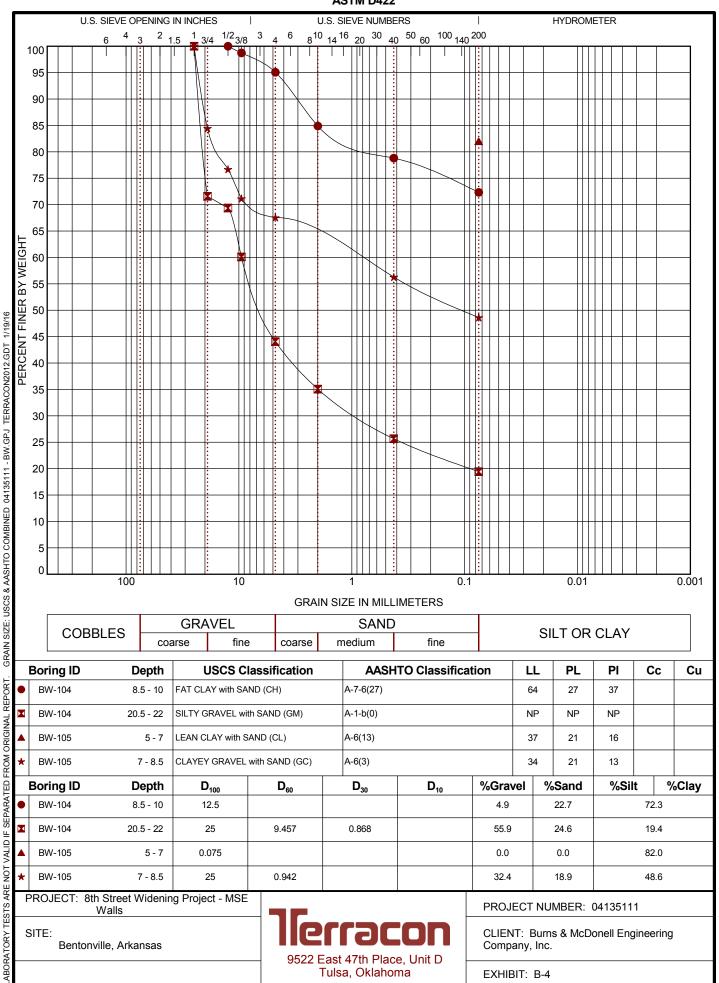
LL: Liquid Limit
PL: Plastic Limit
Pl: Plasticity Index

Remolded samples consisted of bulk samples taken during our field exploration from select borings. Due to variable composition of the soils and the presence of chert gravel, we segregated the gravel from the samples tested to evaluate the strength properties of the "clay matrix."


GRAIN SIZE DISTRIBUTION

ASTM D422

GRAIN SIZE DISTRIBUTION


ASTM D422

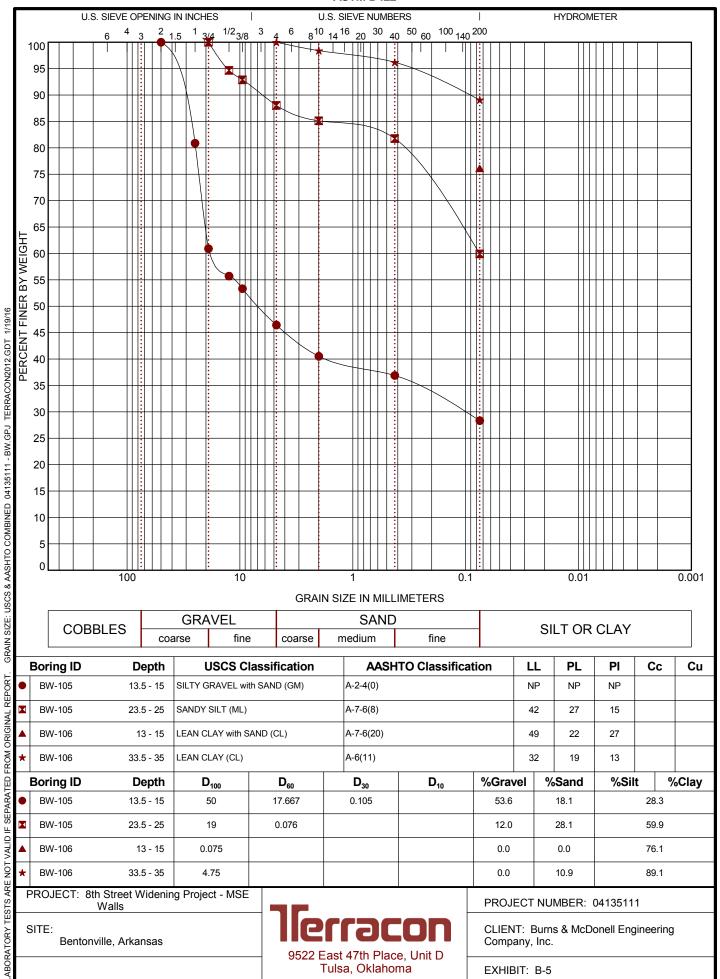
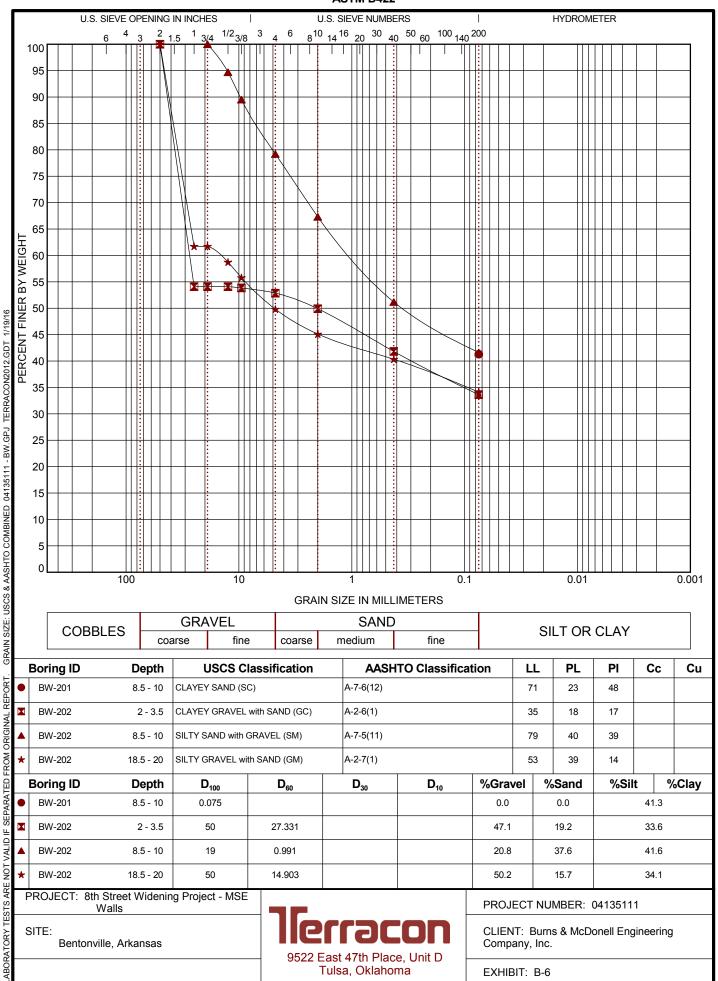
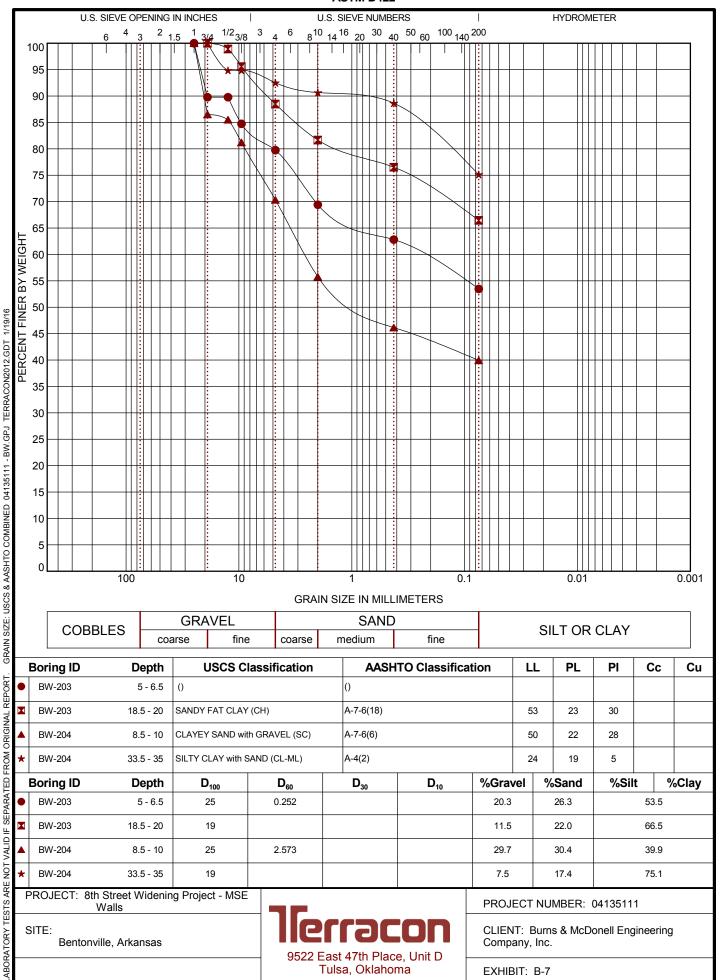
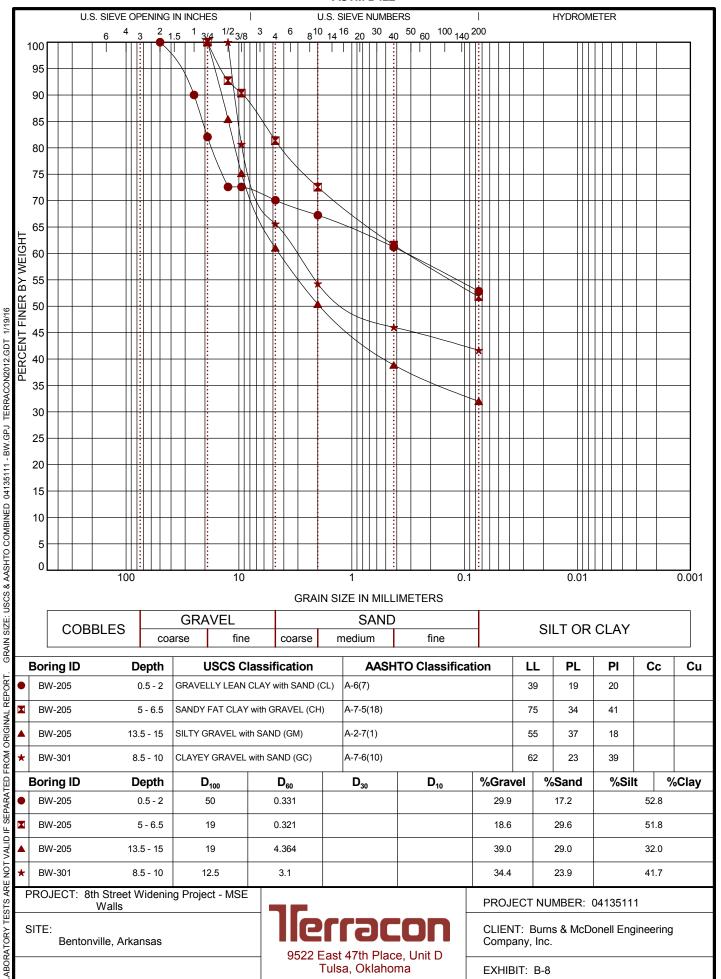

9522 East 47th Place, Unit D Tulsa, Oklahoma

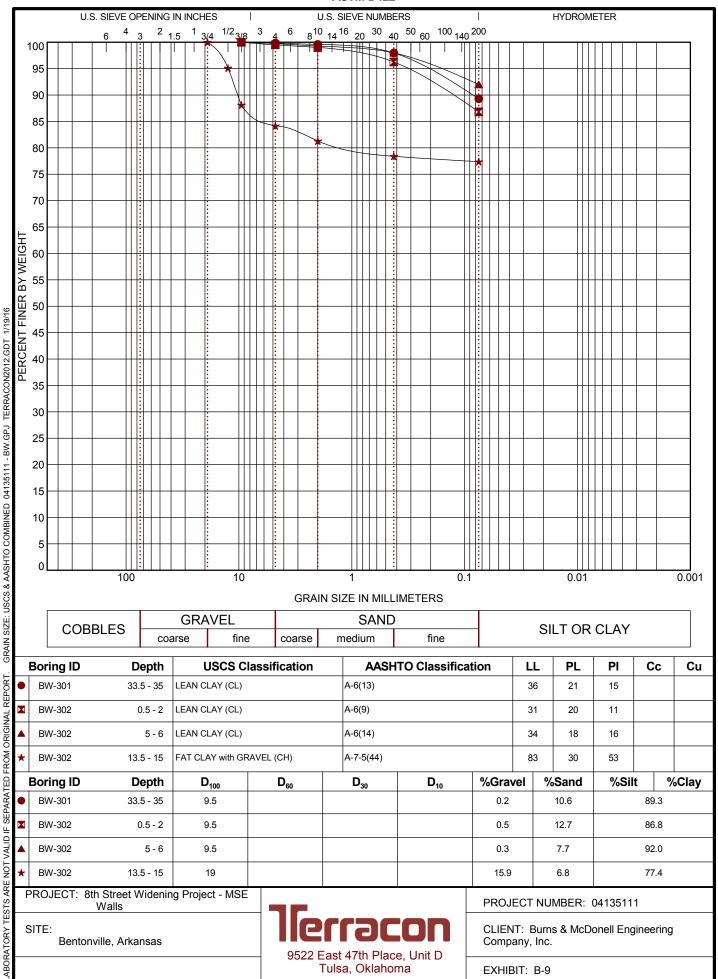
EXHIBIT: B-3


ASTM D422

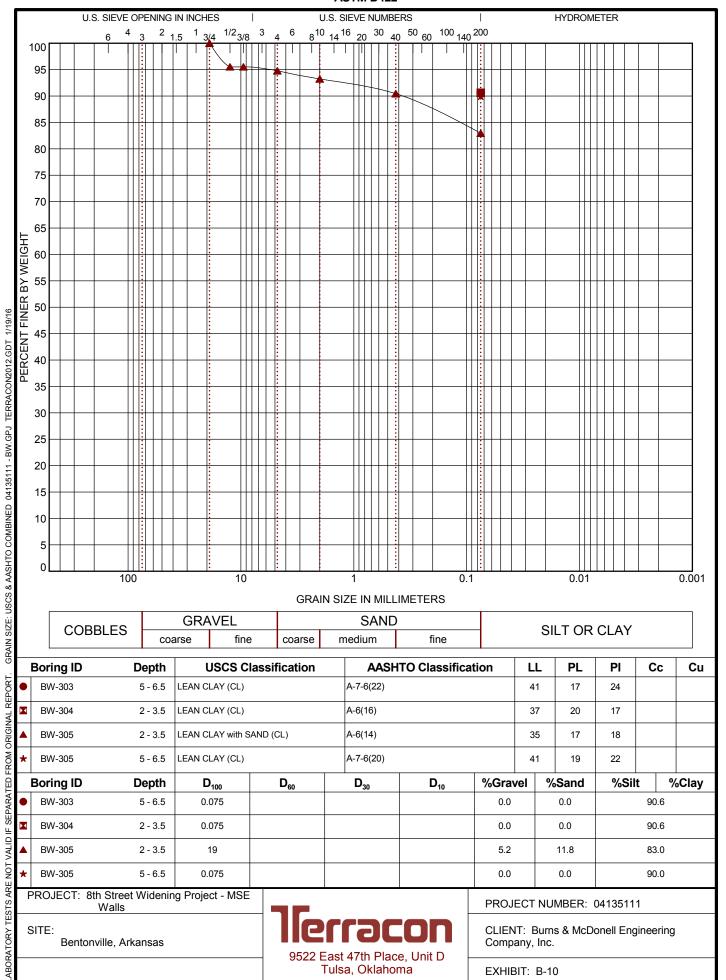

Tulsa, Oklahoma


ASTM D422

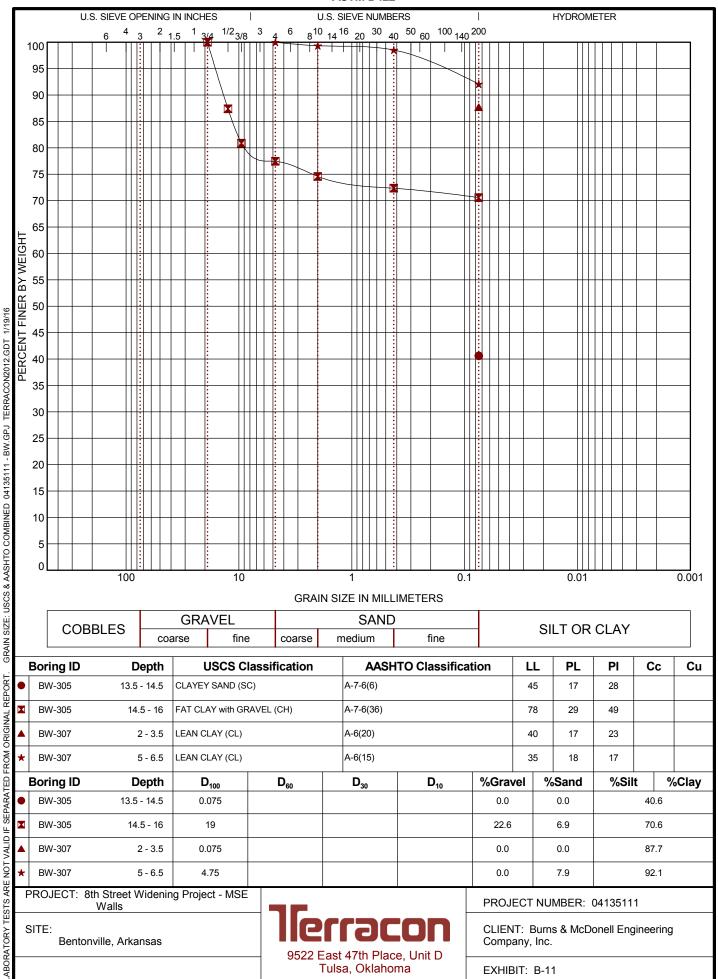
Tulsa, Oklahoma

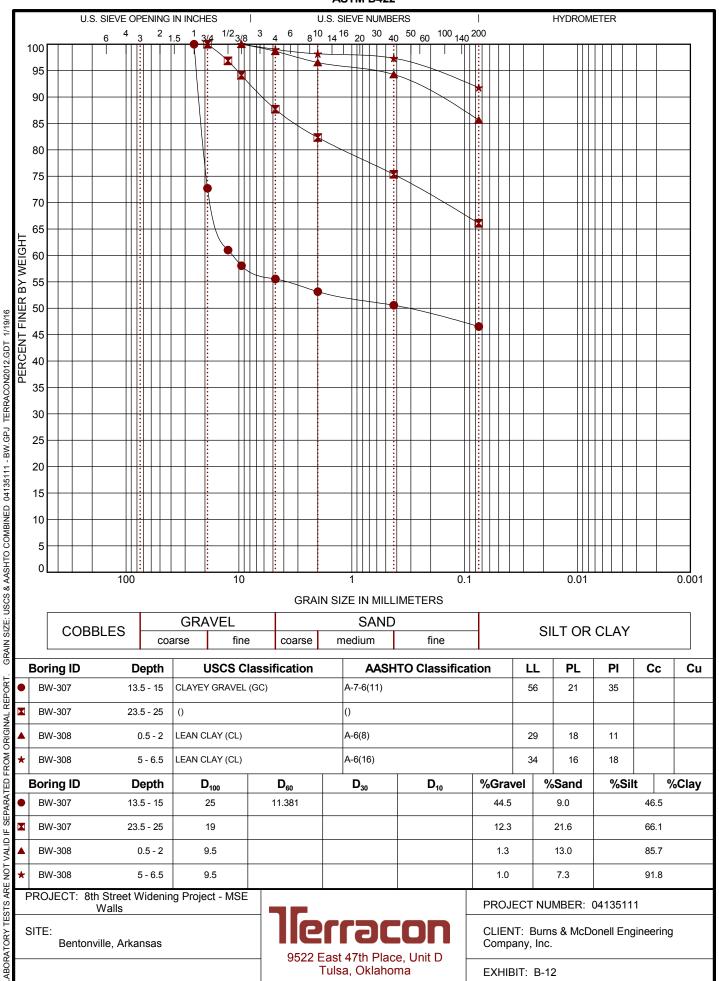


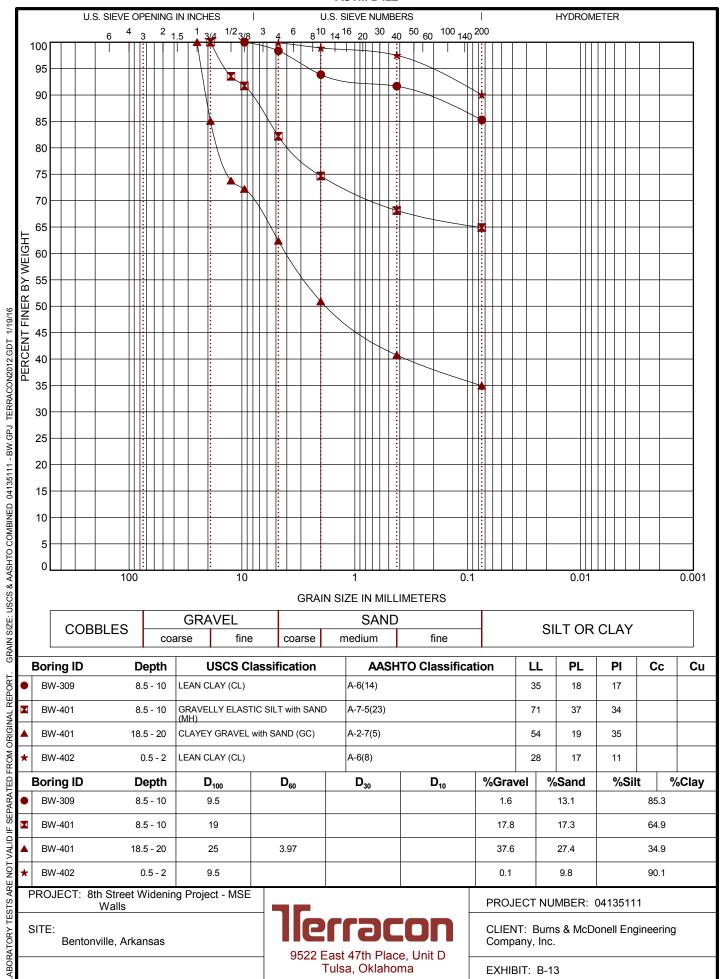
ASTM D422



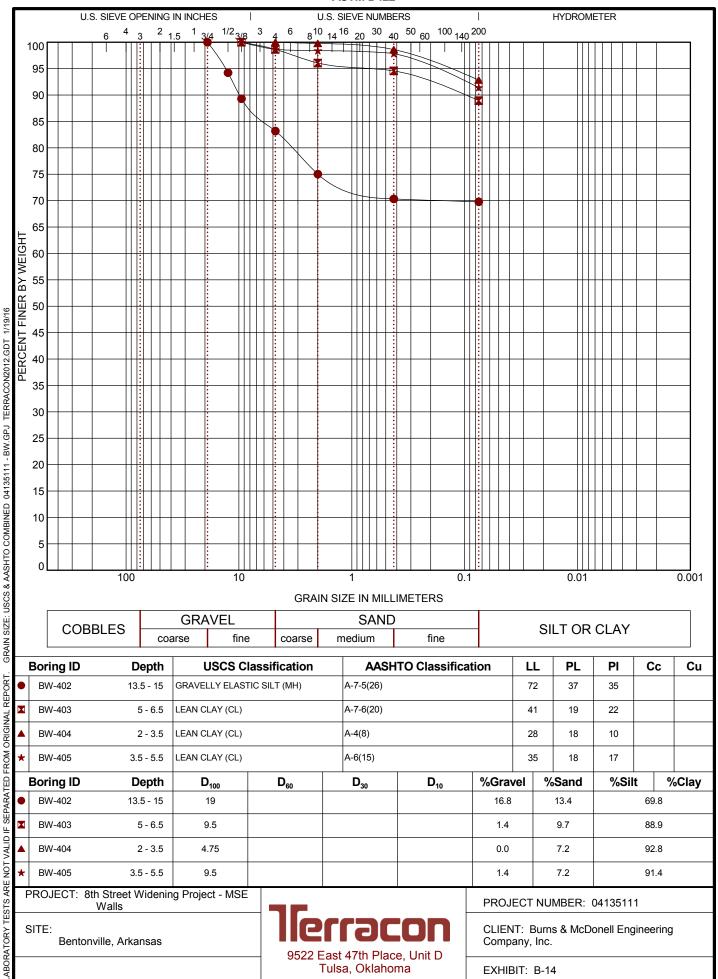
Tulsa, Oklahoma


ASTM D422

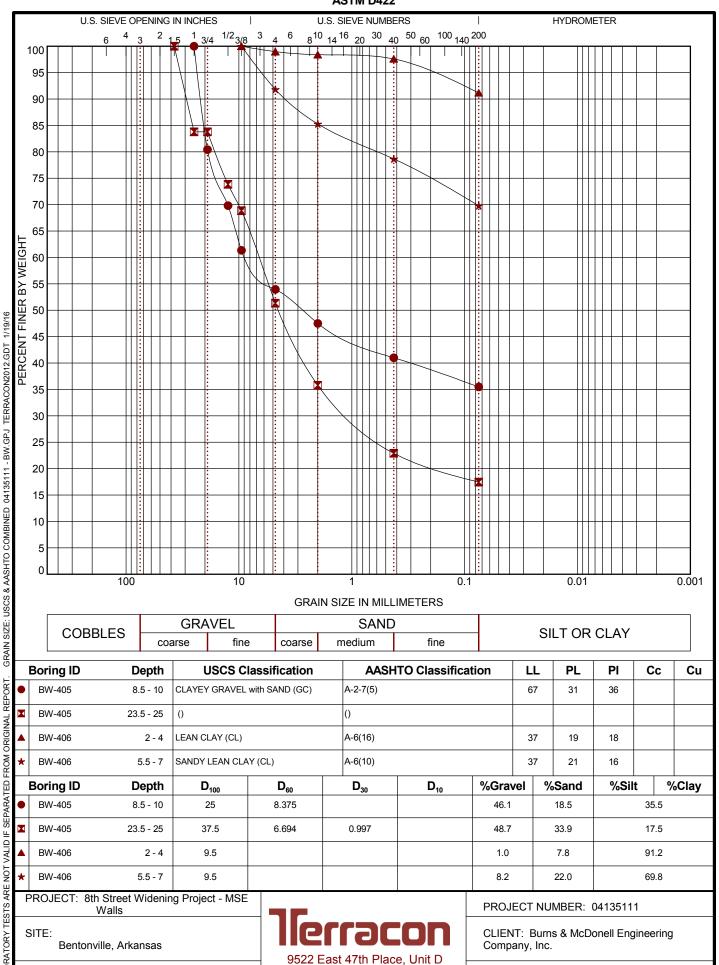

Tulsa, Oklahoma



ASTM D422

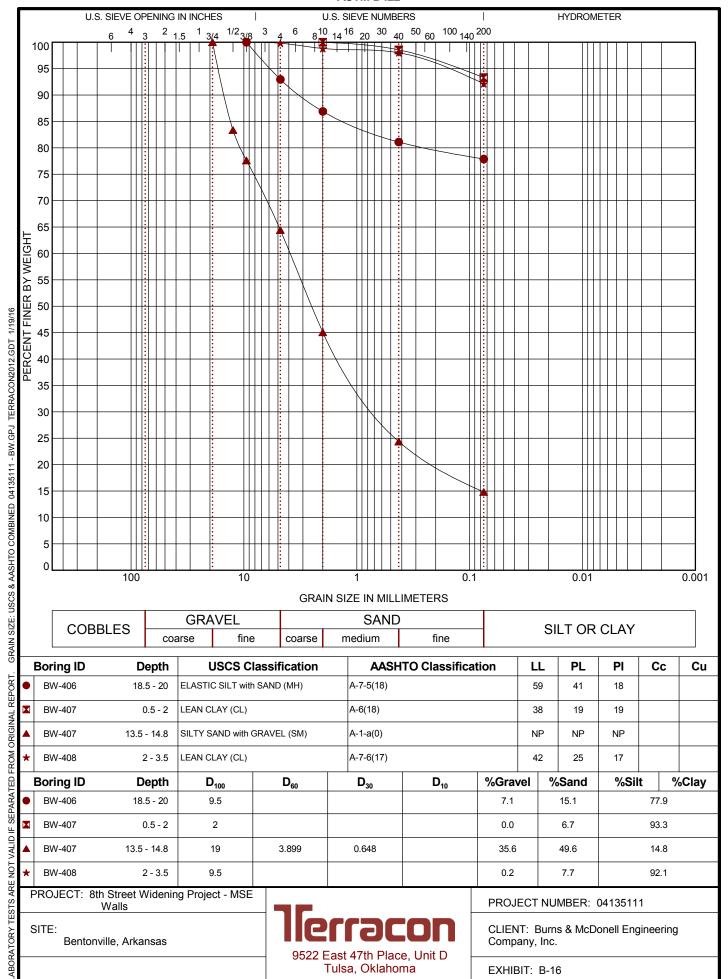


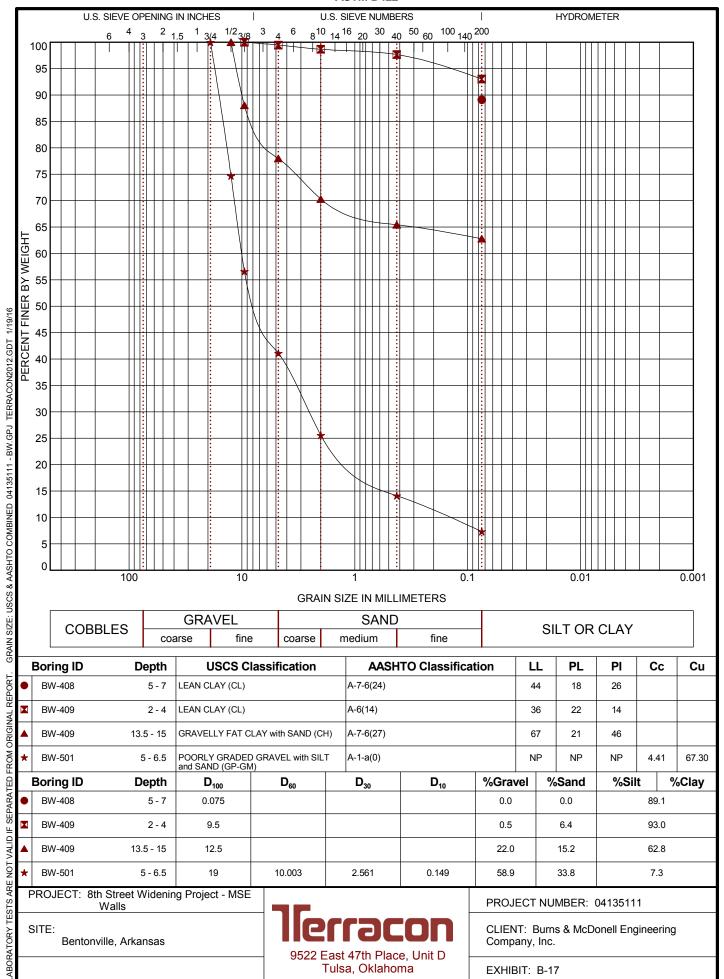
Tulsa, Oklahoma

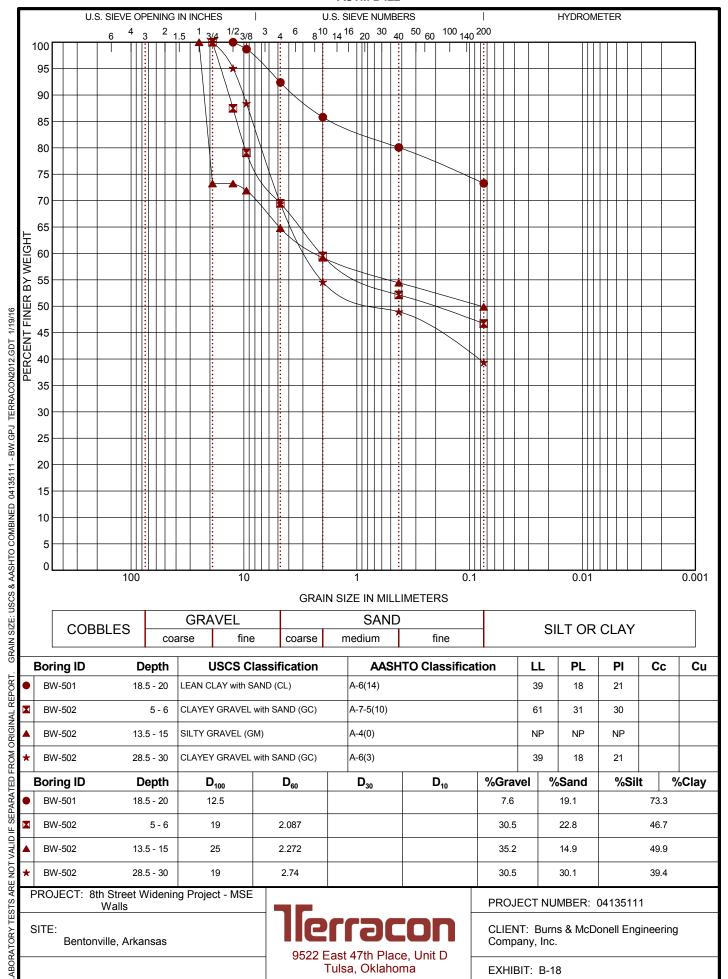


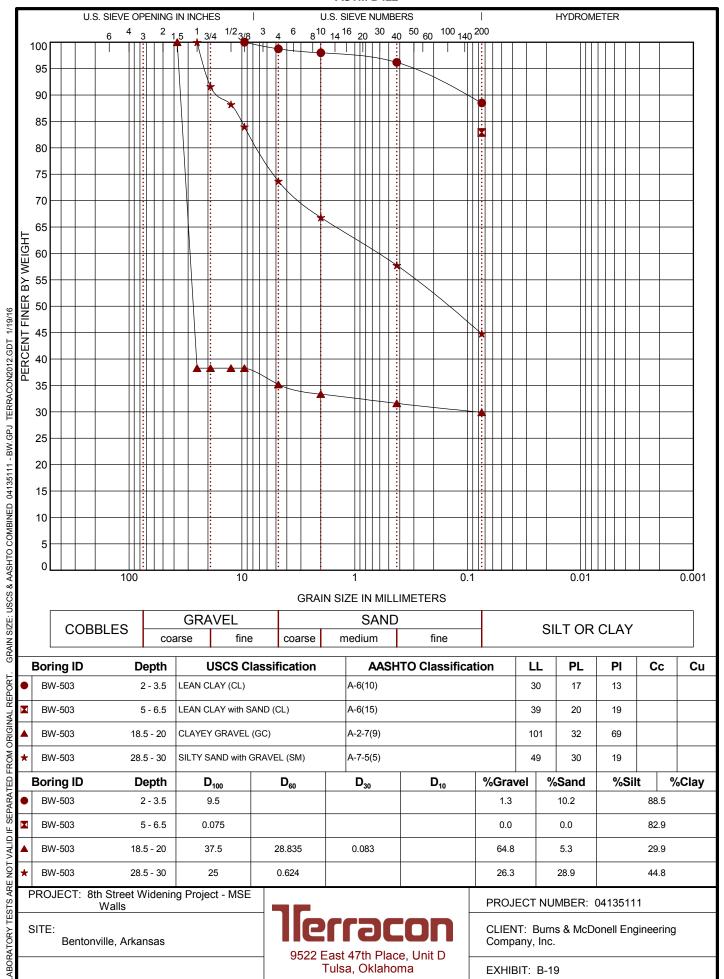
ASTM D422

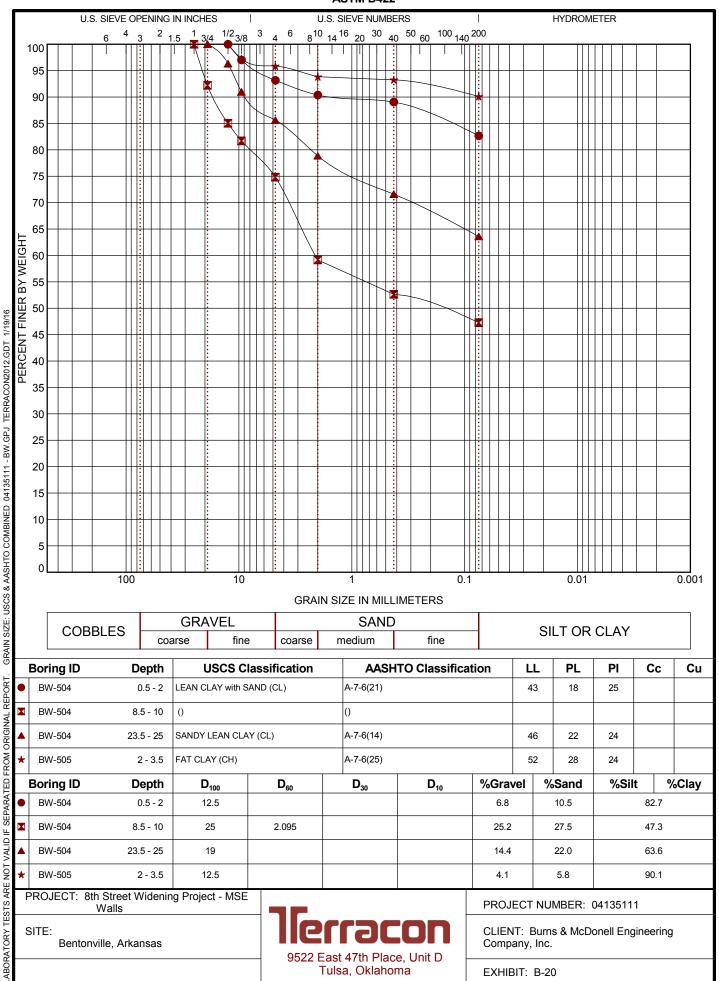
Tulsa, Oklahoma

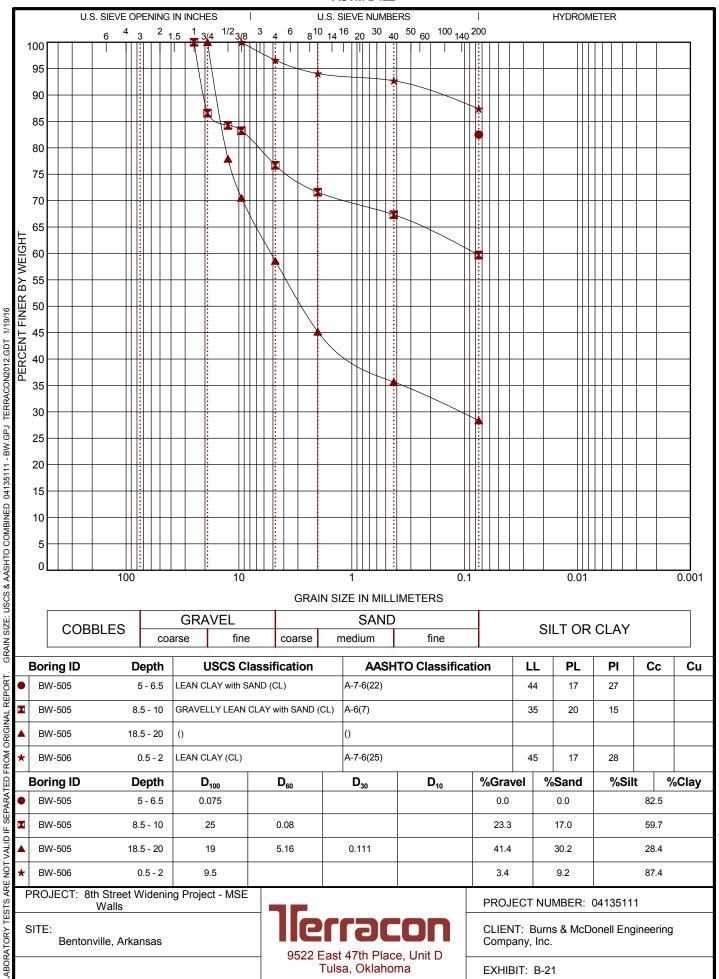

ASTM D422

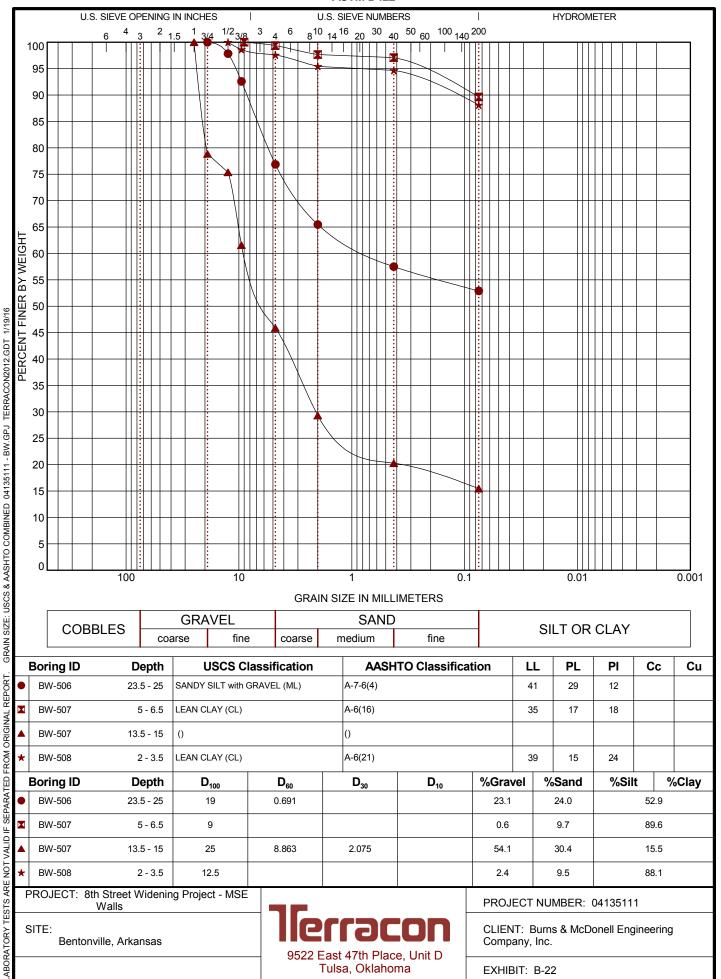


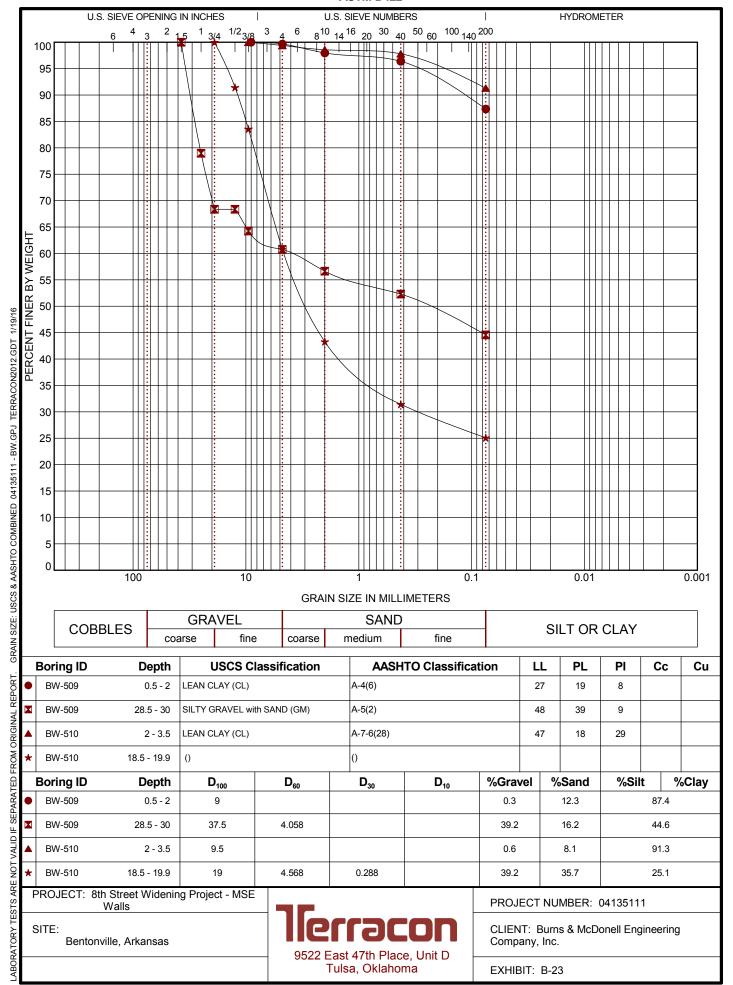

Tulsa, Oklahoma


EXHIBIT: B-15

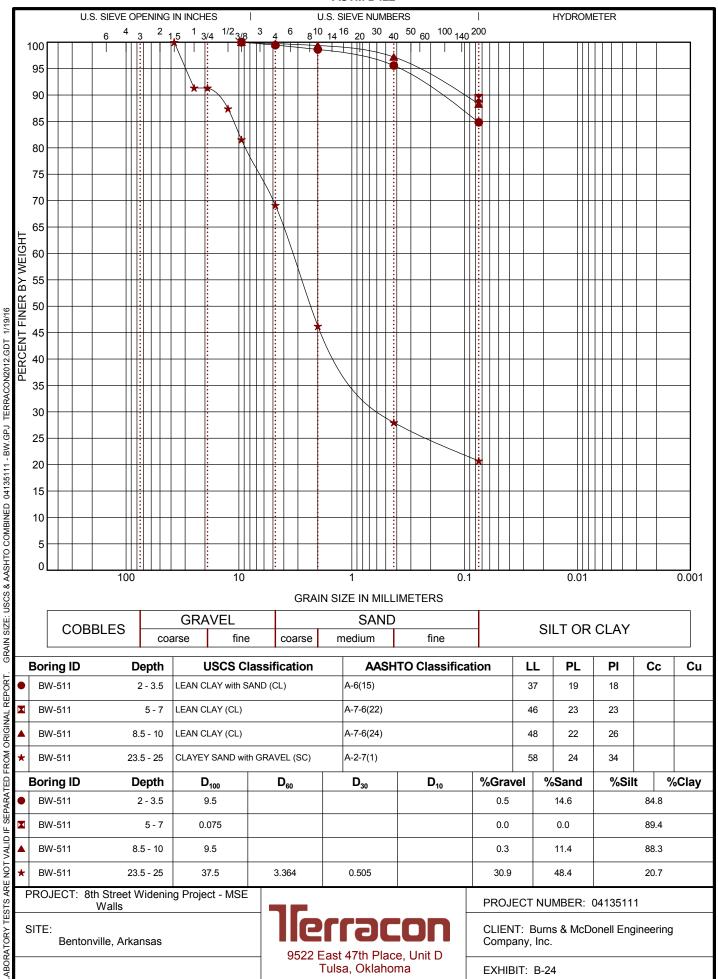

ABORATORY



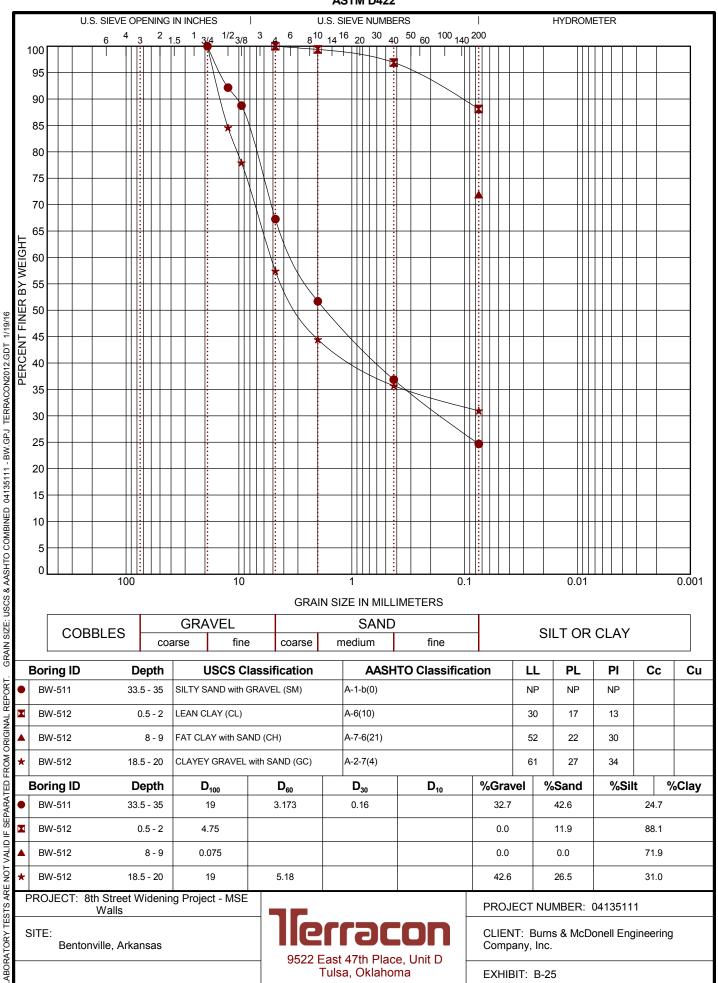




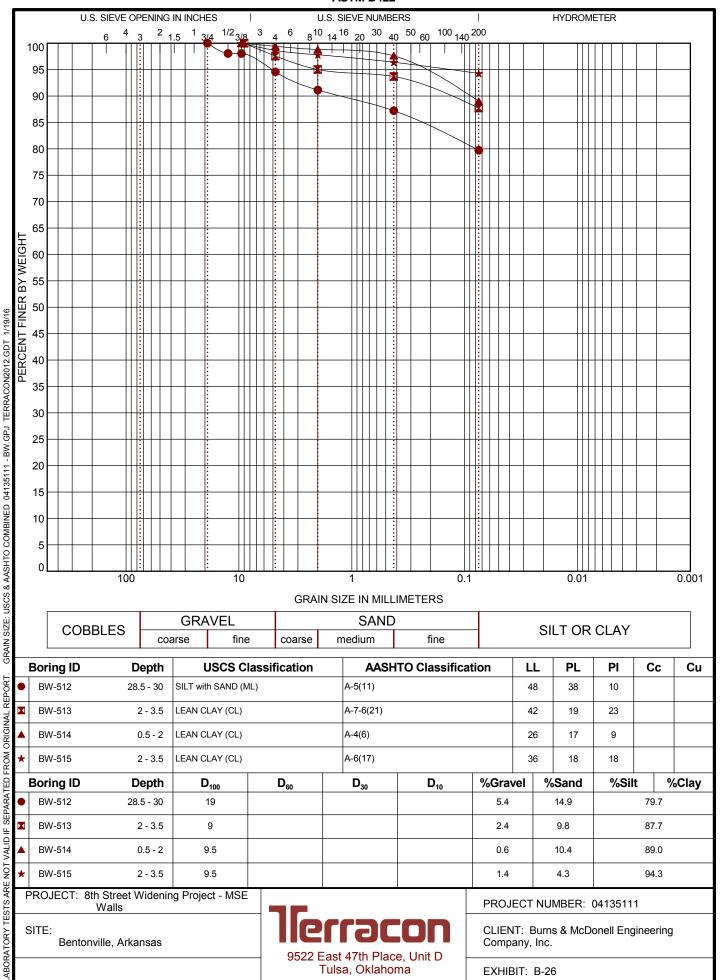
ASTM D422

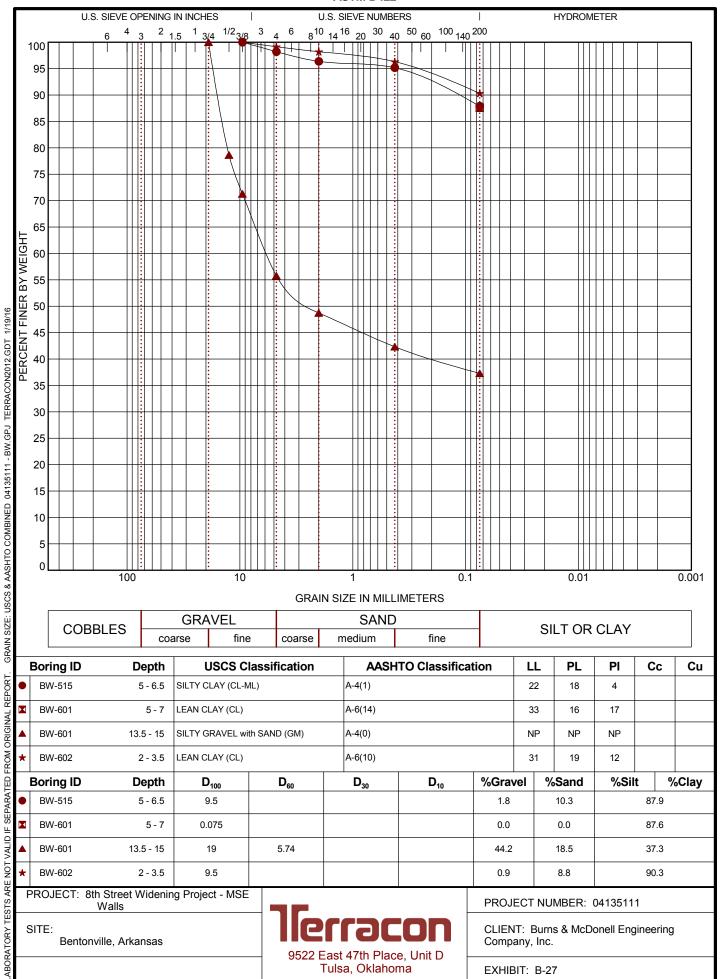


Tulsa, Oklahoma

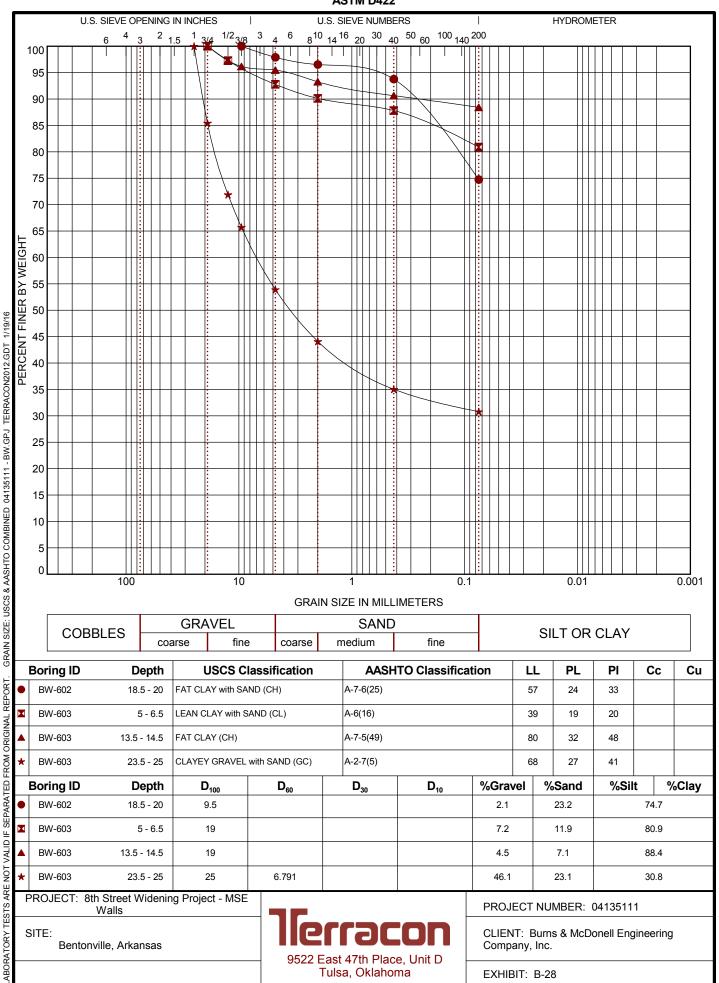


ASTM D422

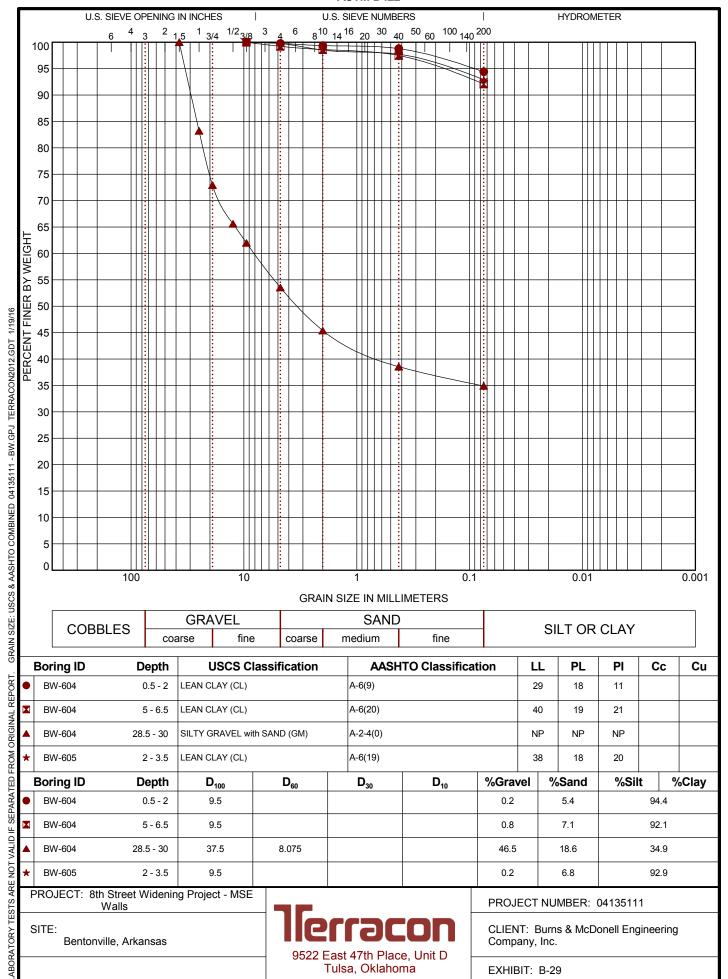


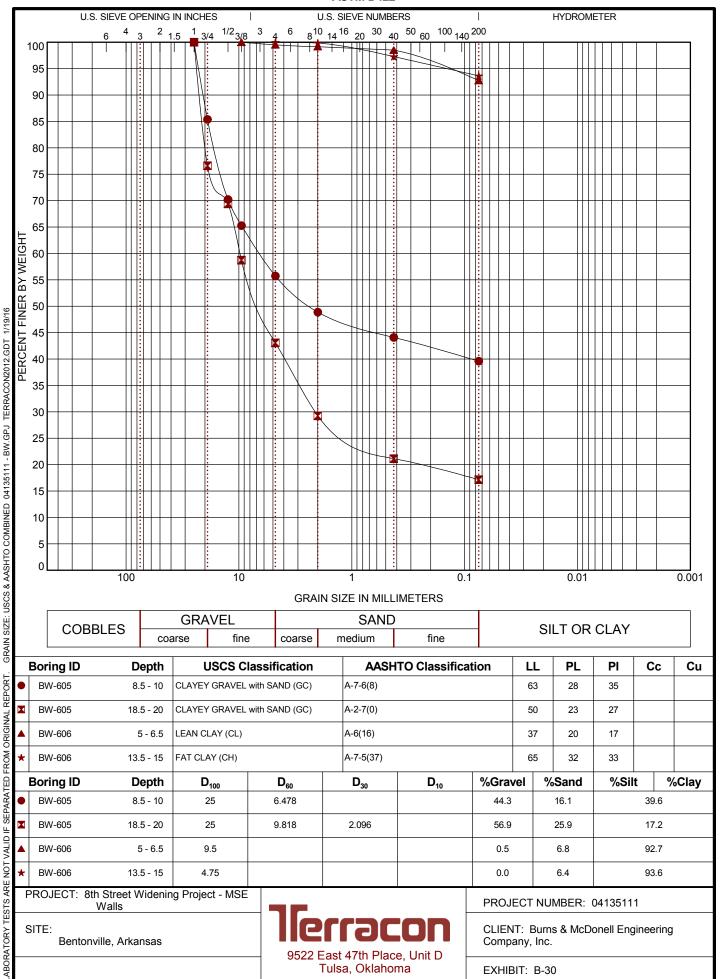

Tulsa, Oklahoma

ASTM D422

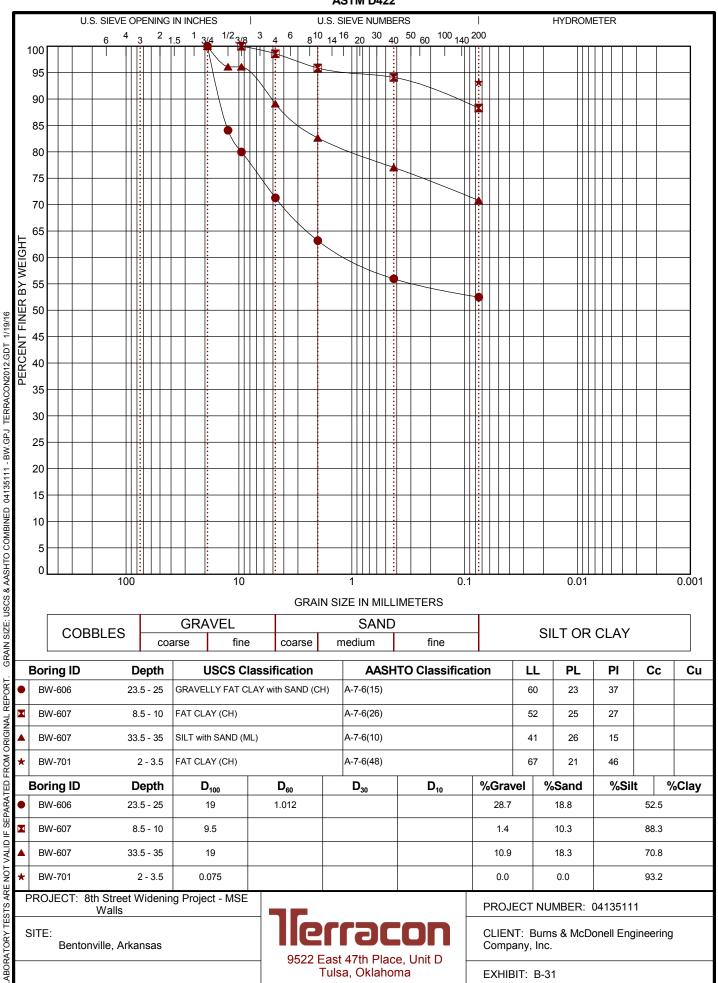


Tulsa, Oklahoma

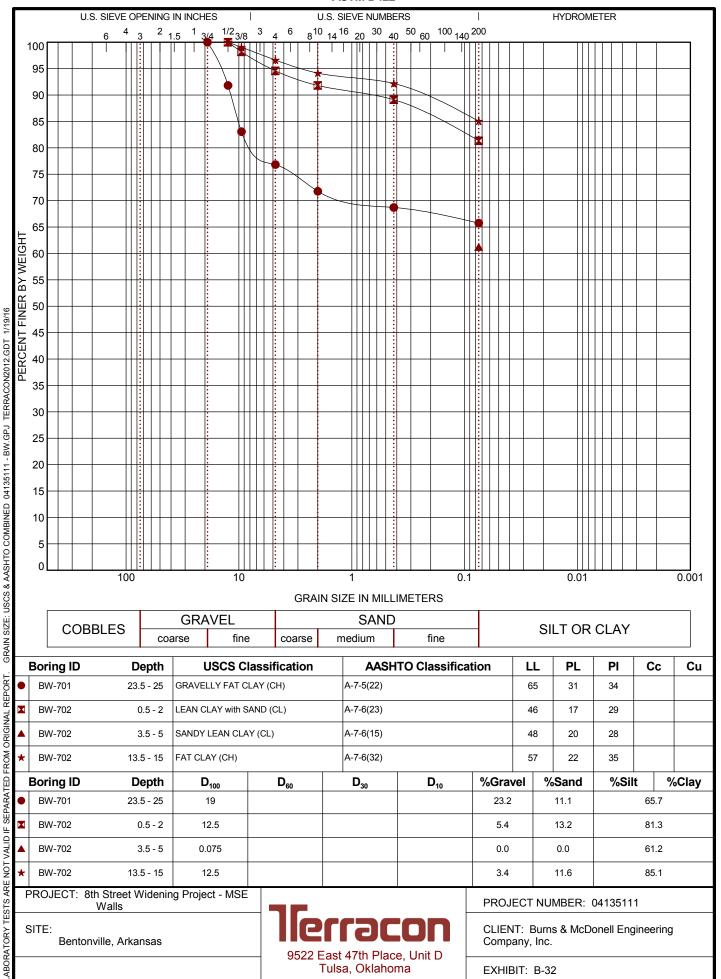


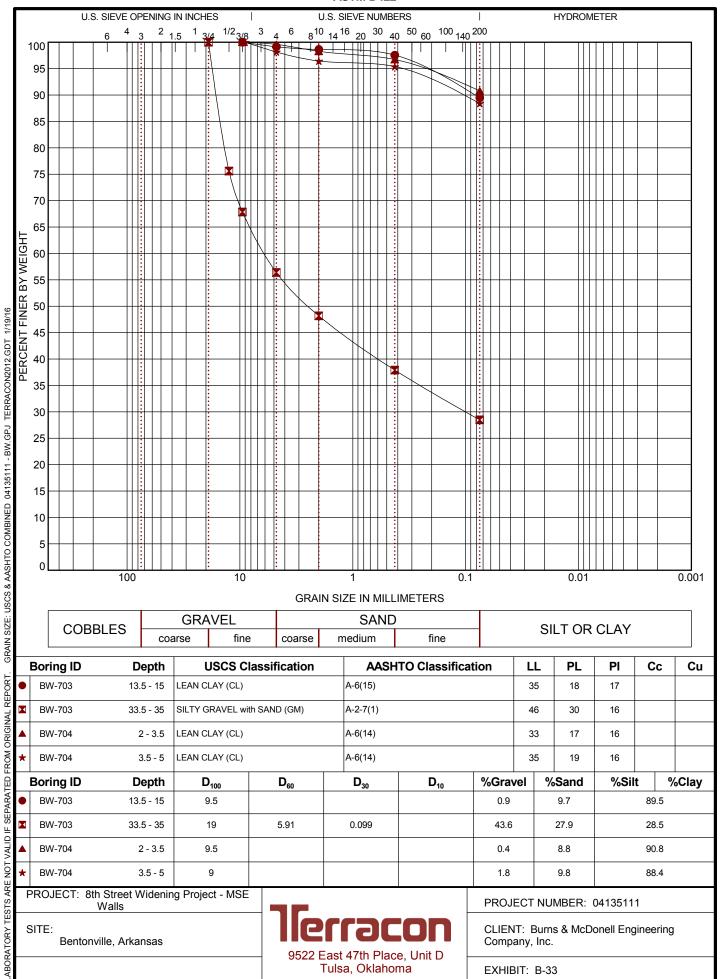


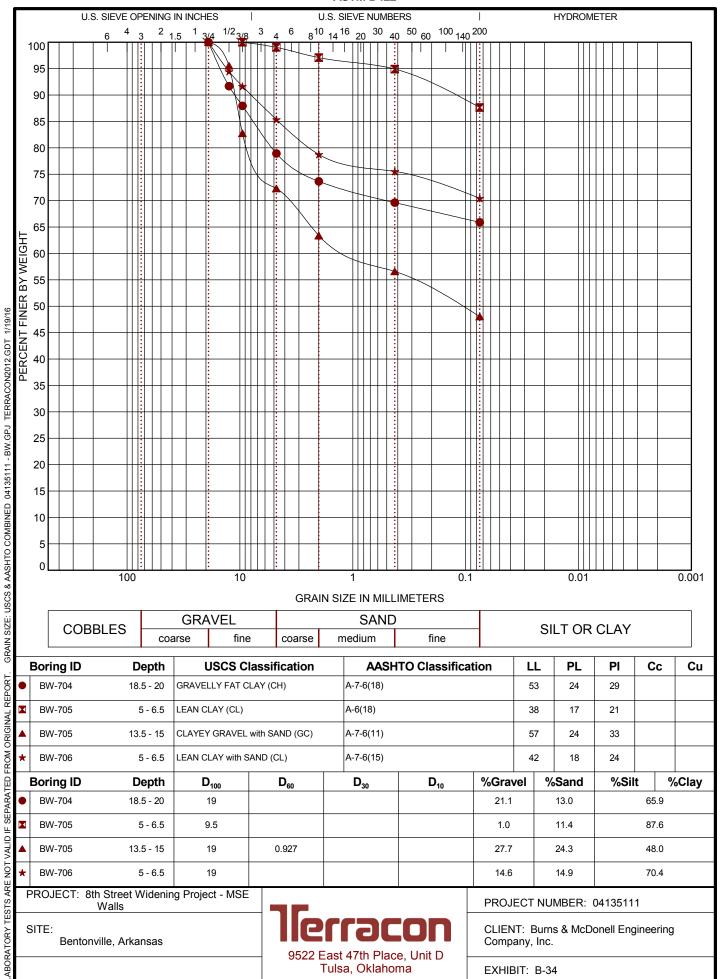
ASTM D422

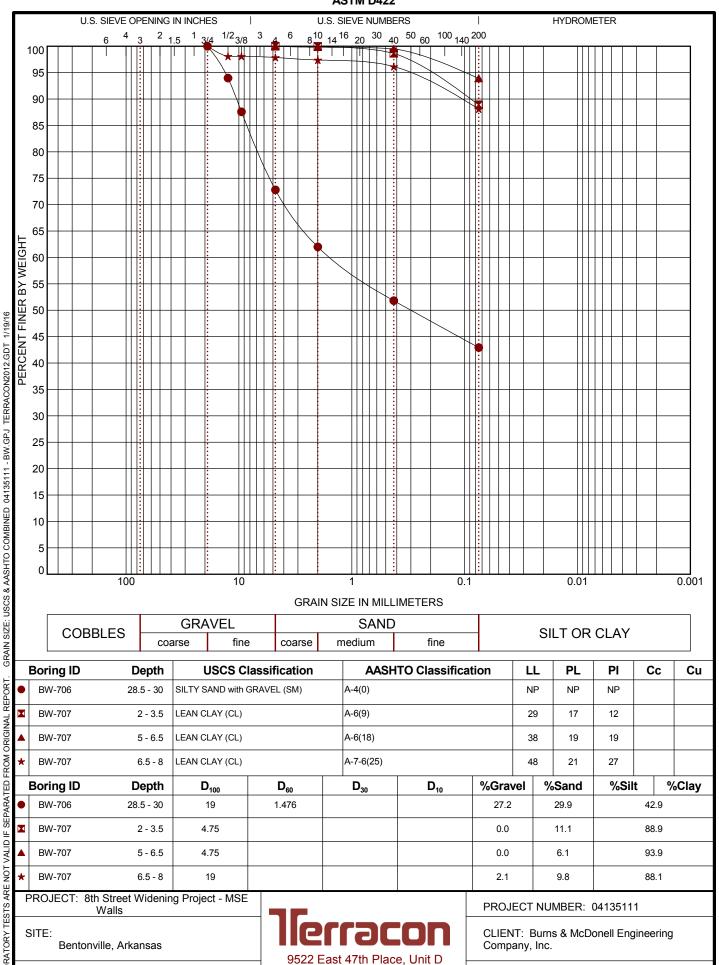


Tulsa, Oklahoma

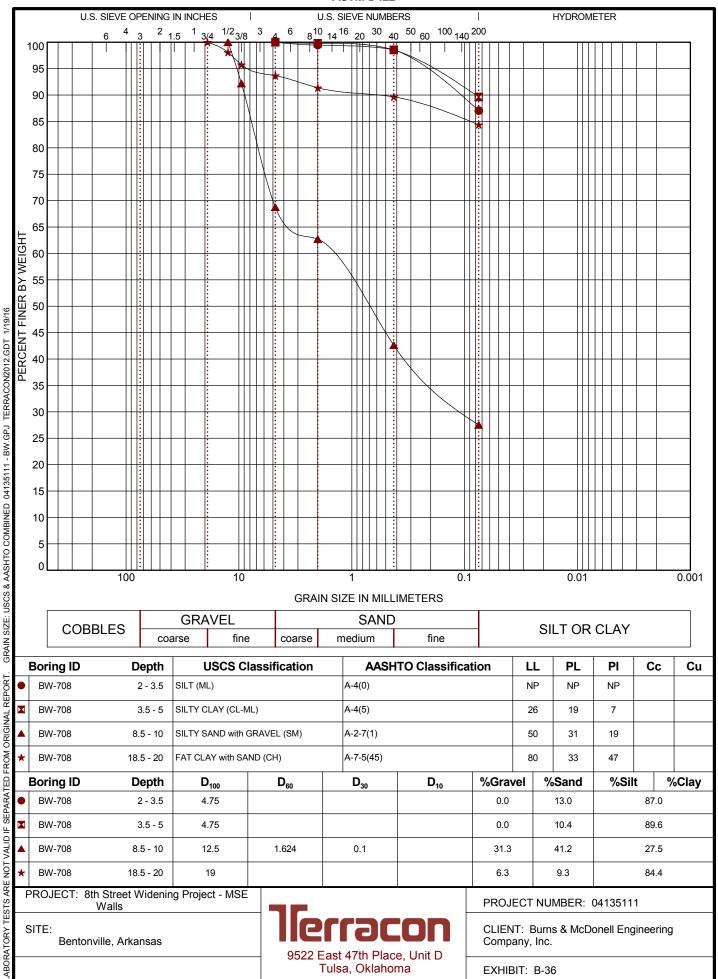




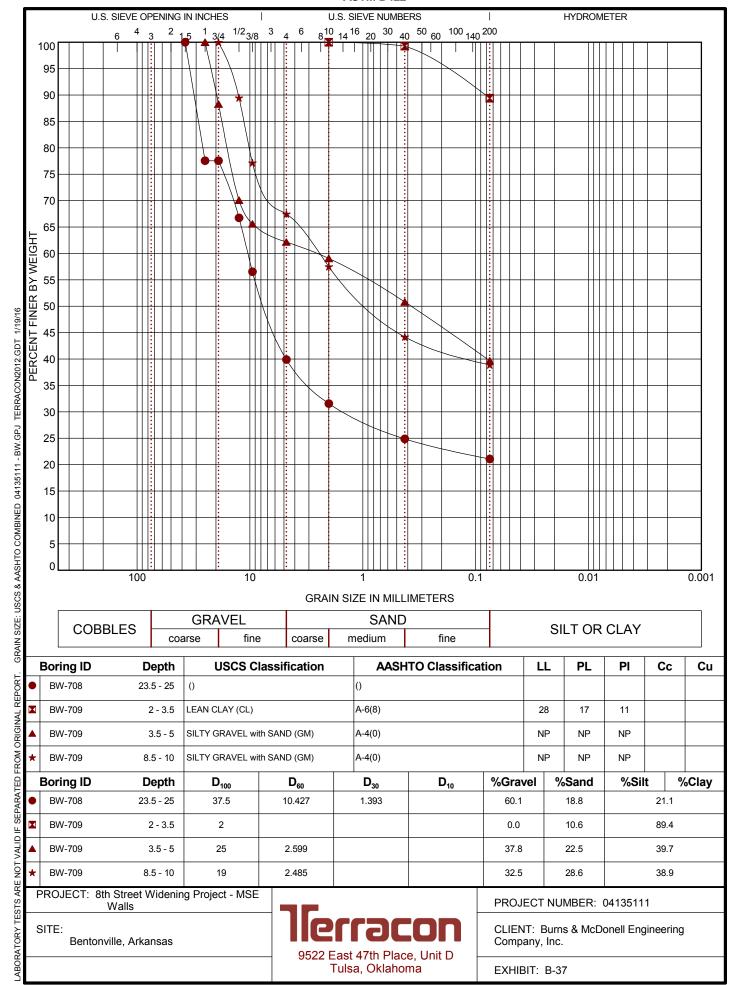

ASTM D422


Tulsa, Oklahoma

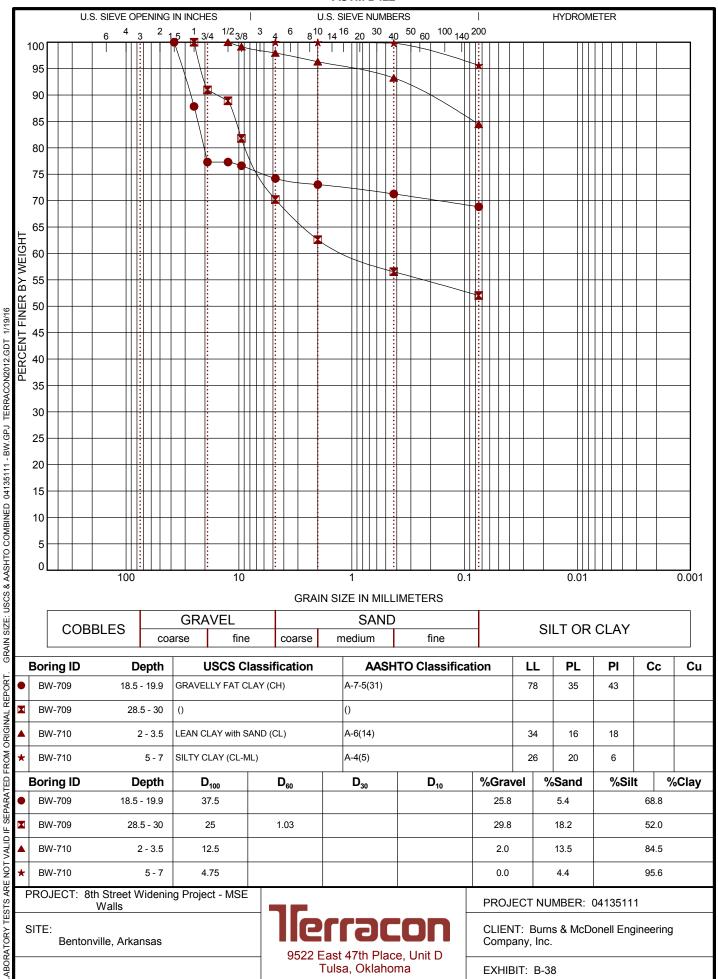
ASTM D422

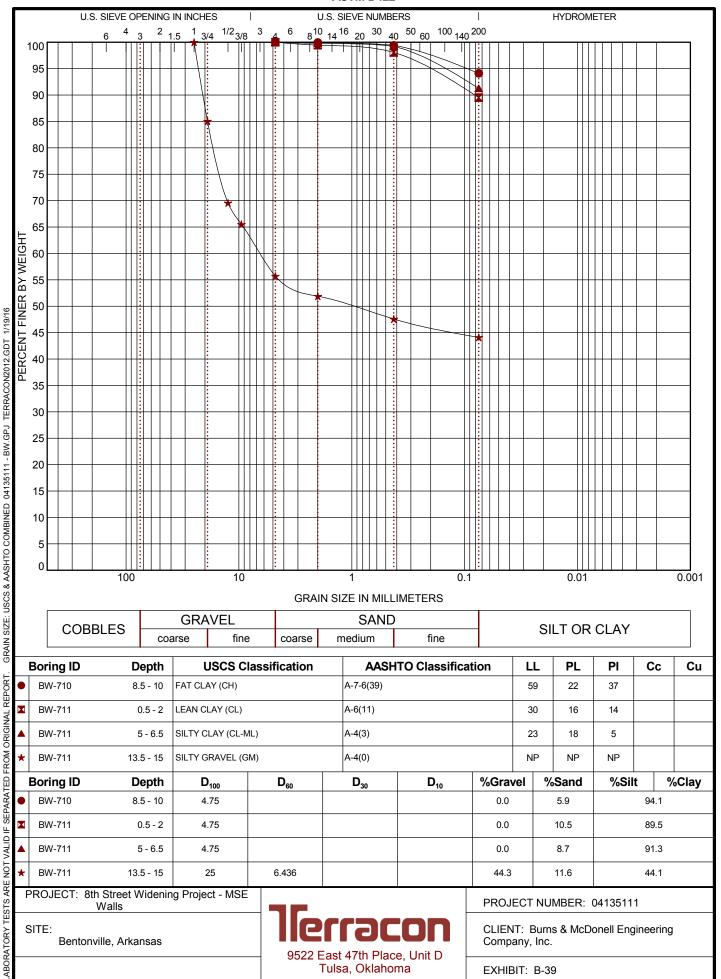


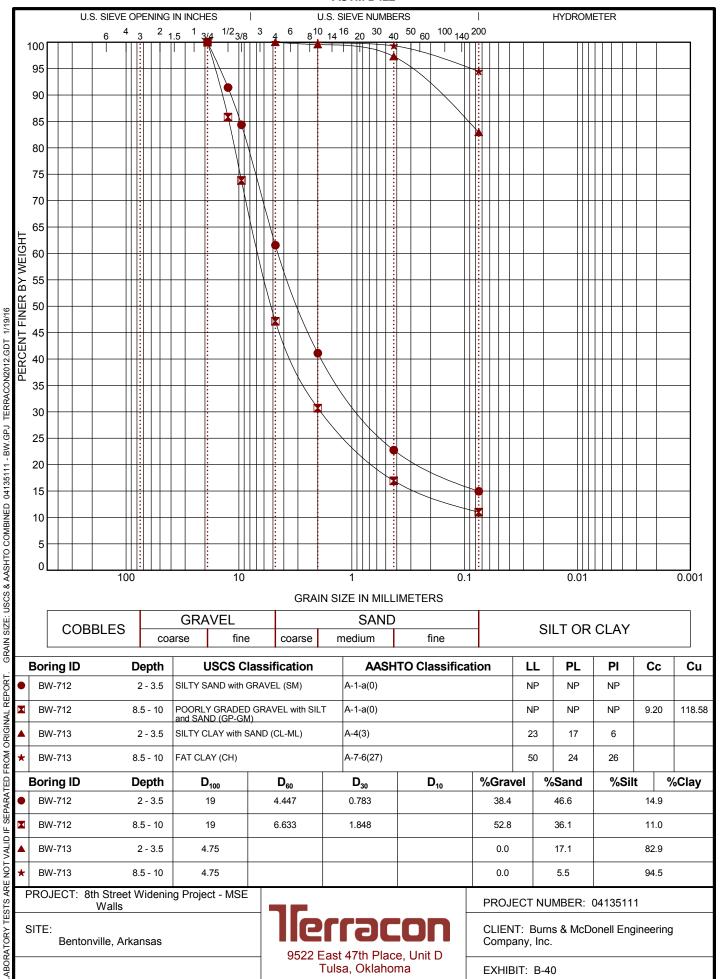
Tulsa, Oklahoma


EXHIBIT: B-35

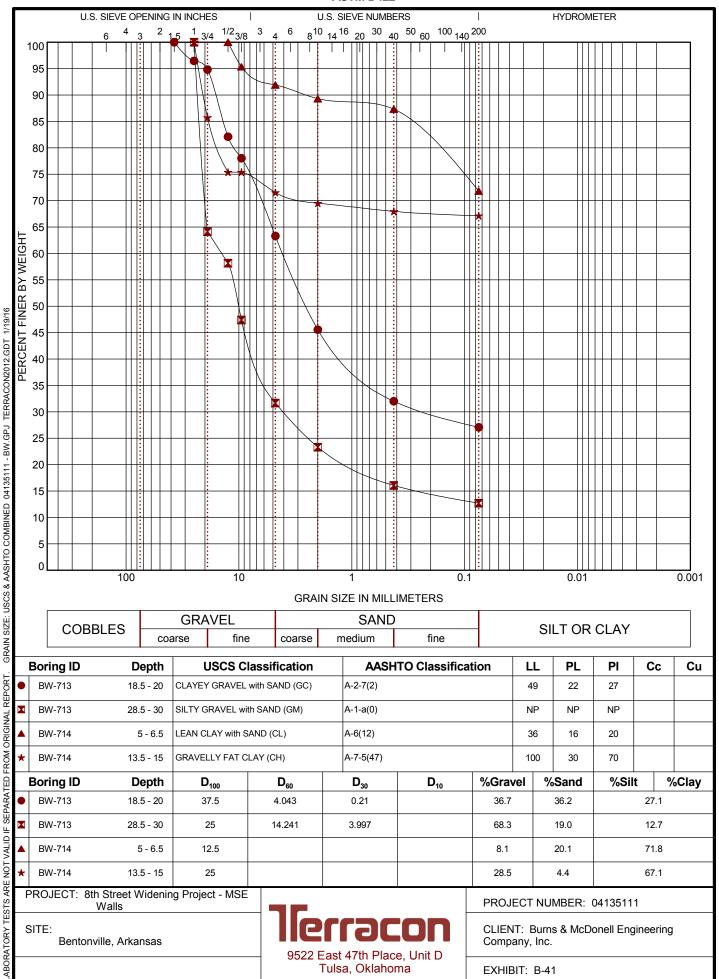
ABORATORY


ASTM D422

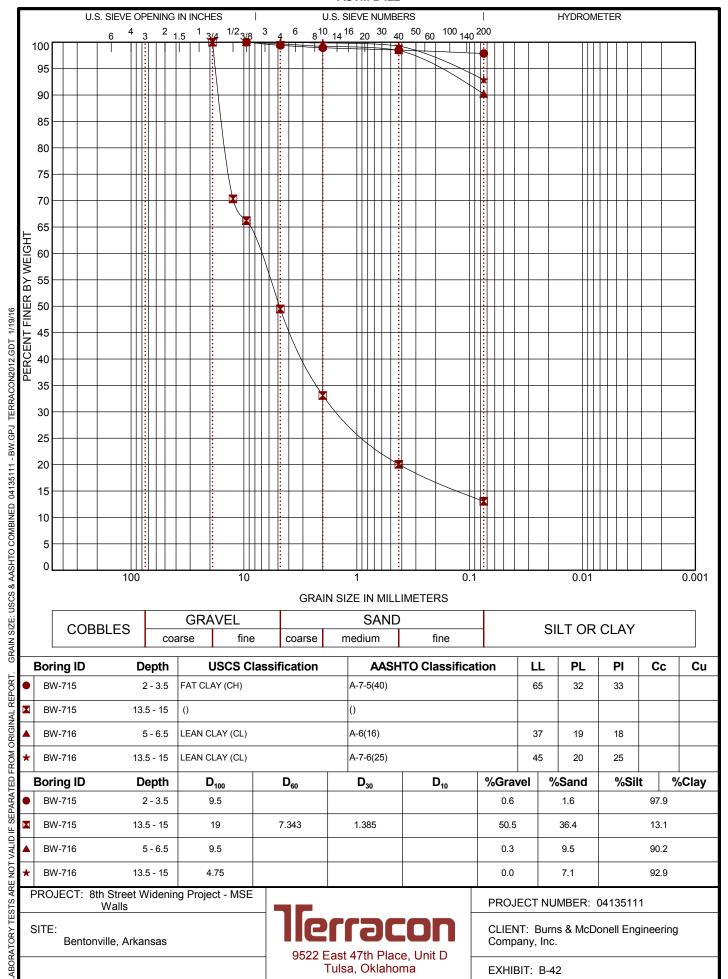

Tulsa, Oklahoma

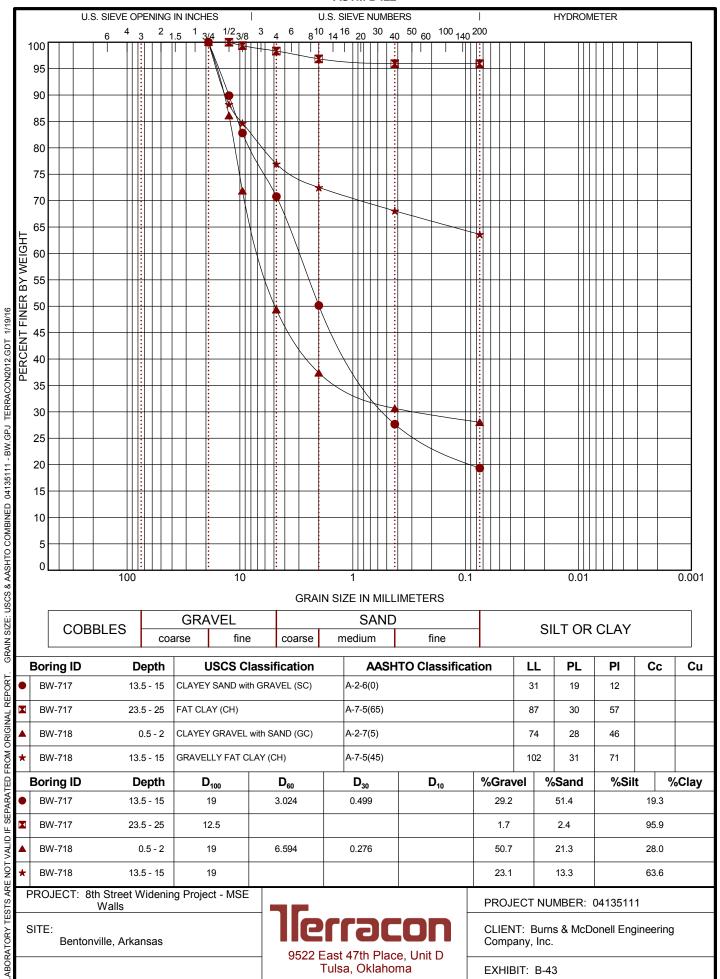

ASTM D422

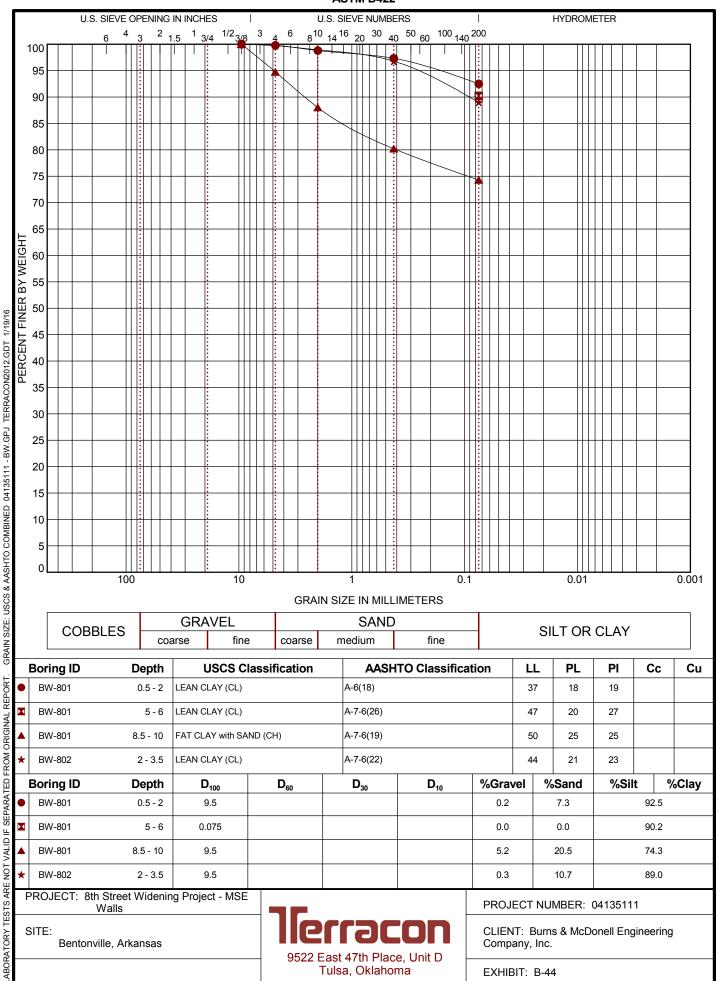
Tulsa, Oklahoma

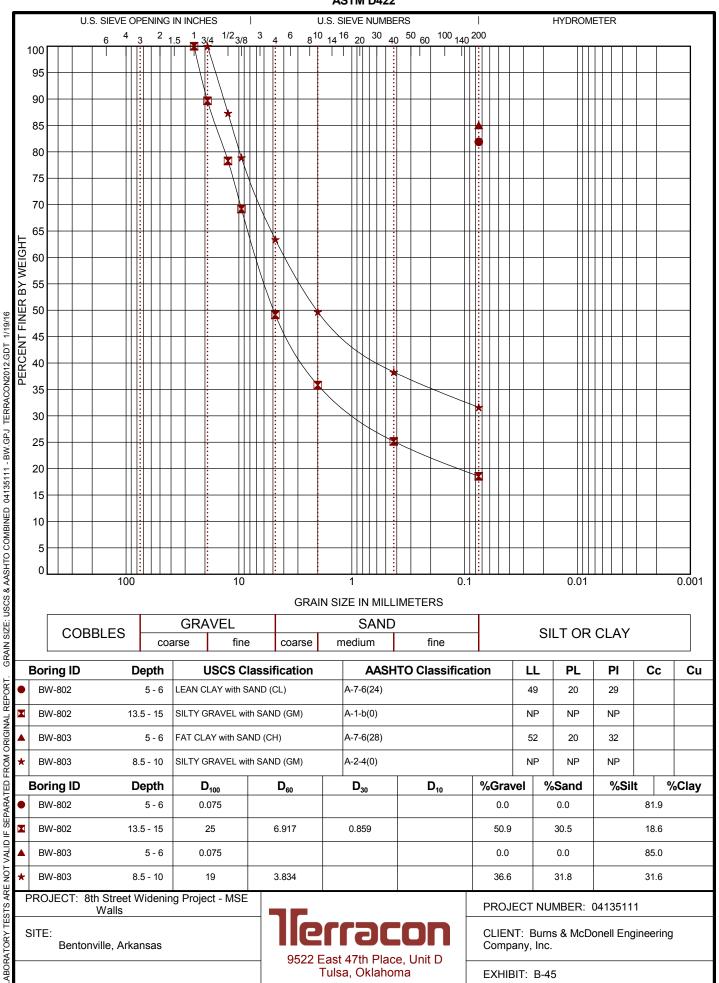

ASTM D422

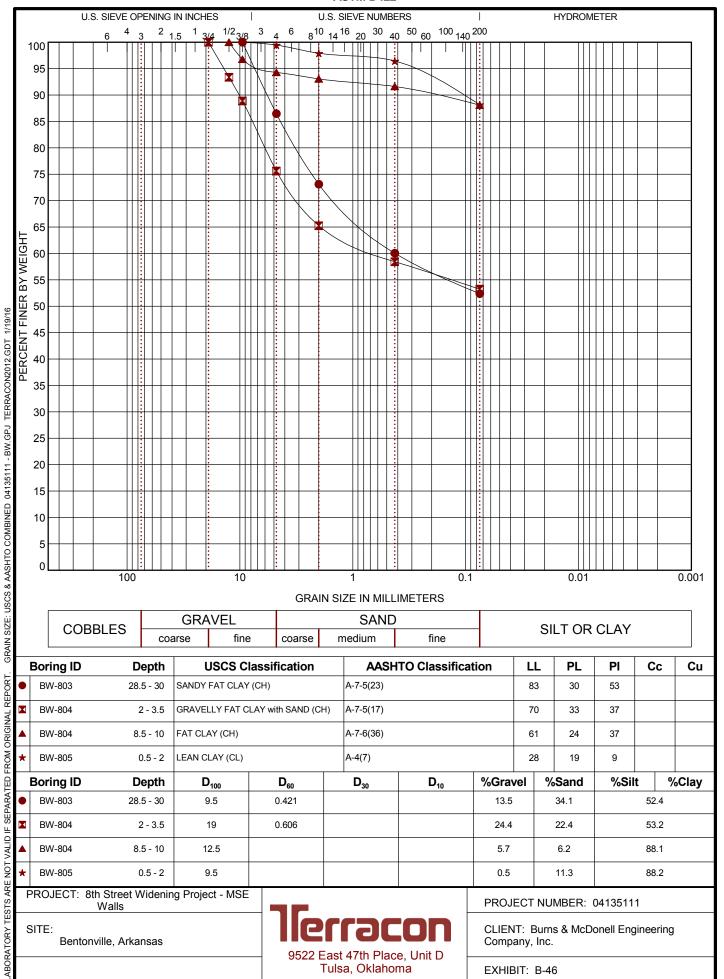
Tulsa, Oklahoma

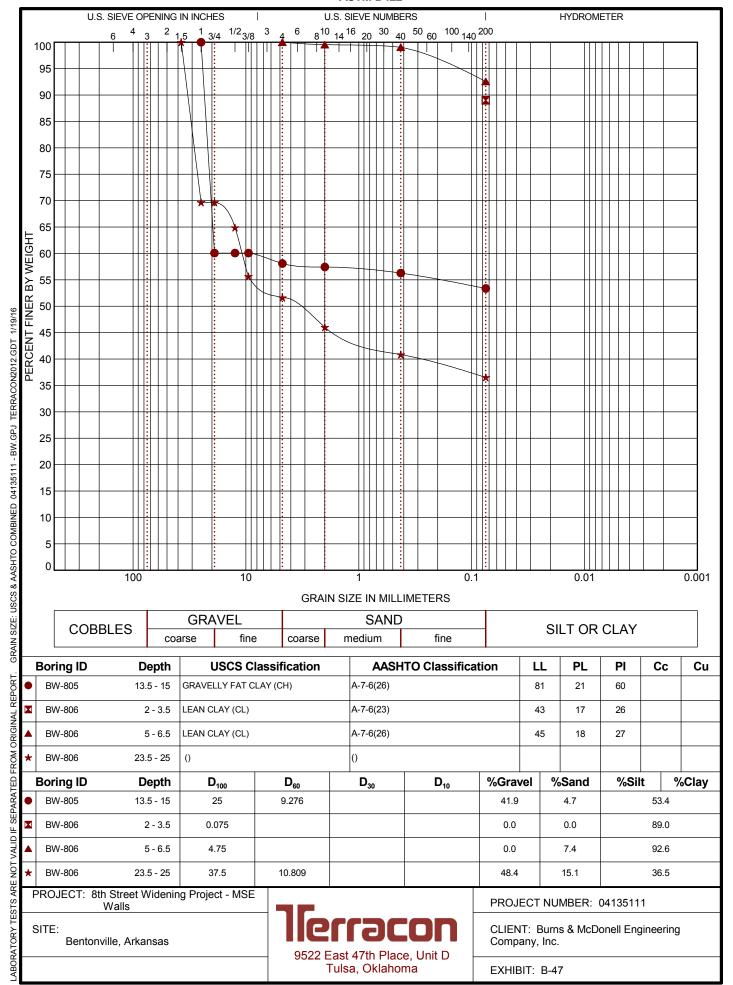

EXHIBIT: B-40

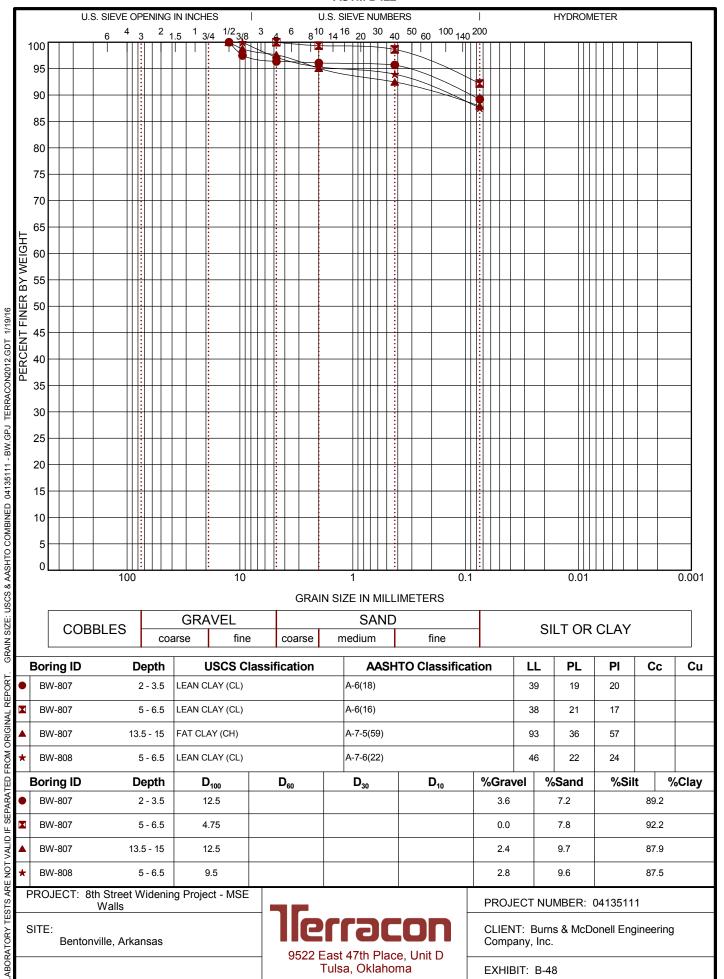

ASTM D422

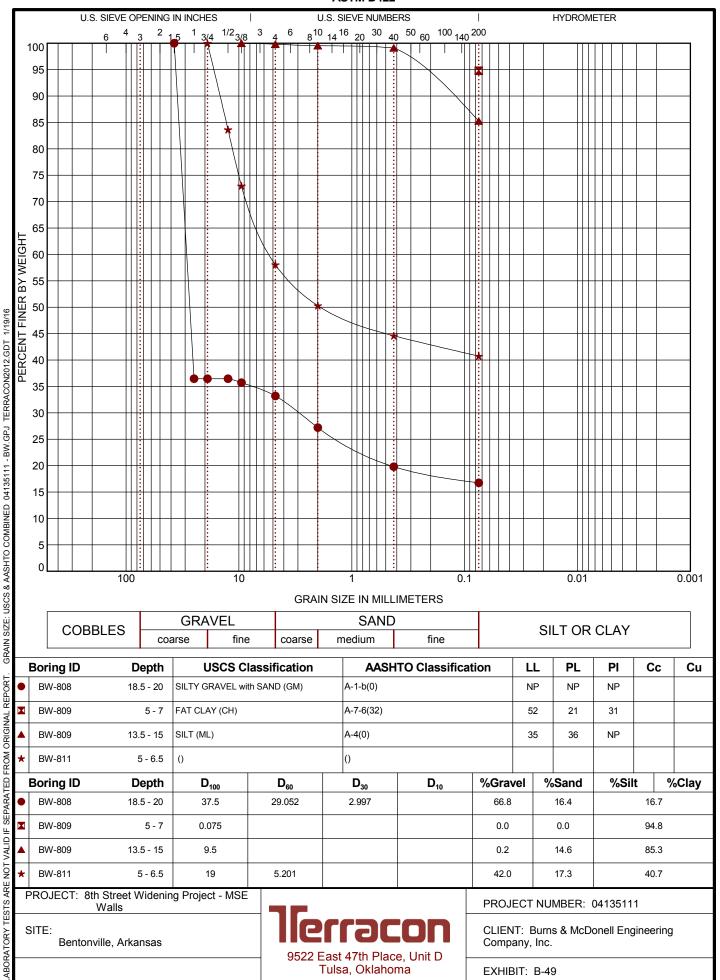


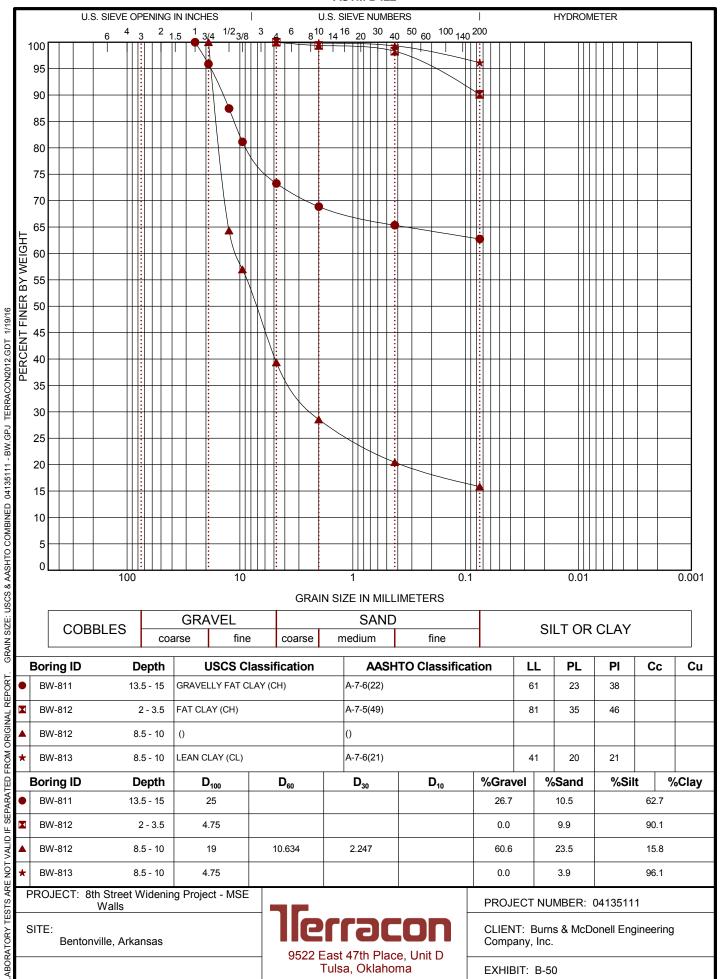

Tulsa, Oklahoma

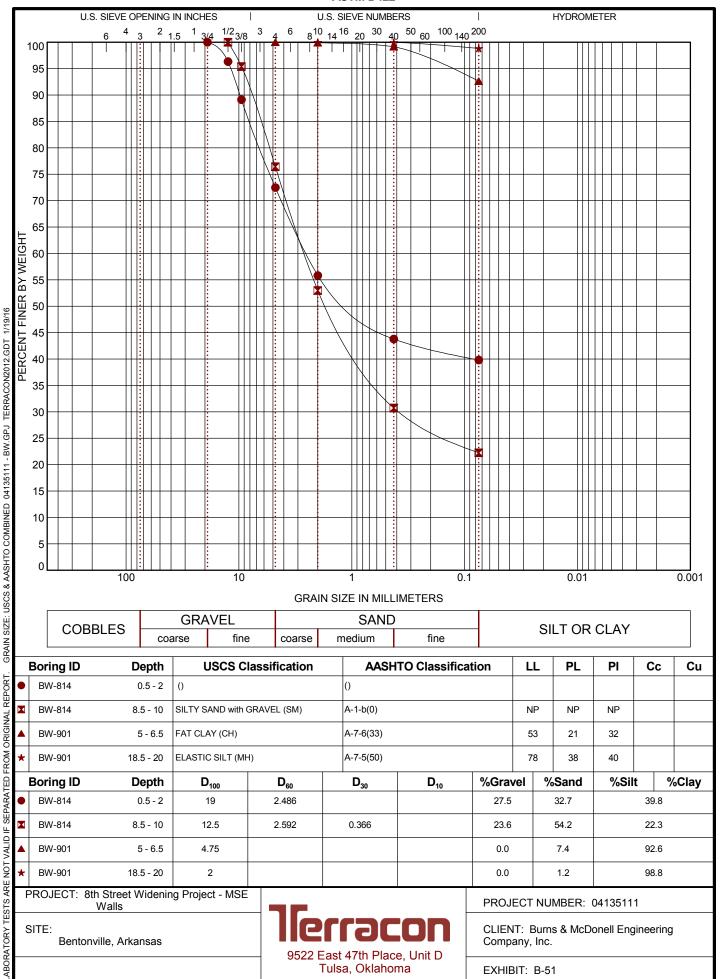

EXHIBIT: B-41

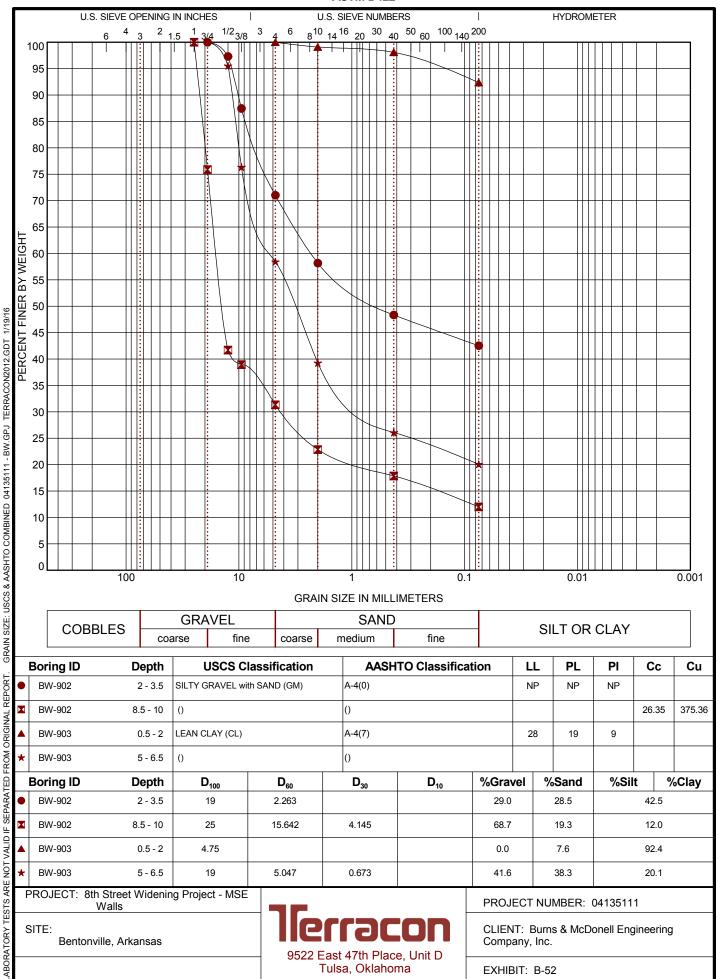


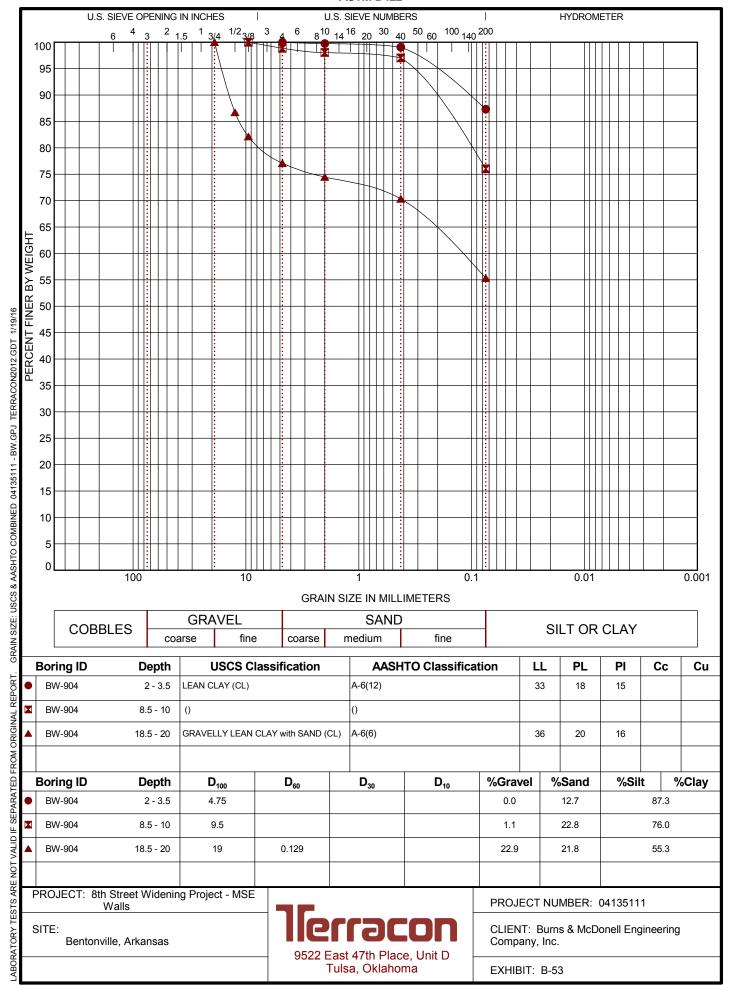


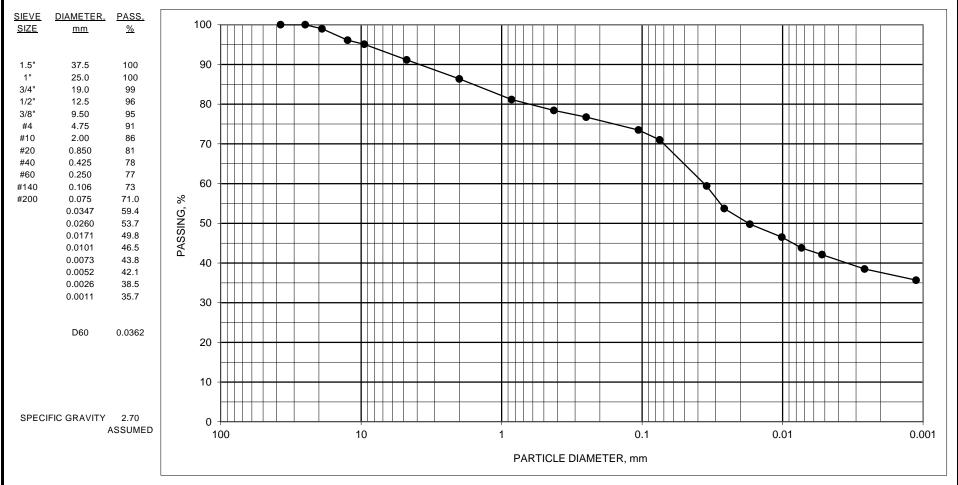


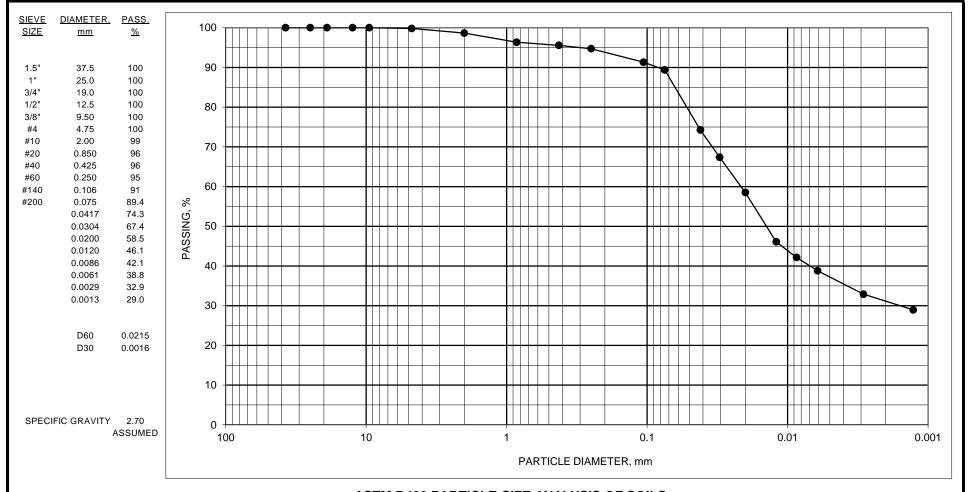








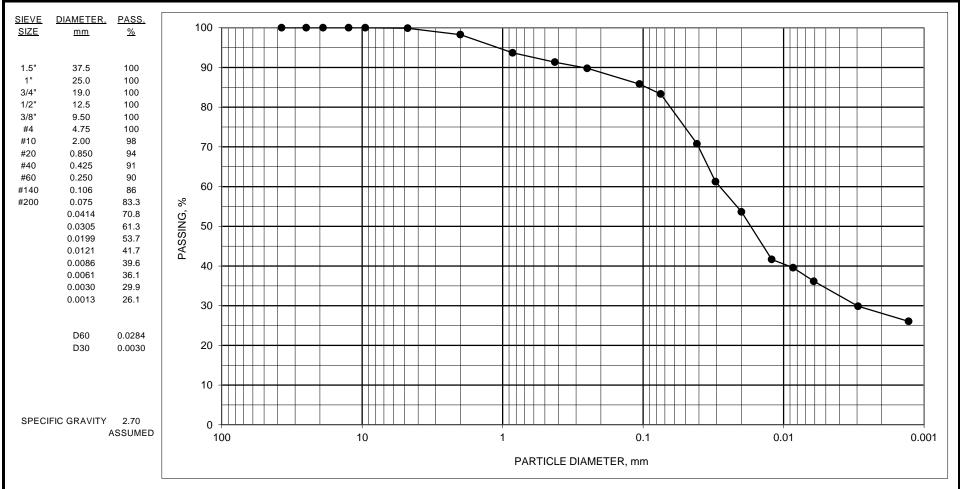




BORING ID	SAMPLE ID	DEPTH, feet	USCS DESCRIPTION	USCS SYMBOL	NAT M%	ATT LL	ERBERG LIN	MITS PI
BW-301		15 TO 20	FAT CLAY WITH SAND	СН		69	24	45
			2.5YR 4/6 RED					

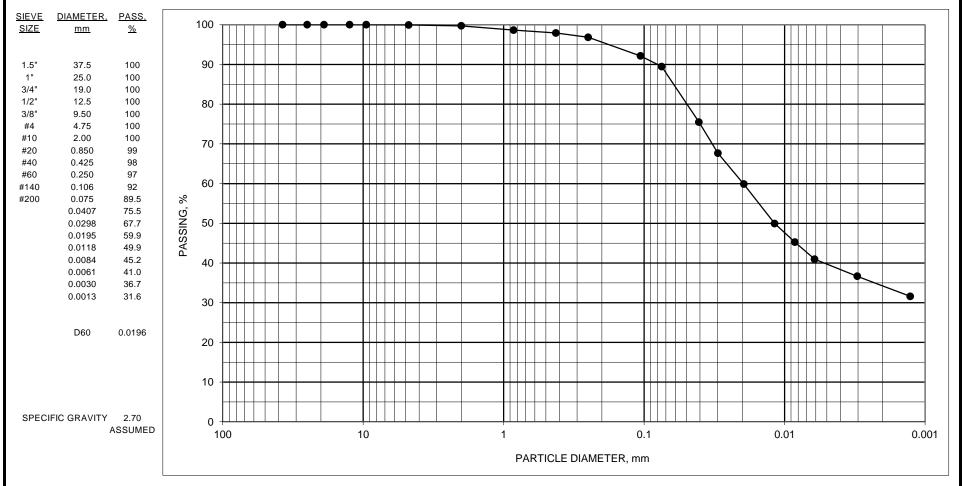
PROJECT	8TH STREET WIDENING PROJECT				
	RETAINING WALLS	JOB NO.	04135111	DATE	3/10/2014
				·	

N:\CM\LAB_DATA\00 Projects in Progress\2013 Projects in Progress\04135111 Lab data\[04135111 Hydrometer Plot BW301-15.0.xlsx]REPORT



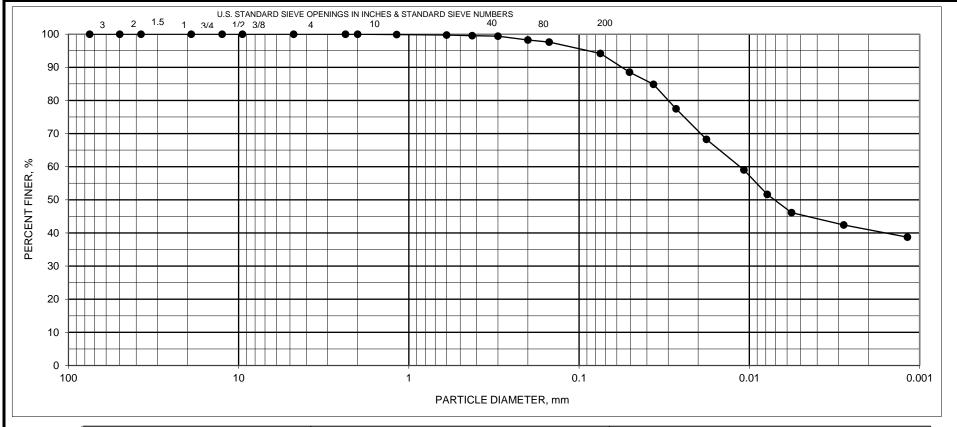
BORING	SAMPLE	DEPTH,	USCS	USCS	NAT	ATT	ERBERG LIN	/IITS
ID	ID	feet	DESCRIPTION	SYMBOL	M%	LL		PI
BW-407	3	3.5 TO 5.5	LEAN CLAY 5YR 4/6 YELLOWISH BROWN WITH 5YR 5/1 GRAY	CL		43	20	23

<u> lerracon</u>


PROJECT 8TH STREET WIDENING PROJECT				
RETAINING WALLS	JOB NO.	04135111	DATE	2/20/2014
N:\CMLAB_DATA\00 Projects in Progress\2013 Projects in Progress\04135111 Lab data\[04135111 Hydrome	eter Plot BW511-3-	5.0.xlsx]REPORT		

BORING	SAMPLE	DEPTH,	USCS	USCS	NAT	ATT	ERBERG LIN	/IITS
ID	ID	feet	DESCRIPTION	SYMBOL	M%	LL		PI
BT-007	3	5 TO 6.5	LEAN CLAY WITH SAND 2.5YR 4/4 REDDISH BROWN WITH 10YR 5/6 YELLOWISH BROWN	CL		39	19	20

<u> Terracon</u>


PROJECT 8TH STREET WIDENING PROJECT				
RETAINING WALLS	JOB NO.	04135111	DATE	2/20/2014
\CM\LAB_DATA\00 Projects in Progress\2013 Projects in Progress\04135111 Lab	data\[04135111 Hydrometer Plot BW511-3-	5.0 xlsxlRFPORT		

BORING	SAMPLE	DEPTH,	USCS	USCS	NAT	ATT	FERBERG LIN	/IITS
ID	ID	feet	DESCRIPTION	SYMBOL	M%	LL		PI
BW-511	3	5 TO 7	LEAN CLAY 2.5YR 4/4 REDDISH BROWN WITH 7.5YR 6/8 REDDISH YELLOW	CL		46	23	23

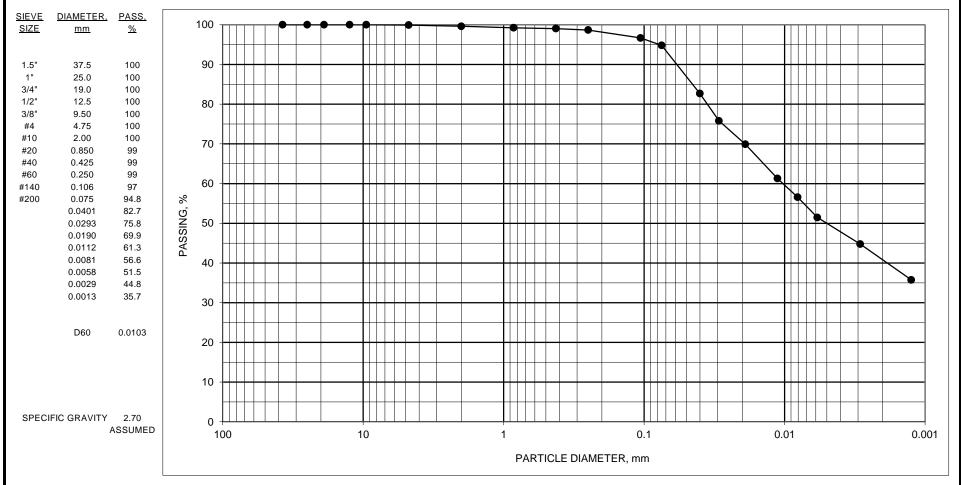
<u> Terracon</u>

8TH STREET WIDENING PROJECT				
RETAINING WALLS	JOB NO.	04135111	DATE	2/20/2014

	GRAVEL		SAND		SILT or
Coarse	Fine	Coarse	Medium	Fine	CLAY

GRAIN SIZE DISTRIBUTION CURVE

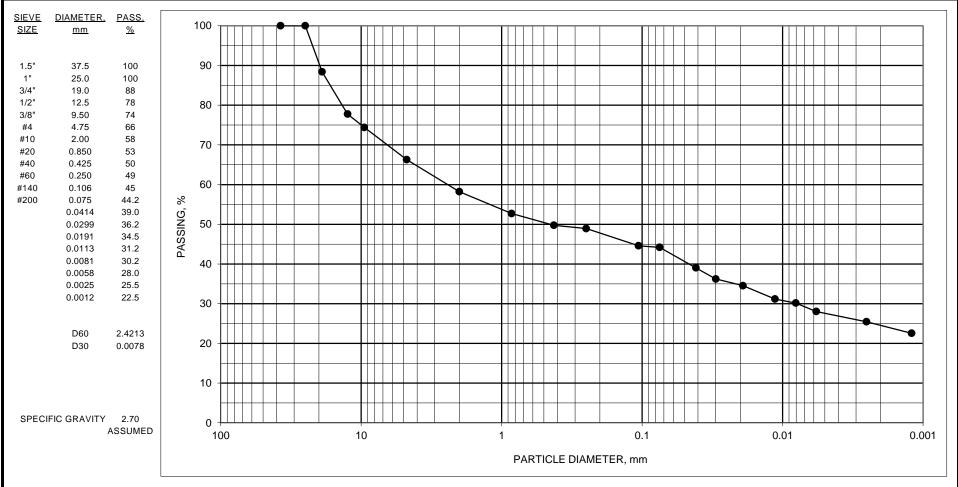
BORING	SAMPLE	DEPTH,	ASTM	USCS	NAT.	ATT	ERBERG LI	MITS
NO.	NO.	feet	DESCRIPTION	CLASS.	WC, %	LL	PL	PI
BW-606	S-3	5.0-6.5	LEAN CLAY 5YR 5/3 AND 5YR 6/8 REDDISH-BROWN	CL	21	37	20	


PROJECT	8TH STREET WIDENING PROJECT		

<u>RETAINING WALLS</u>

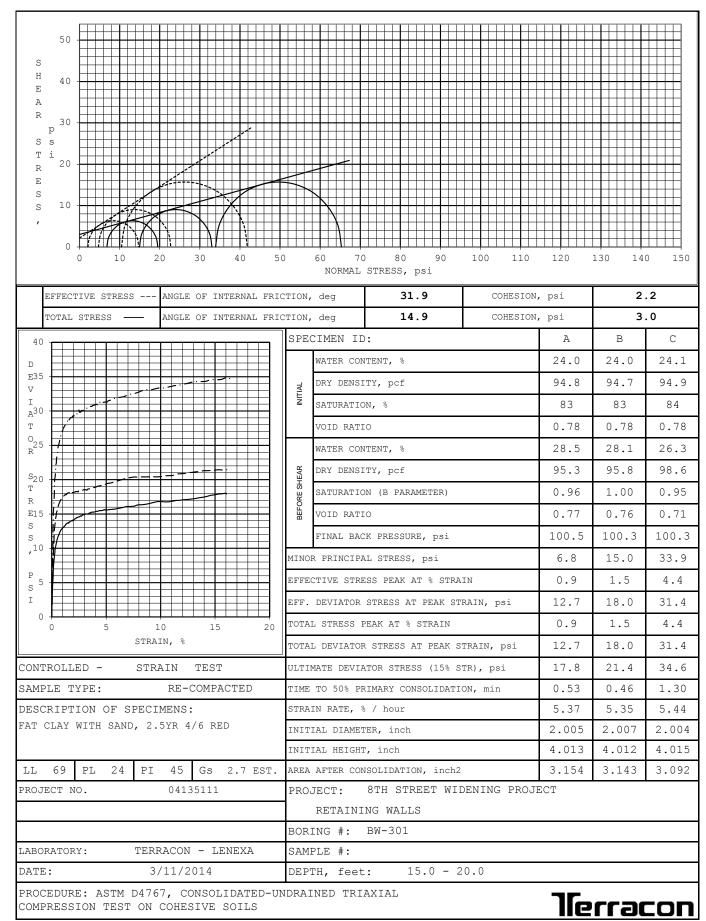
JOB NO. <u>04135111</u>

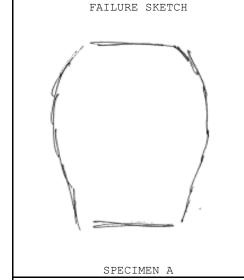
DATE <u>8/27/2015</u>

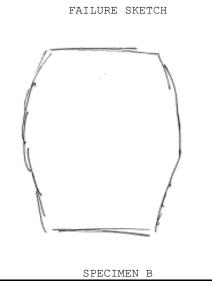

Terracon

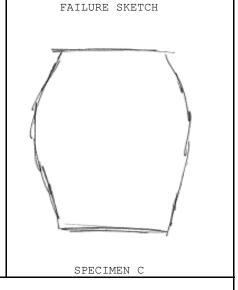
BORING	SAMPLE	DEPTH,	USCS	USCS	NAT	ATT	ERBERG LIN	/IITS
ID	ID	feet	DESCRIPTION	SYMBOL	M%	LL		PI
BW-809	3	5 TO 7	FAT CLAY 10YR 4/6 DARK YELLOWISH BROWN WITH 10YR 5/1 GRAY	СН		52	21	31

Terracon


ECT 8TH STREET WIDENING PROJECT				
RETAINING WALLS	JOB NO	04135111	DATE	2/20/2014


BORING	SAMPLE	DEPTH,	USCS	USCS	NAT	ATT	ERBERG LIN	MITS
ID	ID	feet	DESCRIPTION	SYMBOL	M%	LL		PI
BW-902	BULK	6 TO 10	CLAYEY GRAVEL WITH SAND 2.5YR 4/4 REDDISH BROWN	GC		67	24	43


PROJECT 8TH STREET WIDENING PROJECT				
RETAINING WALLS	JOB NO	04135111	DATE	5/2/2014
N:\CM\LAB_DATA\00 Projects in Progress\2013 Projects in Progress\04135111 Lab data\[0413511	1 Hydrometer Plot BW902-BL	JLK-6.0.xlsx]GRADATIO	ON	



8TH STREET WIDENING PROJECT BW-301 04135111 15.0 - 20.0 7.5 7.0 6.5 6.0 Т 5.5 R R I N C 5.0 E S S 4.5 4.0 3.5 R 3.0 A 2.5 T 2.0 J 1.5 0 1.0 0.5 0.0 20 0 10 15 STRAIN, %

REMARKS:

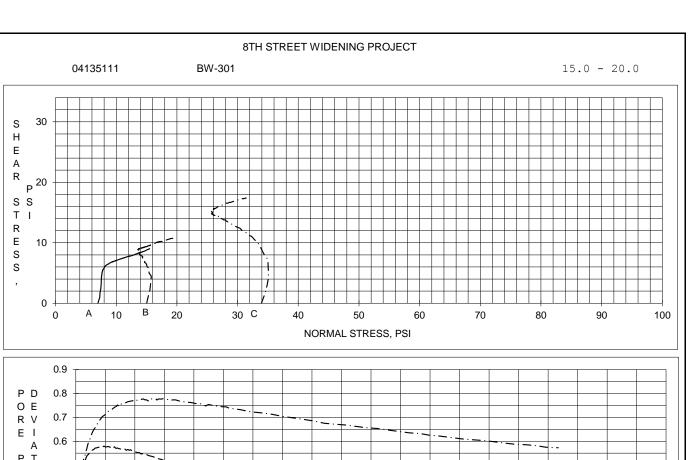
SPECIMENS SATURATED BY THE WET METHOD.

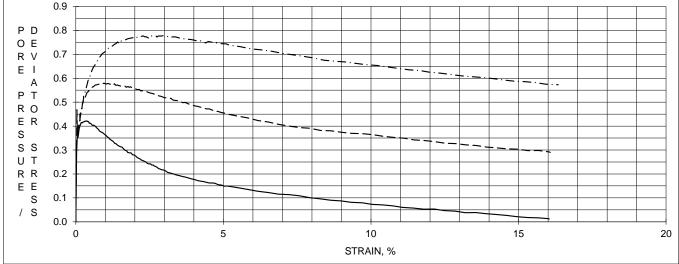
EFFECTIVE STRESS FAILURE DATA BASED ON PEAK PRINCIPAL STRESS RATIO % STRAIN.

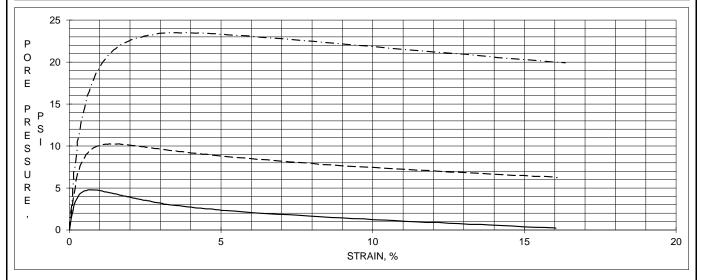
EFFECTIVE STRESS MOHR'S CIRCLES DRAWN AT PEAK PRINCIPAL STRESS RATIO % STRAIN.

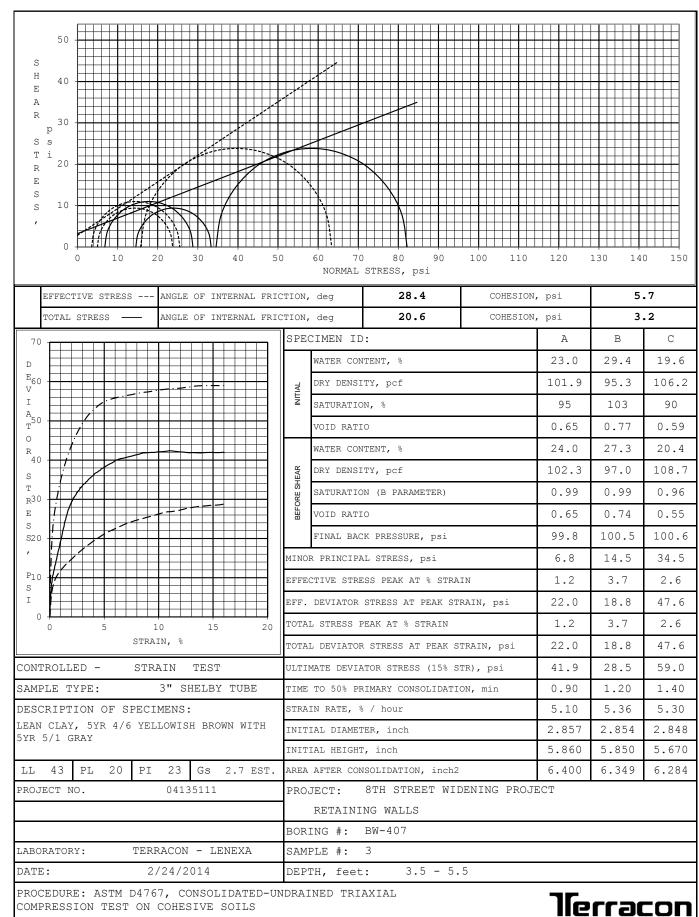
TOTAL STRESS FAILURE DATA BASED ON PEAK PRINCIPAL STRESS RATIO % STRAIN.

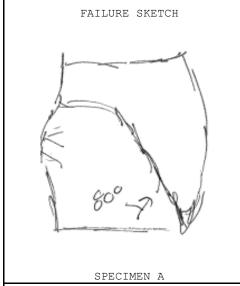
TOTAL STRESS MOHR'S CIRCLES DRAWN AT PEAK PRINCIPAL STRESS RATIO % STRAIN.


DEVIATOR STRESSES CORRECTED FOR MEMBRANE AND FILTER PAPER EFFECTS.


AREA AFTER CONSOLIDATION CALCULATED AS PER SECTION 10.3.2.1 METHOD A


STANDARD PROCTOR = 95pcf @ 24% MOISTURE REMOLDED TO 94.8 pcf @ 24.1% MOISTURE


REMOLDED TO 99.8% COMPACTION



8TH STREET WIDENING PROJECT 04135111 BW-407 3.5 - 5.5 8.0 7.5 7.0 S 6.5 6.0 R 5.5 E 5.0 S 4.5 S 4.0 R N С 3.5 R 3.0 2.5 T 2.0 1.5 0 1.0 0.5 0.0 0 5 10 15 20 STRAIN, %

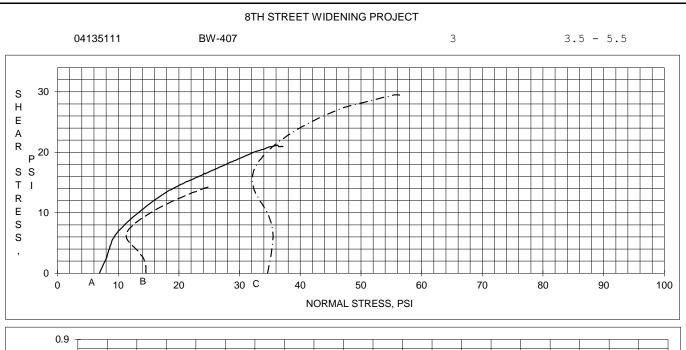
REMARKS:

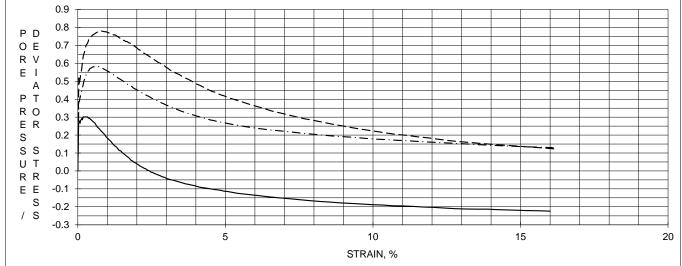
SPECIMENS SATURATED BY THE WET METHOD.

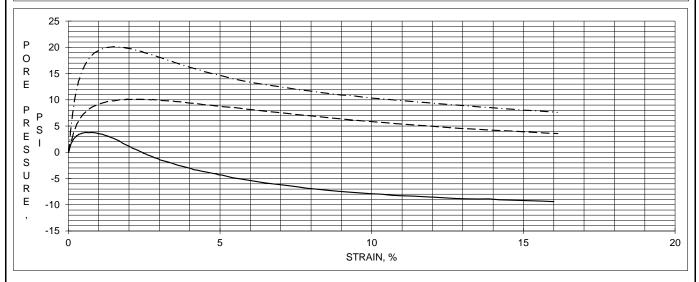
EFFECTIVE STRESS FAILURE DATA BASED ON PEAK PRINCIPAL STRESS RATIO % STRAIN.

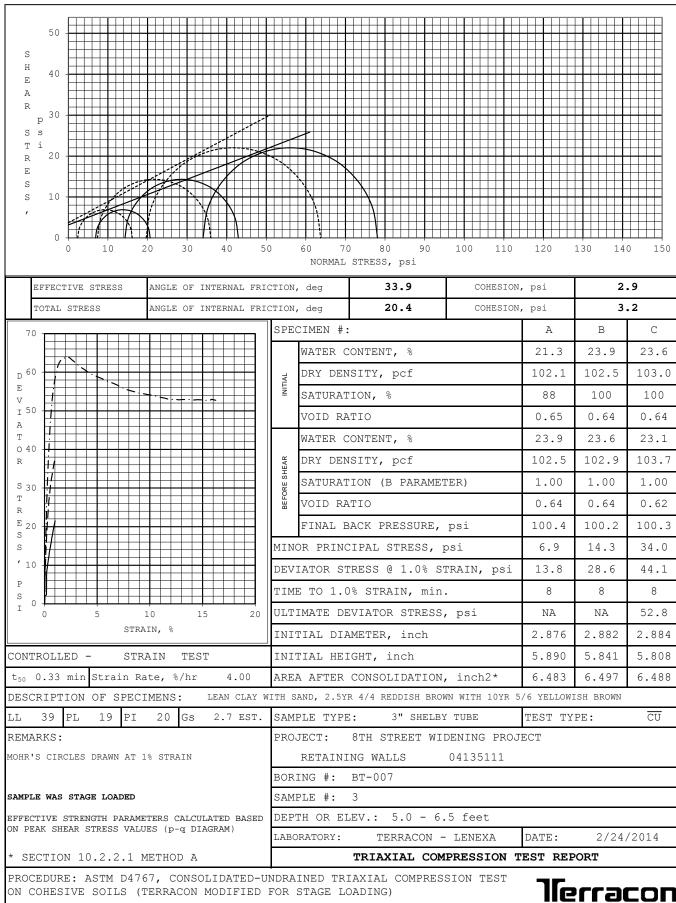
EFFECTIVE STRESS MOHR'S CIRCLES DRAWN AT PEAK PRINCIPAL STRESS RATIO % STRAIN.

TOTAL STRESS FAILURE DATA BASED ON PEAK PRINCIPAL STRESS RATIO % STRAIN.

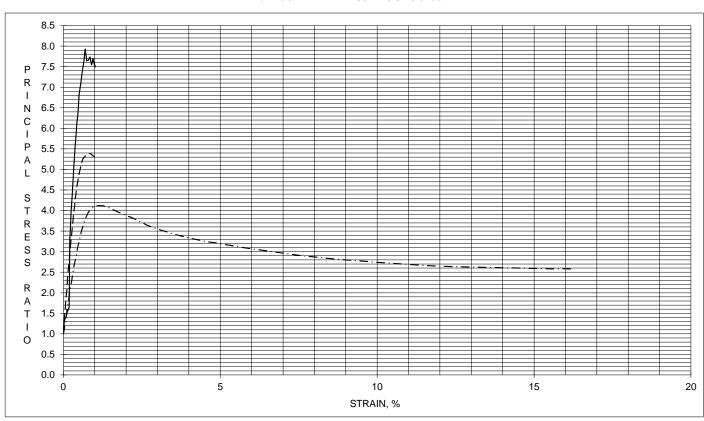

TOTAL STRESS MOHR'S CIRCLES DRAWN AT PEAK PRINCIPAL STRESS RATIO % STRAIN.

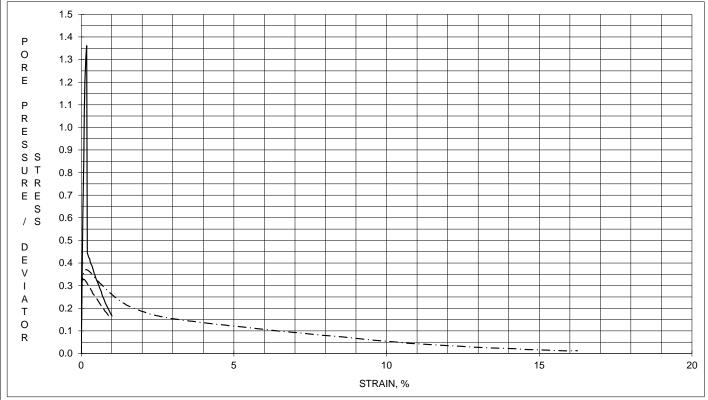

DEVIATOR STRESSES CORRECTED FOR MEMBRANE AND FILTER PAPER EFFECTS.

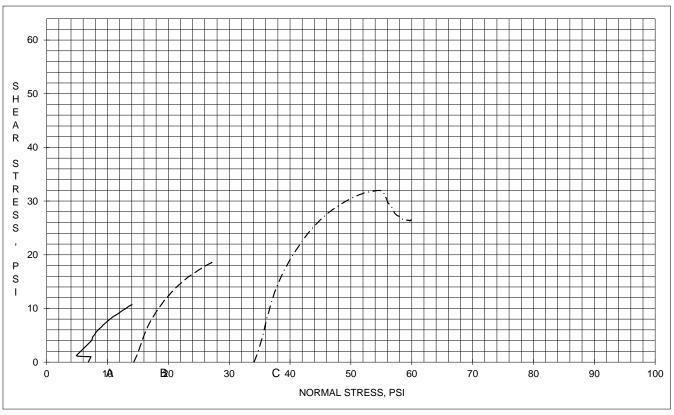

AREA AFTER CONSOLIDATION CALCULATED AS PER SECTION 10.3.2.1 METHOD A

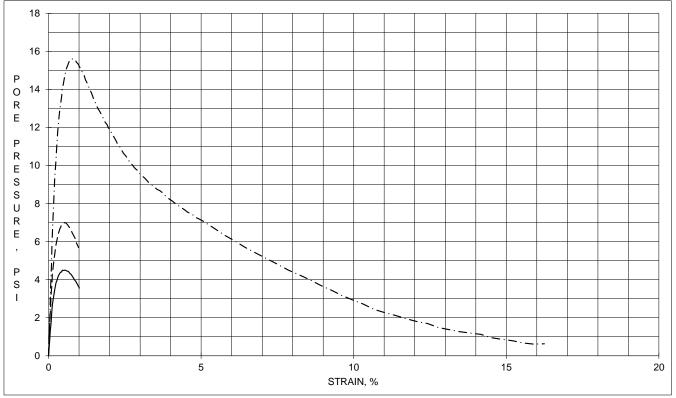

ADDITIONAL NOTE: EFFECTIVE SHEAR STRENGTH PARAMETERS WERE HAND CALCULATED

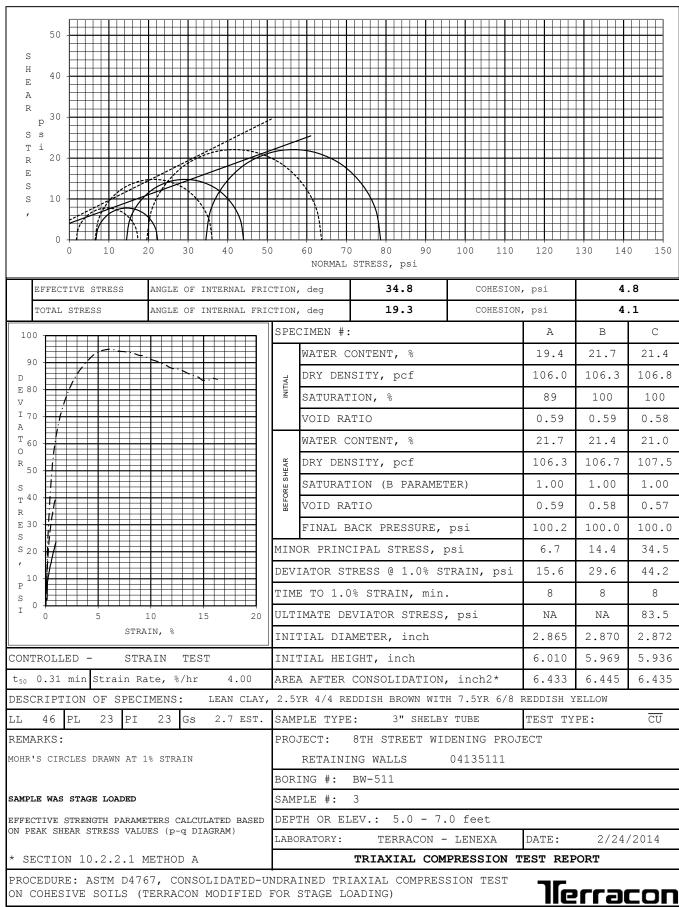
Terracon



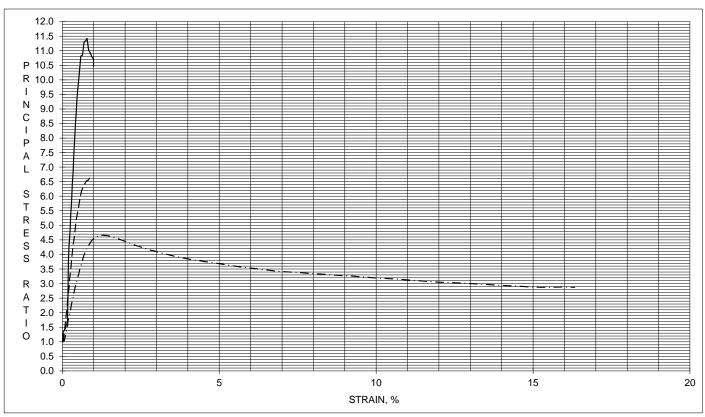


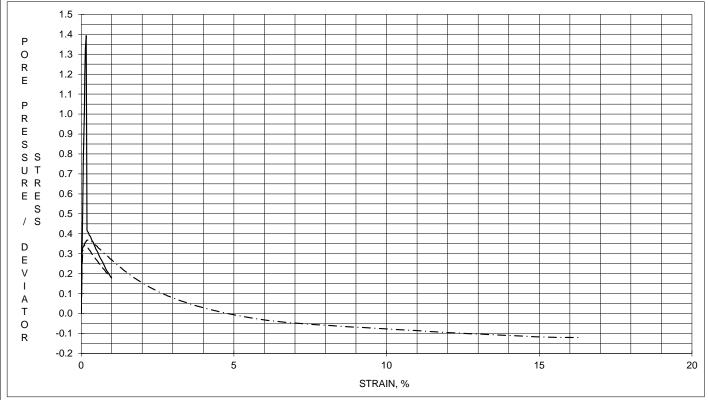



04135111 BT-007 5.0 - 6.5 feet

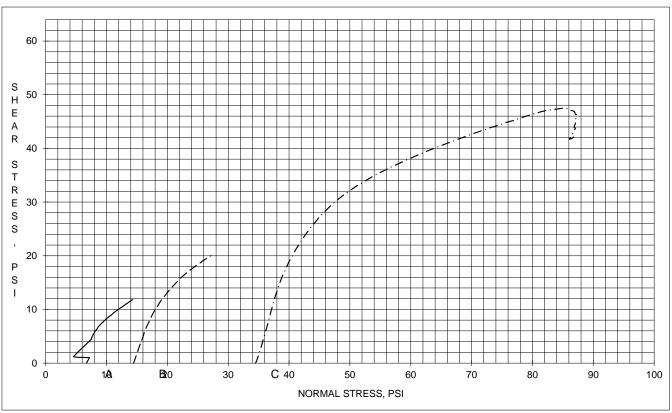


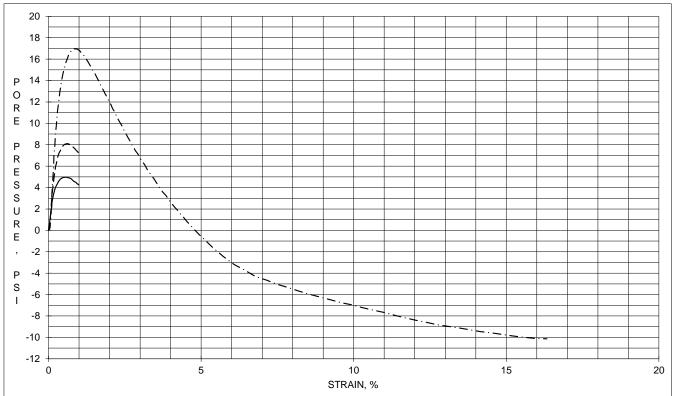
04135111 BT-007 5.0 - 6.5 feet

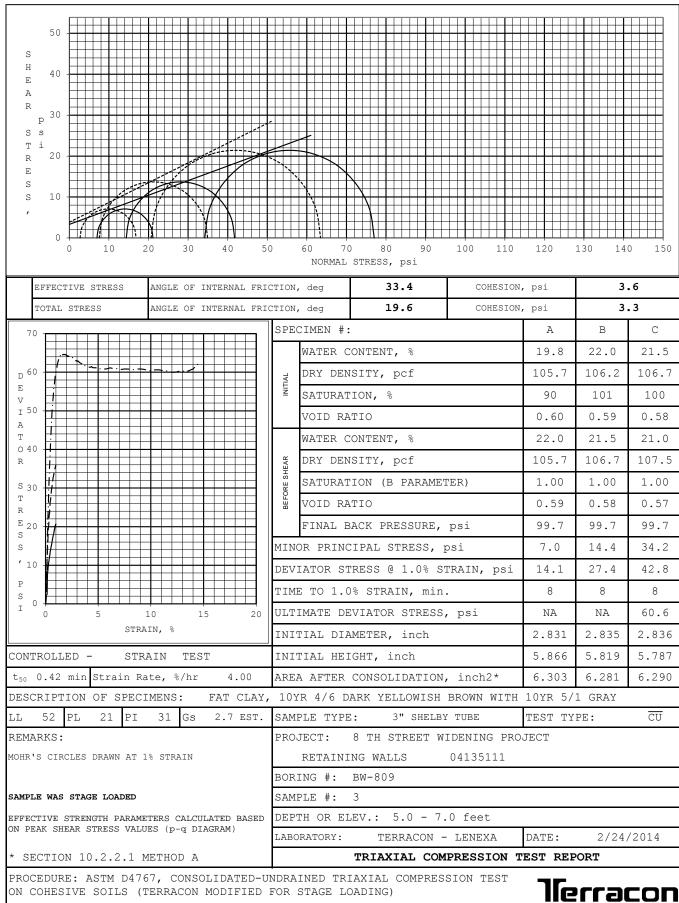


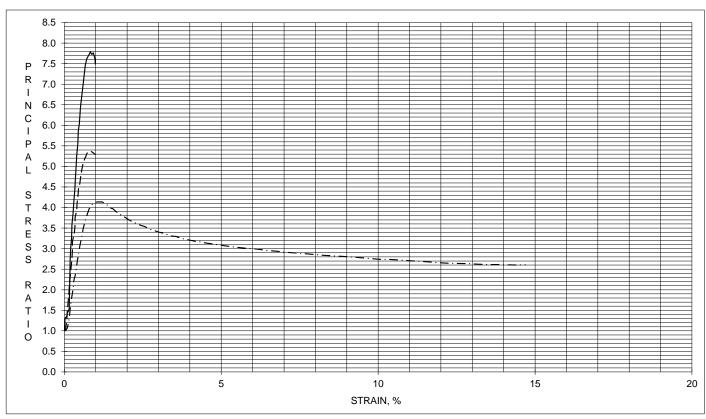


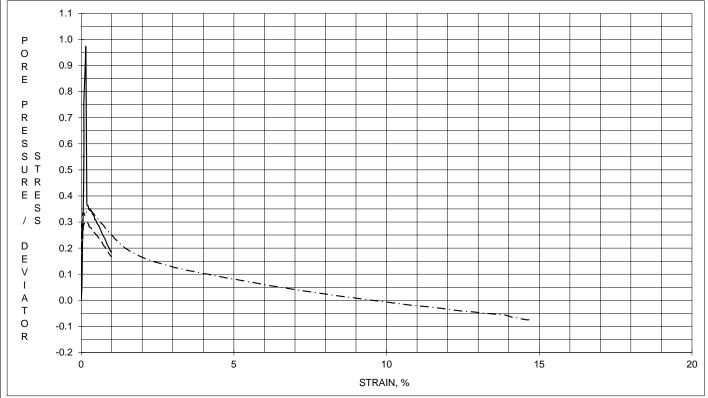
Merracon



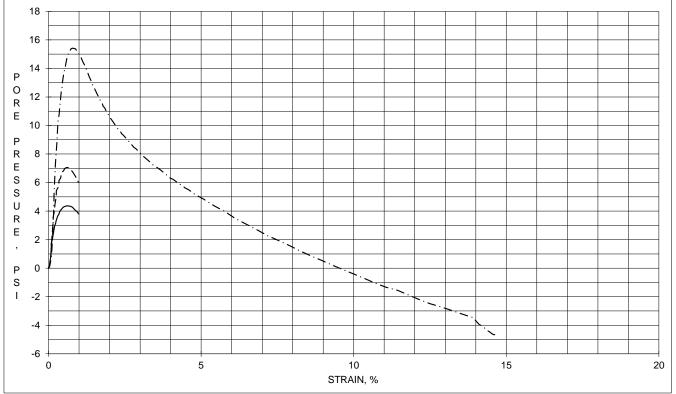

04135111 BW-511 5.0 - 7.0 feet

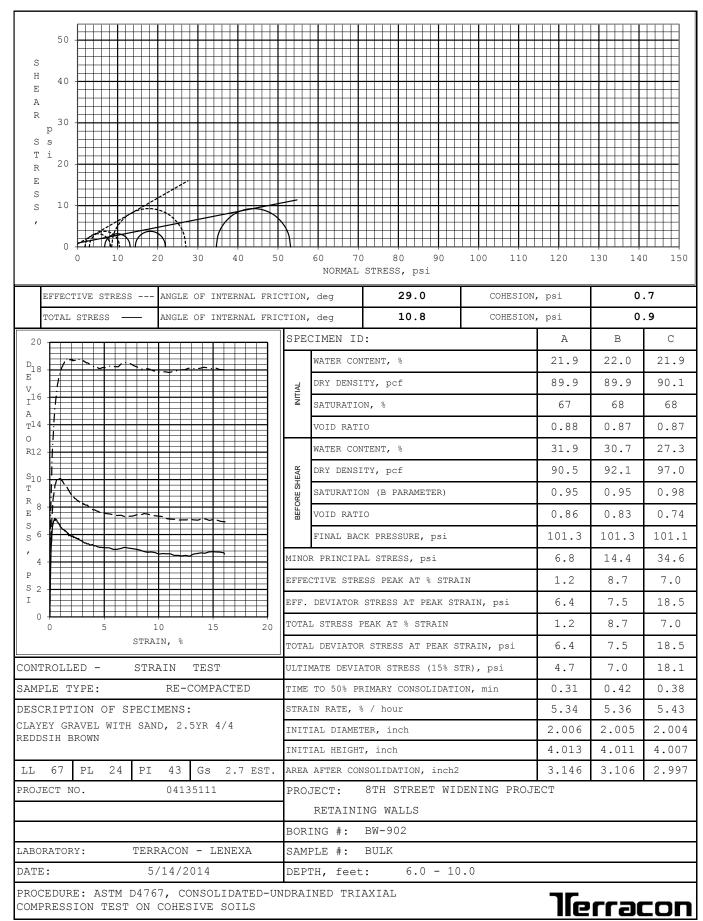


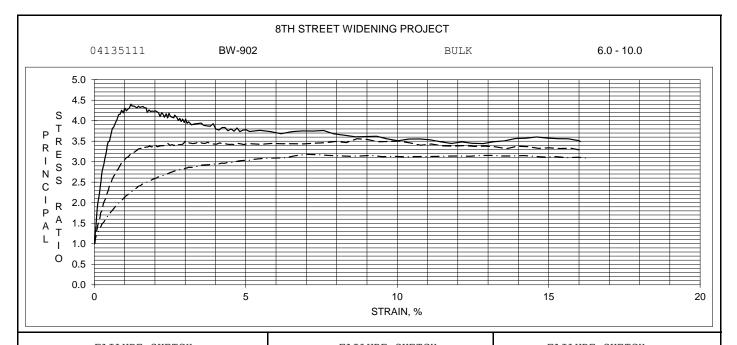

04135111 BW-511 5.0 - 7.0 feet

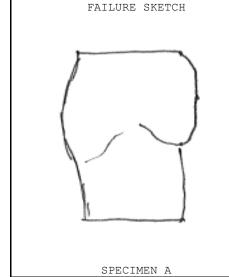


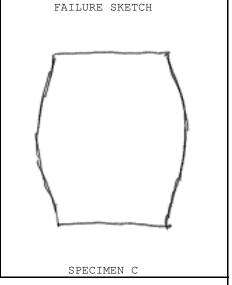

04135111 BW-809 5.0 - 7.0 feet








04135111 BW-809 5.0 - 7.0 feet



REMARKS:

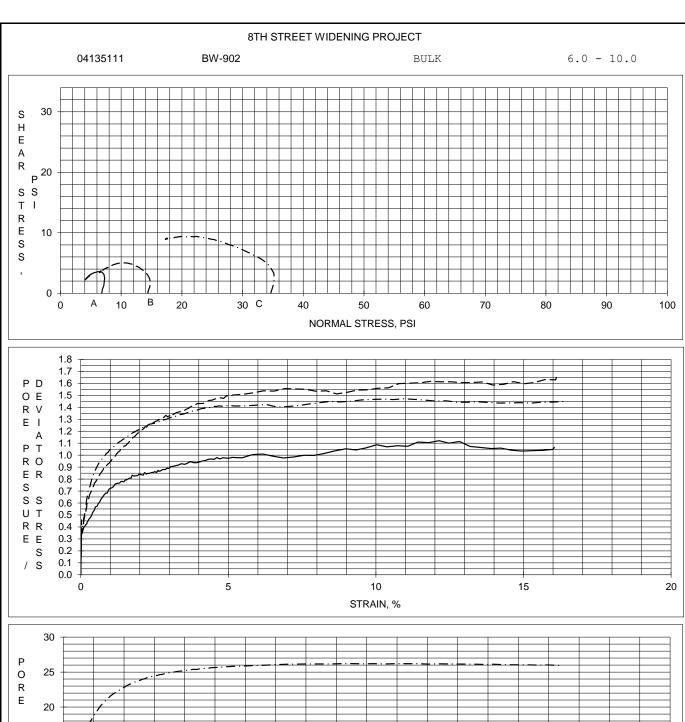
SPECIMENS SATURATED BY THE WET METHOD.

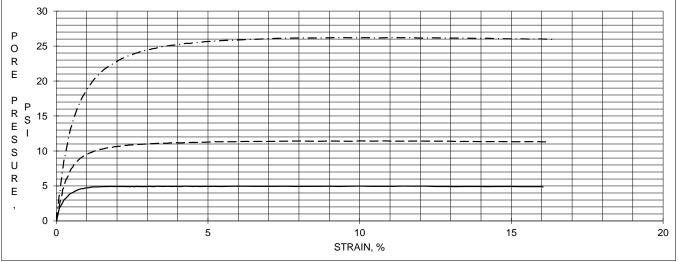
EFFECTIVE STRESS FAILURE DATA BASED ON PEAK PRINCIPAL STRESS RATIO % STRAIN.

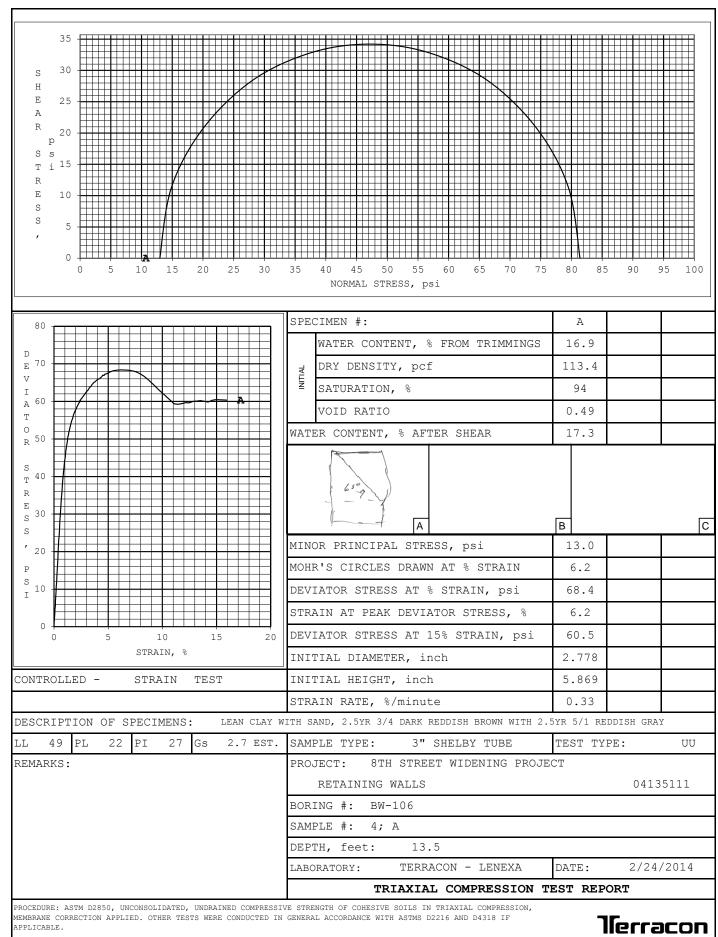
EFFECTIVE STRESS MOHR'S CIRCLES DRAWN AT PEAK PRINCIPAL STRESS RATIO % STRAIN.

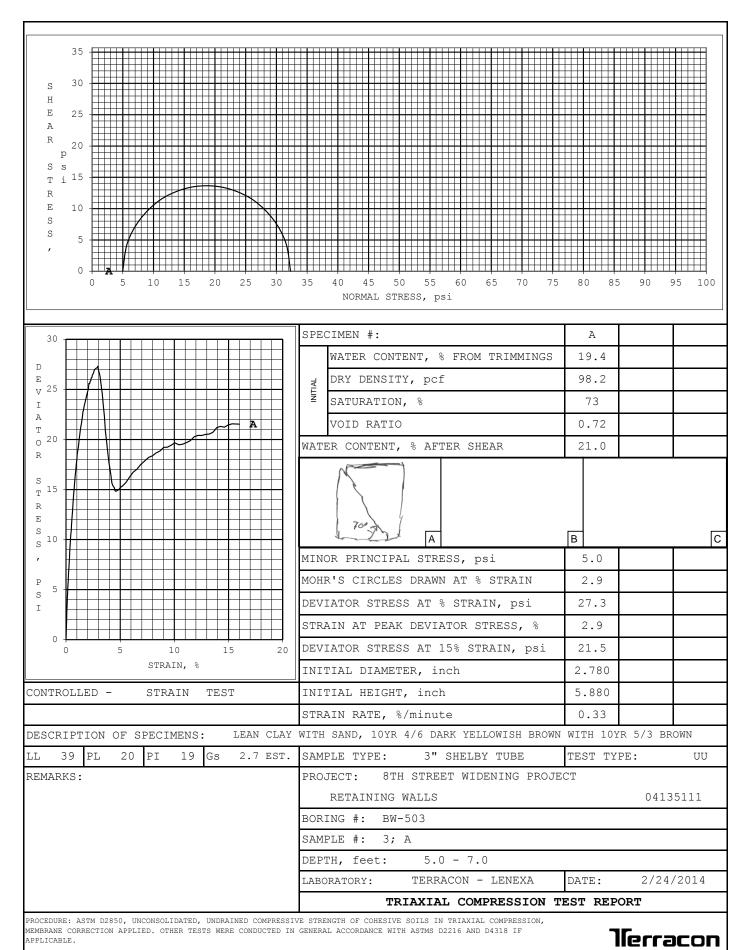
TOTAL STRESS FAILURE DATA BASED ON PEAK PRINCIPAL STRESS RATIO % STRAIN.

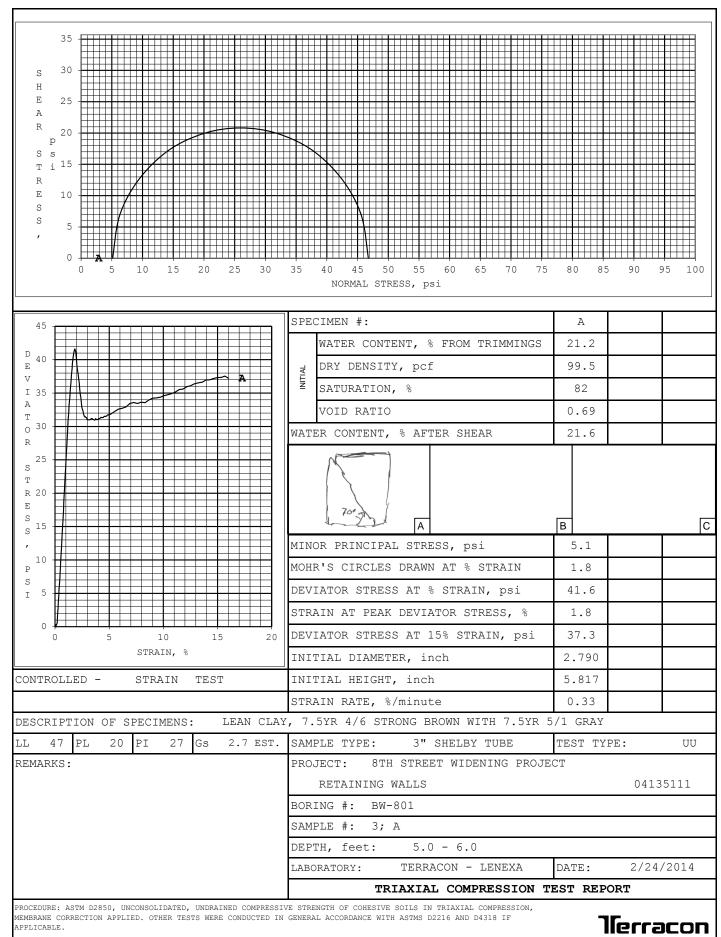
TOTAL STRESS MOHR'S CIRCLES DRAWN AT PEAK PRINCIPAL STRESS RATIO % STRAIN.

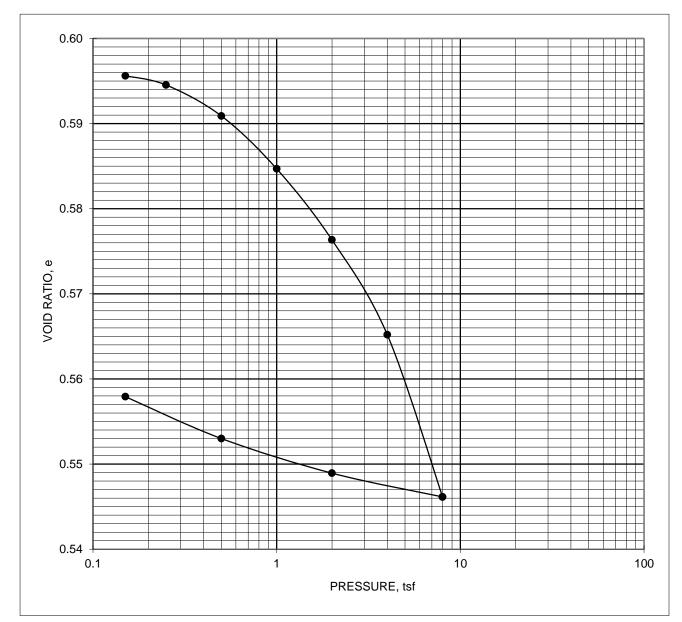

DEVIATOR STRESSES CORRECTED FOR MEMBRANE AND FILTER PAPER EFFECTS.


AREA AFTER CONSOLIDATION CALCULATED AS PER SECTION 10.3.2.1 METHOD A


STANDARD PROCTOR = 90pcf @ 22% MOISTURE REMOLDED TO 90 pcf @ 21.9% MOISTURE


REMOLDED TO 100% COMPACTION





ONE-DIMENSIONAL CONSOLIDATION PROPERTIES OF COHESIVE SOILS ASTM D2435

DIAMETER, mm	63.59	HEI	GHT, mm	18.94	ļ	PROPERTY			BEFORE TES	T	AFTER TEST
OVERBURDEN PRESSURE, tsf		f	0.36		MOISTURE, %			17.3		19.1	
PRECONSOL. PRESSURE, tsf			2.11		DRY DENSITY, pcf			105.6		108.6	
OVER CONSOLIDATION RATIO			5.9		SATURATION, %			78		93	
COMPRESSION INDEX			0.06			VOID RATIO			0.596		0.558
REBOUND INDEX			(0.008		SAMPLE TYPE		UNDISTURBED		URBED	
LIQUID LIMIT	39 PI	LASTIC LI	MIT	19	PLA	STICITY INDEX 20 SPEC			CIFIC GRAVITY 2.7 ESTIMATED		
SAMPLE DESCRIPTION LEAN CLAY WITH SAND, 2.5YR 4/4 REDDISH BROWN WITH 10YR 5/6 YELLOWISH BROWN											

BT-007 SAMPLE NO. 3 DEPTH, feet BORING NO. 5.0 - 6.5

> **8TH STREET WIDENING PROJECT RETAINING WALLS** 04135111 2/24/2014

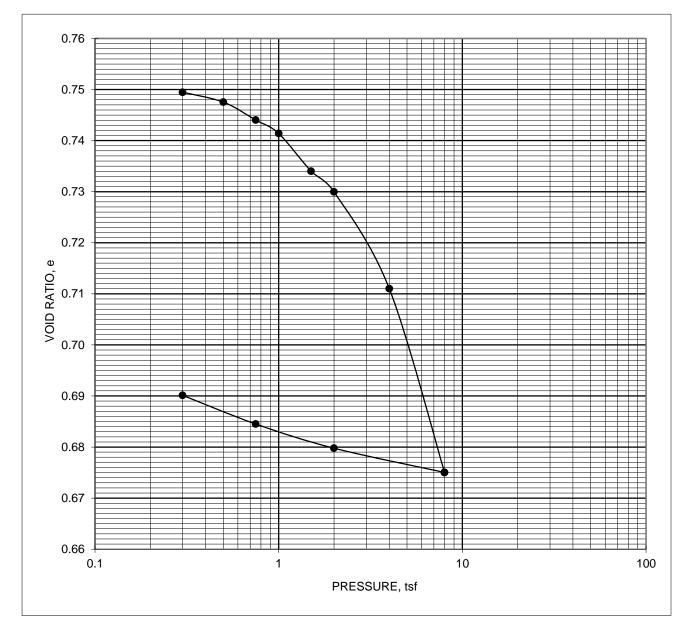
TESTED BY

APPROVED BY

N:\CM\LAB_DATA\00 Projects in Progress\2013 Projects in Progress\04135111 Lab data\[04135111 Consolidation BW809-3-5.0.xlsx]RI

8TH STREET WIDENING PROJECT RETAINING WALLS 04135111 2/24/2014

ADDITIONAL CONSOLIDATION DATA


BT-007 3 5.0 - 6.5

PRESSURE,	<u>Cv50,</u>	<u>Cv90,</u>	<u>Av,</u>	<u>M∨,</u>	<u>k,</u>
<u>tsf</u>	cm2/sec	cm2/sec	<u>cm2/g</u>	<u>cm2/g</u>	cm/sec
0					
0.15			5.83E-06	3.65E-06	
0.25	1.84E-04	1.85E-04	1.09E-05	6.86E-06	1.26E-09
0.5	1.63E-03	1.64E-03	1.49E-05	9.33E-06	1.52E-08
1	1.94E-04	1.95E-04	1.27E-05	7.98E-06	1.55E-09
2	1.92E-03	1.93E-03	8.53E-06	5.38E-06	1.03E-08
4	1.58E-03	1.59E-03	5.69E-06	3.61E-06	5.69E-09
8	1.63E-03	1.64E-03	4.87E-06	3.11E-06	5.08E-09

AVERAGE 1.19E-03 1.20E-03 9.06E-06 5.70E-06 6.51E-09

ONE-DIMENSIONAL CONSOLIDATION PROPERTIES OF COHESIVE SOILS ASTM D2435

DIAMETER, mm	63.56) HE	IGHT, mm	25.31		PROPERTY			BEFORE TE	ST	AFTER TEST
OVERBURDEN PRESSURE, tsf		0.34		MOISTURE, %			17.6		23.8		
PRECONSOL. PRESSURE, tsf			2.42		DRY DENSITY, pcf			96.3		95.4	
OVER CONSOLIDATION RATIO			7.1		SATURATION, %			63		89	
COMPRESSION INDEX		0.12		VOID RATIO	VOID RATIO		0.749		0.690		
REBOUND INDEX			0.012		SAMPLE TYPE		UNDISTURBED				
LIQUID LIMIT	46	PLASTIC L	.IMIT	23	PLA	LASTICITY INDEX 23 SPECIFIC GRAVITY 2.7		2.7 ESTIMATED			
SAMDLE DESCRIPTION LEAN CLAY 2 5VP 4/4 REDDISH RROWN WITH 7 5VP 6/8 REDDISH VELLOW											

LEAN CLAY, 2.5YR 4/4 REDDISH BROWN WITH 7.5YR 6/8 REDDISH YELLOW BORING NO. BW-511 SAMPLE NO. DEPTH, feet 5.0 - 7.0

> **8TH STREET WIDENING PROJECT RETAINING WALLS** 04135111 2/24/2014

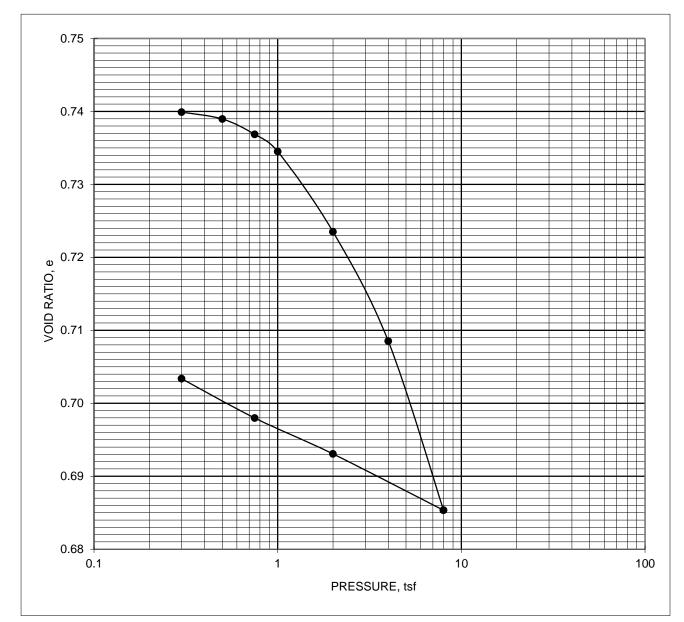
TESTED BY

APPROVED BY

N:\CM\LAB_DATA\00 Projects in Progress\2013 Projects in Progress\04135111 Lab data\[04135111 Consolidation BW809-3-5.0.xlsx]RE

8TH STREET WIDENING PROJECT RETAINING WALLS 04135111 2/24/2014

ADDITIONAL CONSOLIDATION DATA


BW-511 3 5.0 - 7.0

PRESSURE,	<u>Cv50,</u>	<u>Cv90,</u>	<u>Av.</u>	<u>M∨,</u>	<u>k,</u>
<u>tsf</u>	cm2/sec	cm2/sec	<u>cm2/g</u>	<u>cm2/g</u>	cm/sec
0					
0.3					
0.5	1.87E-03	1.89E-03	9.87E-06	5.64E-06	1.06E-08
0.75	4.76E-04	4.78E-04	1.44E-05	8.21E-06	3.91E-09
1	6.52E-03	6.55E-03	1.08E-05	6.17E-06	4.02E-08
1.5	2.59E-03	2.61E-03	1.51E-05	8.65E-06	2.24E-08
2	6.51E-03	6.55E-03	8.25E-06	4.76E-06	3.10E-08
4	3.90E-03	3.92E-03	9.69E-06	5.60E-06	2.18E-08
8	2.45E-02	2.47E-02	9.19E-06	5.37E-06	1.32E-07

AVERAGE 6.63E-03 6.66E-03 1.10E-05 6.34E-06 3.74E-08

ONE-DIMENSIONAL CONSOLIDATION PROPERTIES OF COHESIVE SOILS ASTM D2435

DIAMETER, mm	63.61	l H	EIGHT,	mm 18.87	7	PROPERTY			BEFORE TE	ST	AFTER TEST
OVERBURDEN PRESSURE, tsf				0.35		MOISTURE, %			21.5		27.1
PRECONSOL. PRESSURE, tsf				2.12		DRY DENSITY, pcf			96.9		95.8
OVER CONSOLIDATION RATIO				6.0		SATURATION, %			78		100
COMPRESSION INDEX				0.08		VOID RATIO			0.740		0.708
REBOUND INDEX				0.013	0.013 SAN		SAMPLE TYPE		UNDISTURBED		URBED
LIQUID LIMIT	52	PLASTIC	LIMIT	21	PLA	ASTICITY INDEX 31 SPECIFIC GRAVITY 2.7 ESTIM			2.7 ESTIMATED		
SAMPLE DESCRIPTION FAT CLAY, 10YR 4/6 DARK YELLOWISH BROWN WITH 10YR 5/1 GRAY											

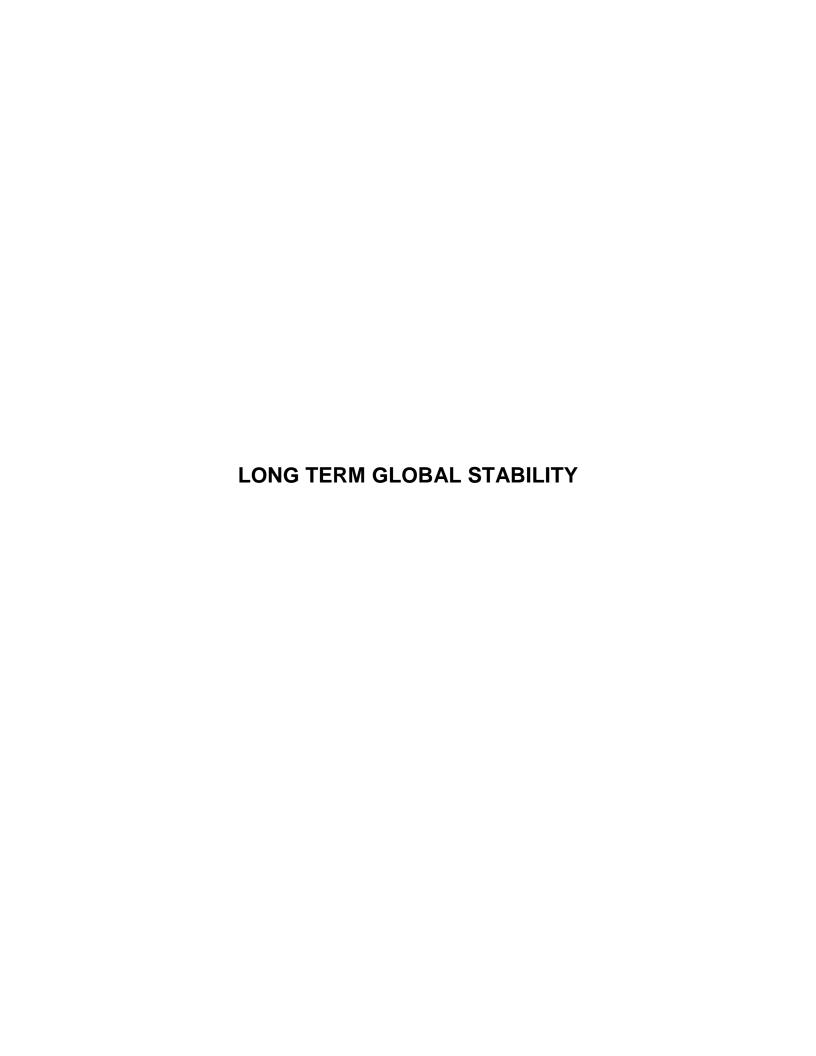
BORING NO. BW-809 SAMPLE NO. 3 DEPTH, feet 5.0 - 7.0

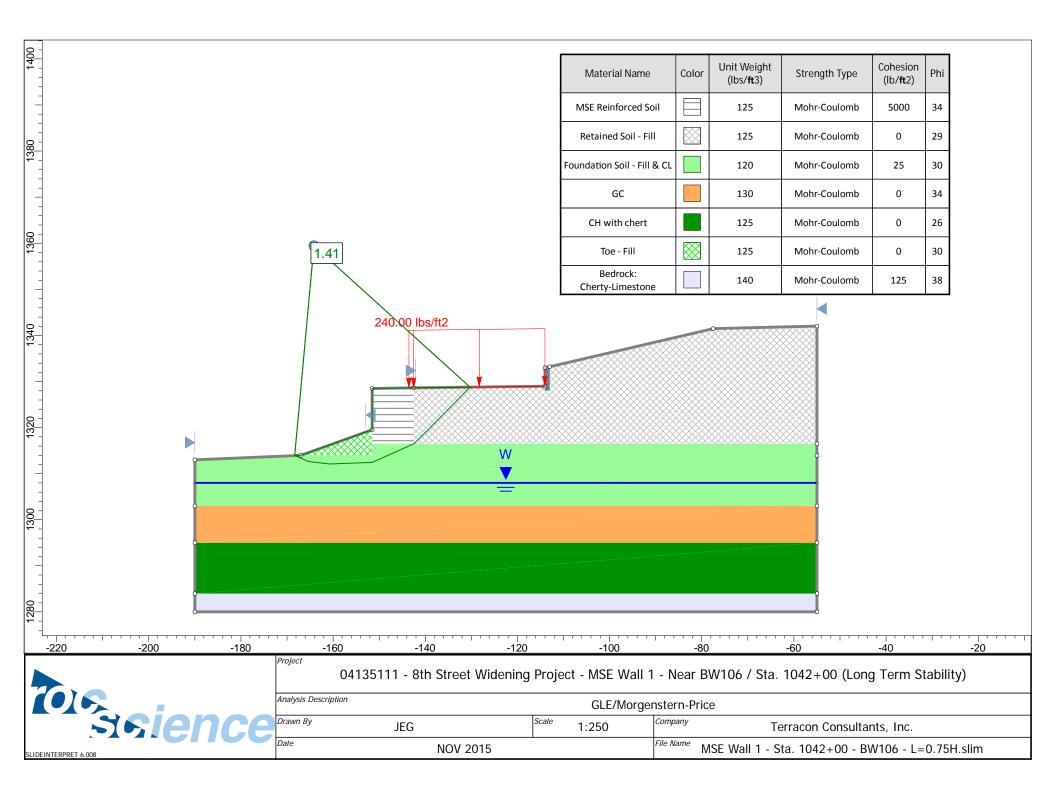
8TH STREET WIDENING PROJECT RETAINING WALLS 04135111 TESTED BY

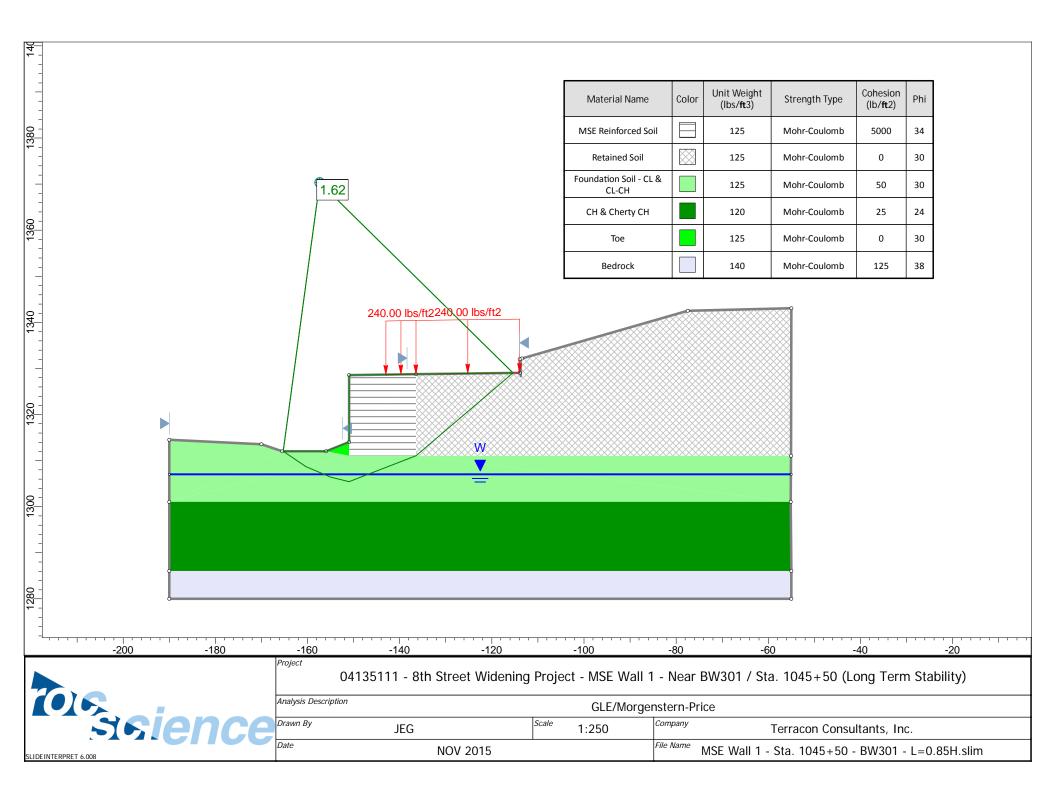
APPROVED BY

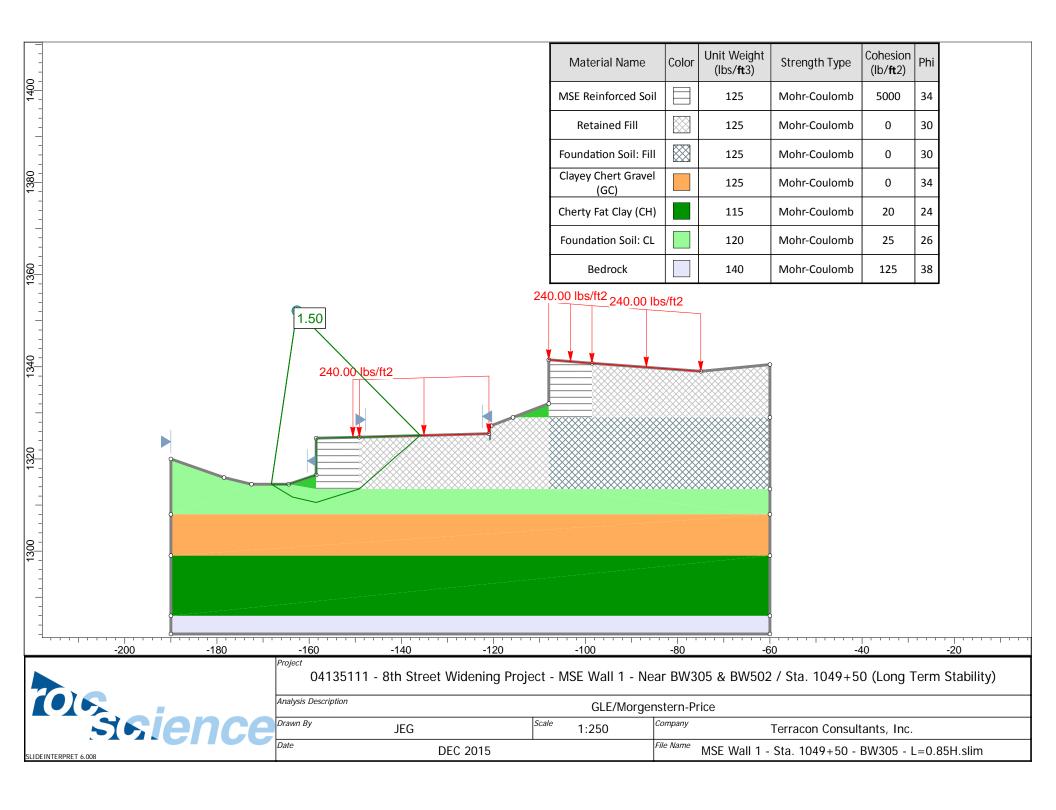
8TH STREET WIDENING PROJECT RETAINING WALLS 04135111 2/24/2014

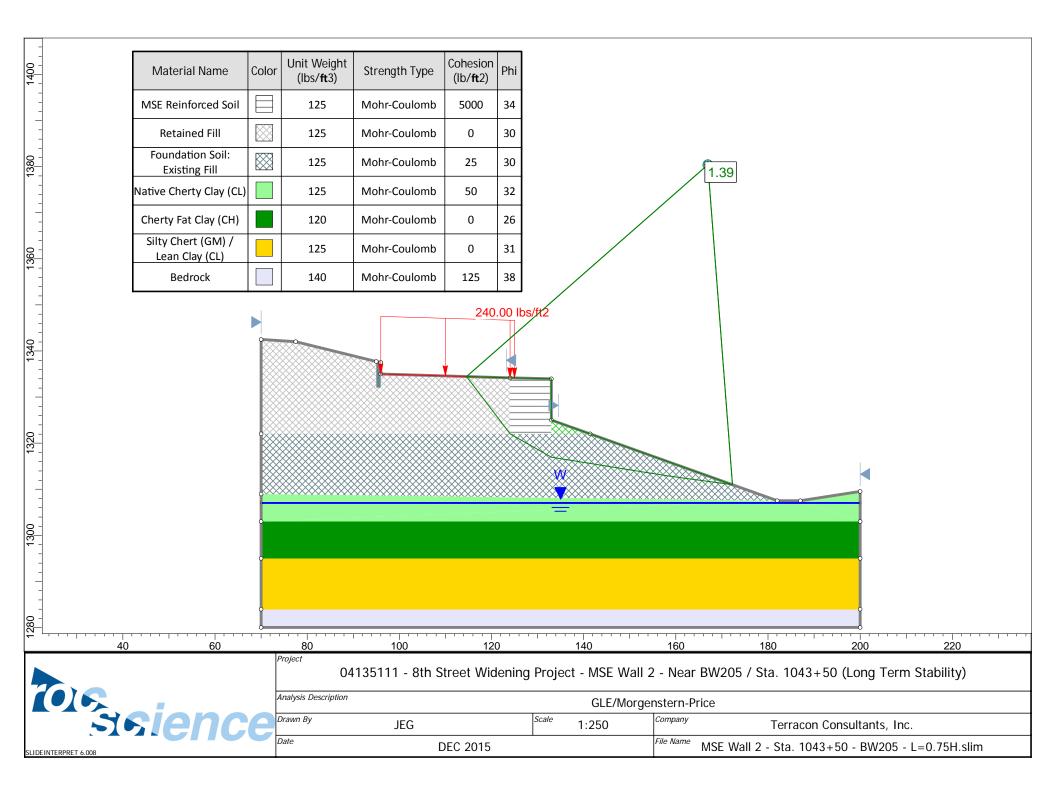
ADDITIONAL CONSOLIDATION DATA

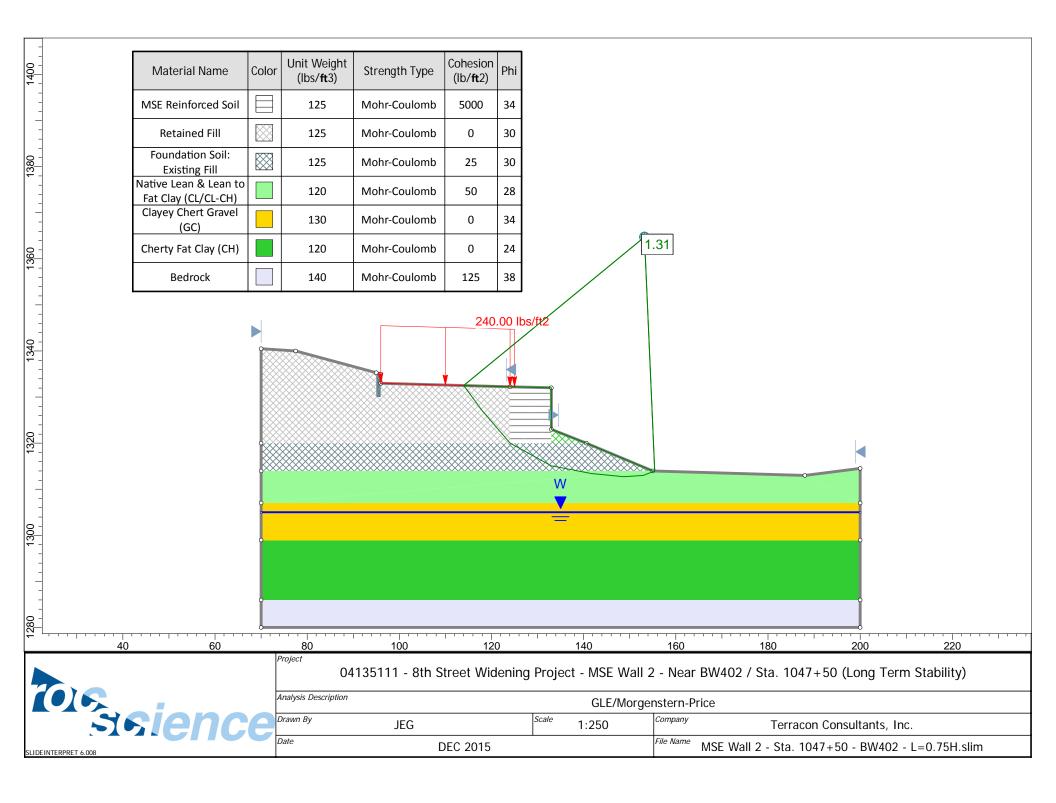

BW-809 3 5.0 - 7.0

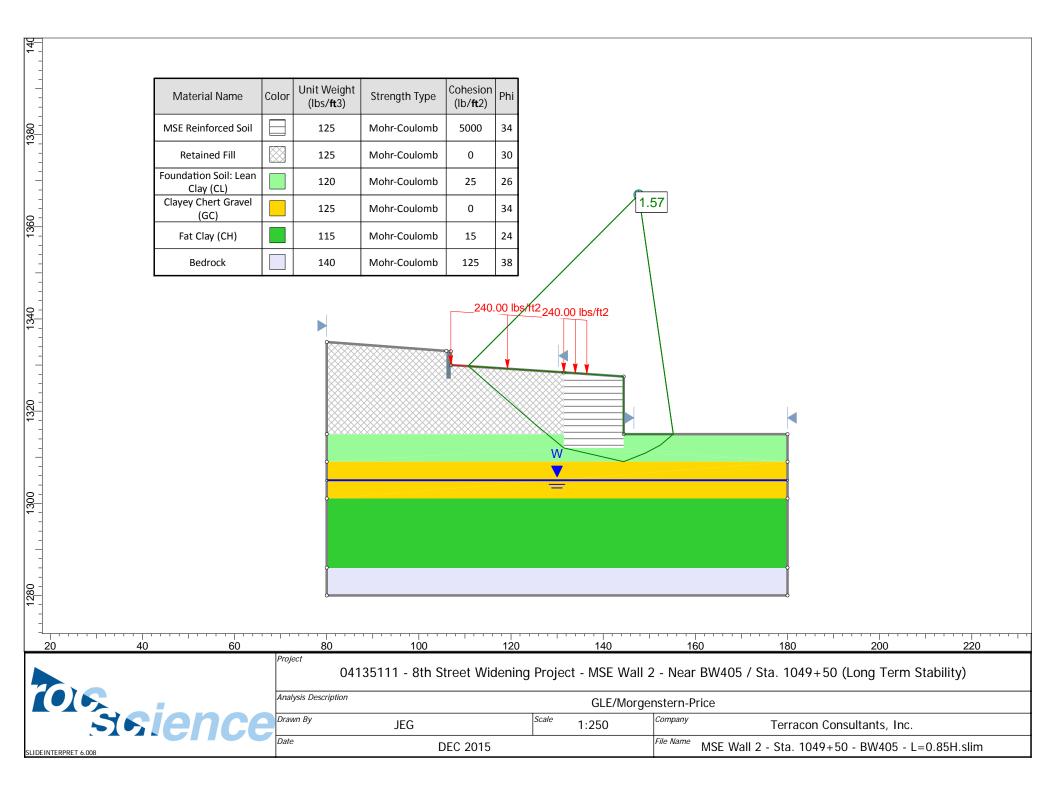

PRESSURE,	Cv50,	<u>Cv90,</u>	Av.	Mv.	<u>k,</u> cm/sec	
<u>tsf</u>	cm2/sec	cm2/sec	cm2/g	cm2/g	cm/sec	
0						
0.3						
0.5	4.78E-05	4.81E-05	4.79E-06	2.75E-06	1.32E-10	
0.75	2.08E-03	2.09E-03	8.61E-06	4.95E-06	1.03E-08	
1	9.68E-04	9.74E-04	9.57E-06	5.51E-06	5.34E-09	
2	5.76E-04	5.79E-04	1.12E-05	6.48E-06	3.73E-09	
4	3.11E-03	3.13E-03	7.66E-06	4.44E-06	1.38E-08	
8	3.04E-03	3.05E-03	5.92E-06	3.47E-06	1.05E-08	

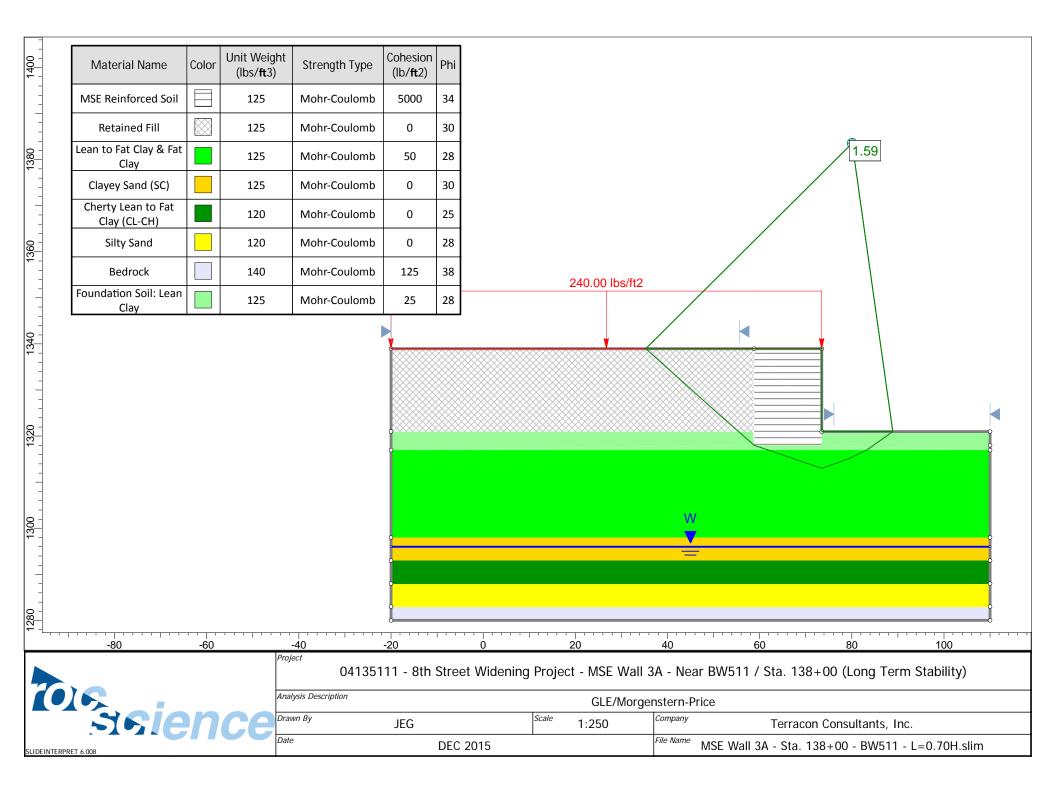

AVERAGE 1.64E-03 1.65E-03 7.97E-06 4.60E-06 7.31E-09

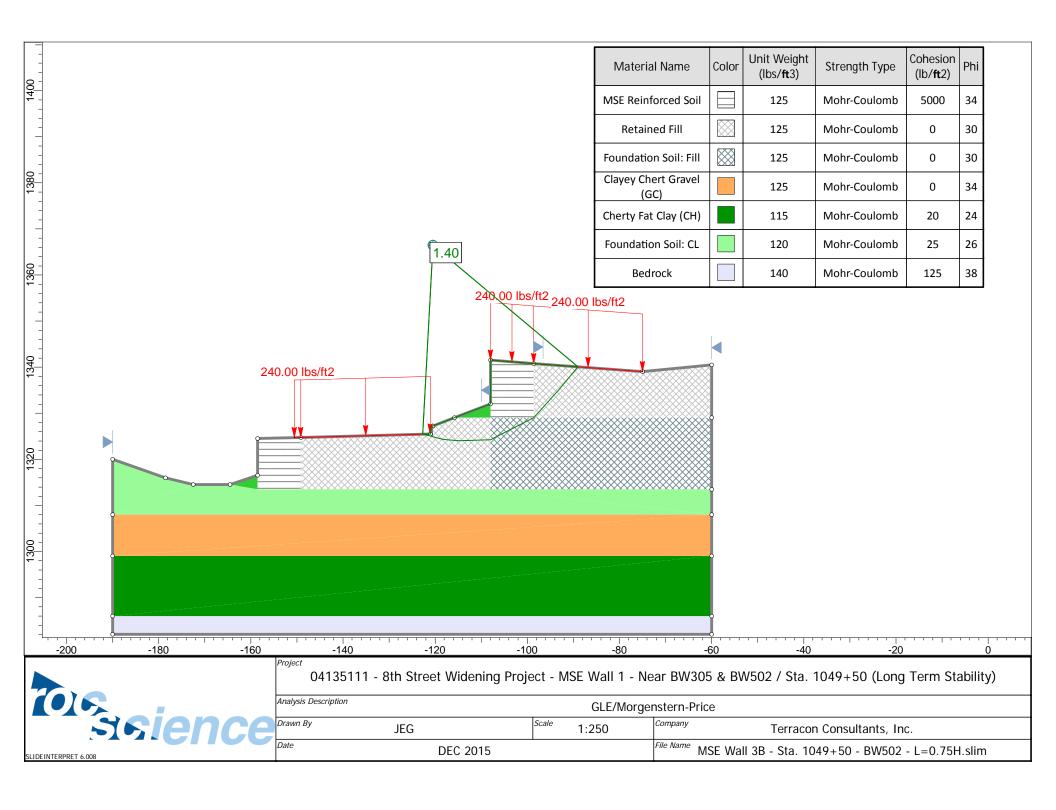


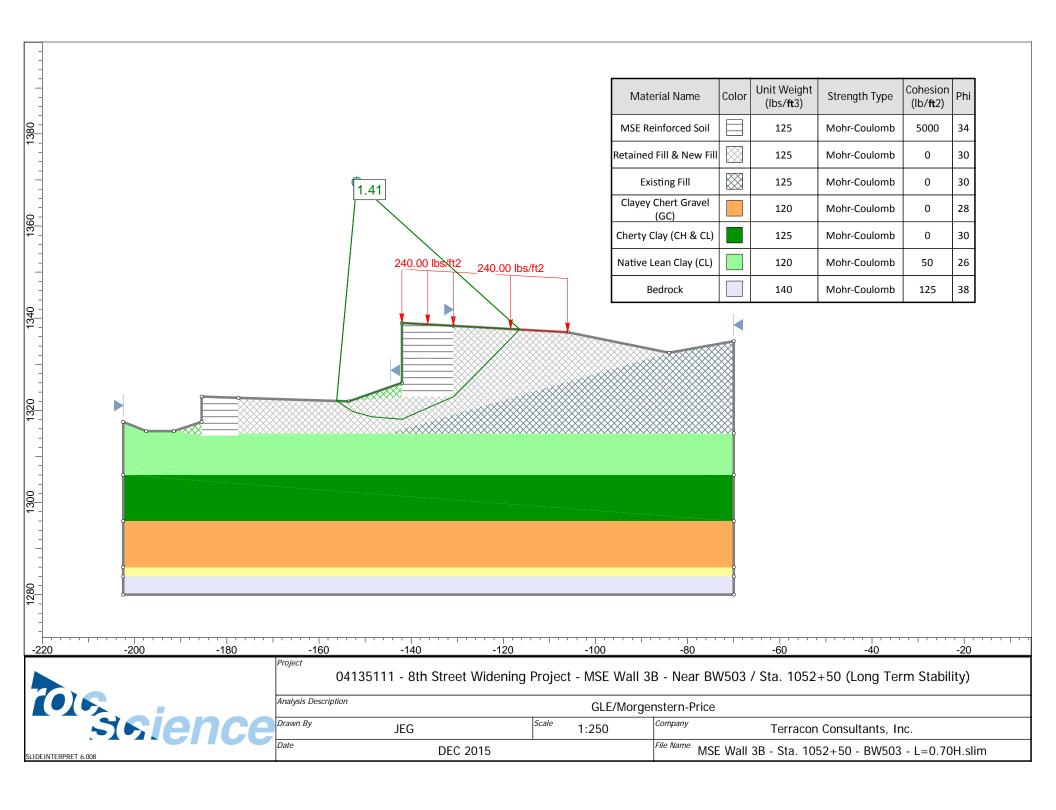

APPENDIX C GLOBAL STABILITY OF MSE WALLS

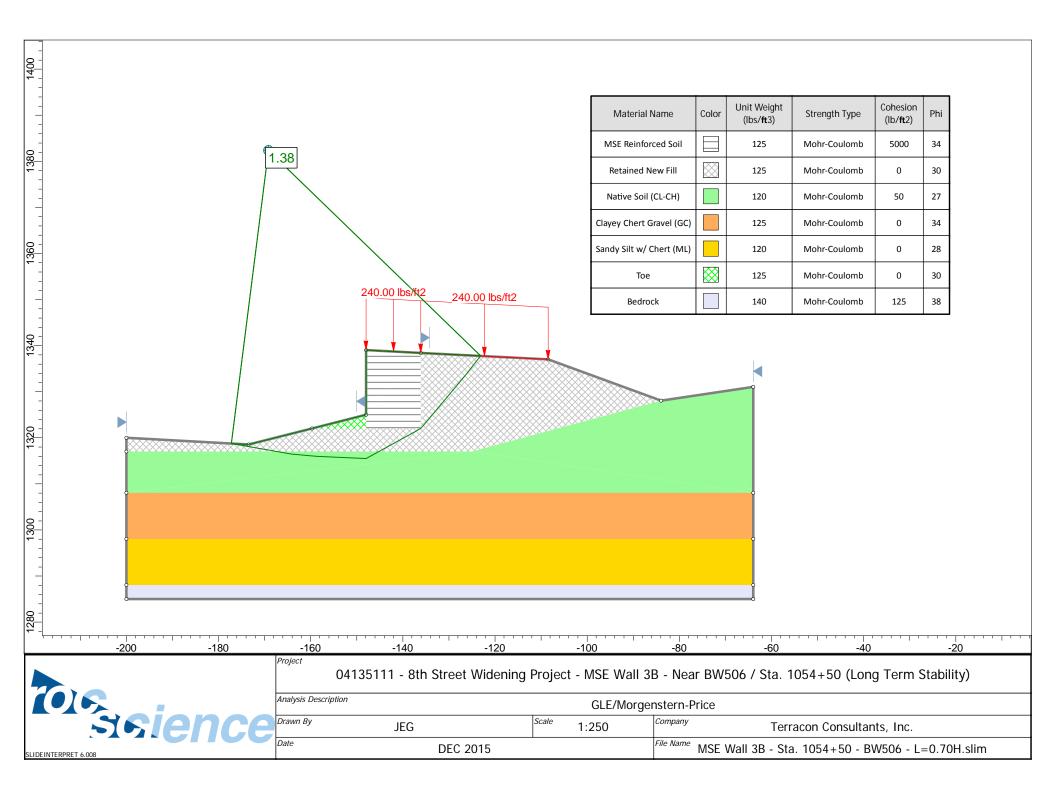


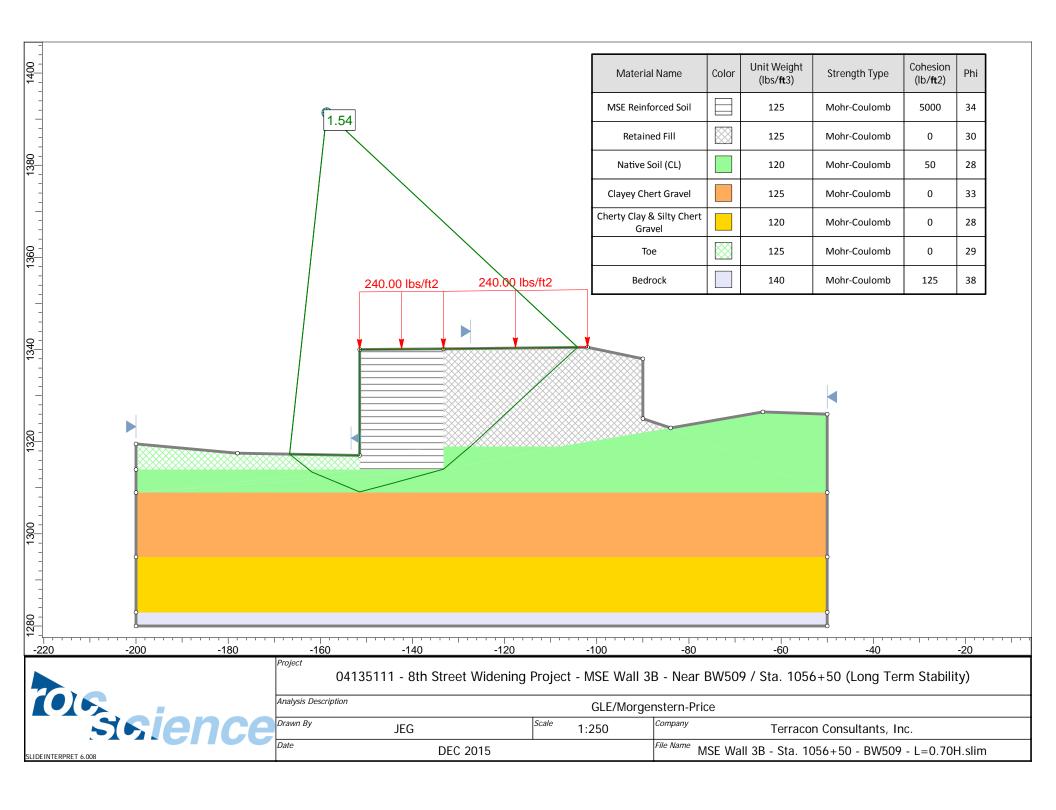


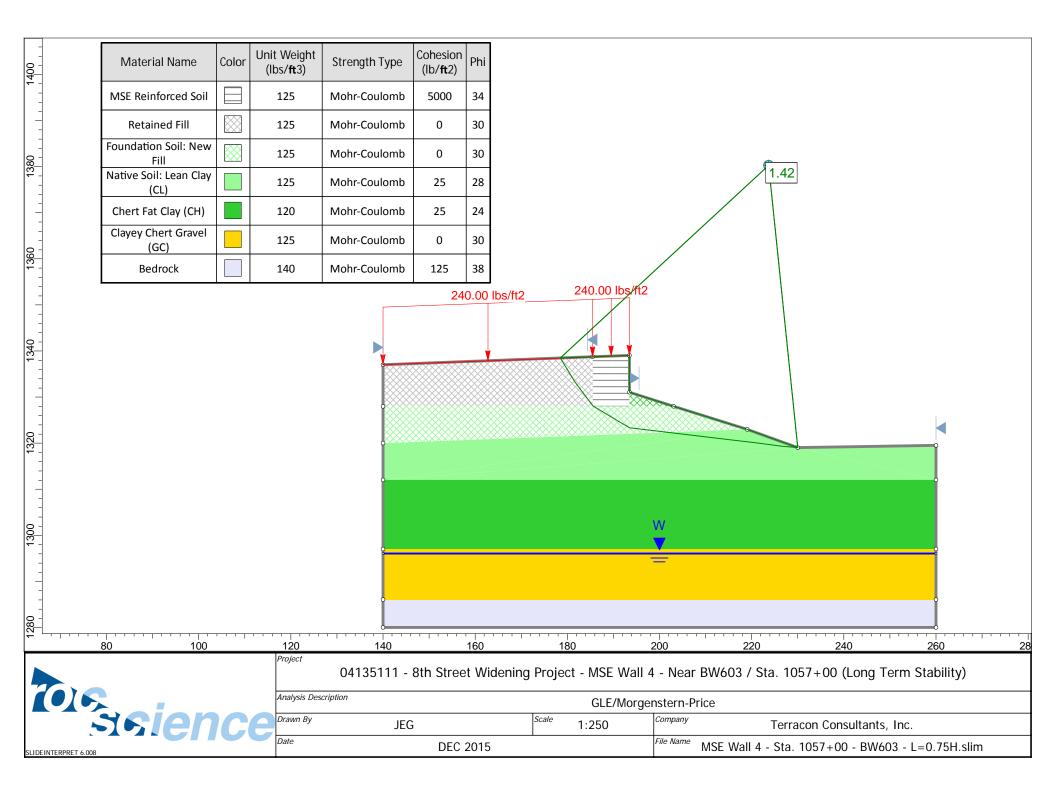


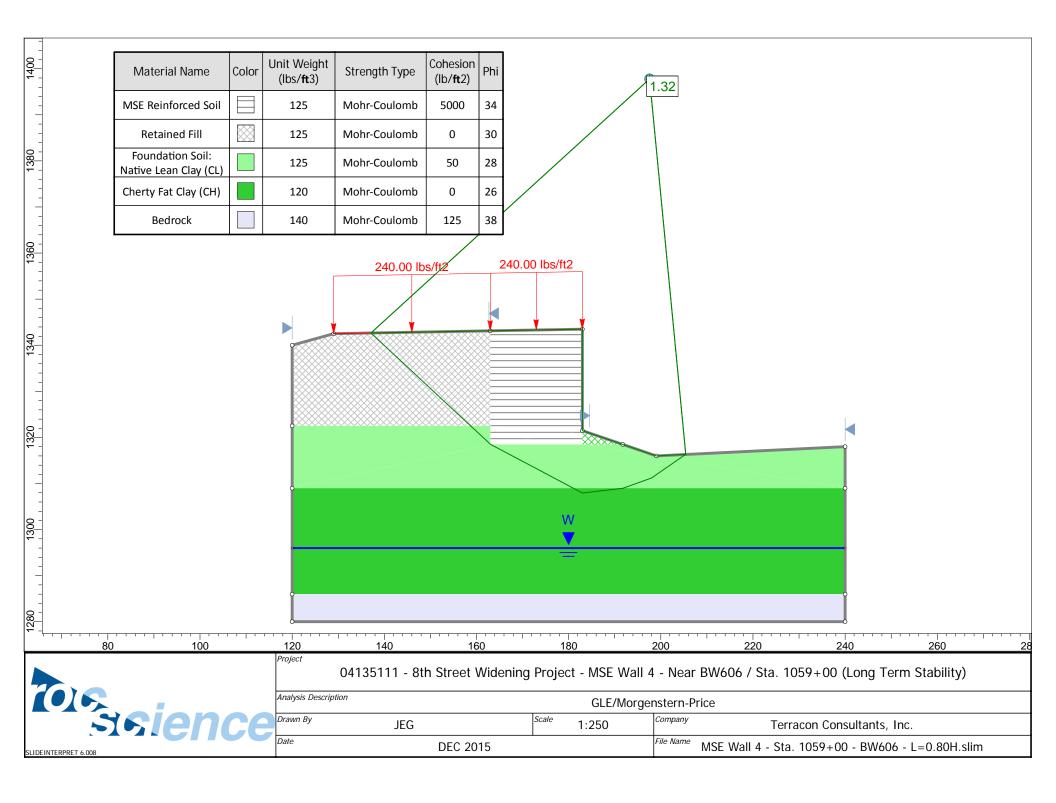


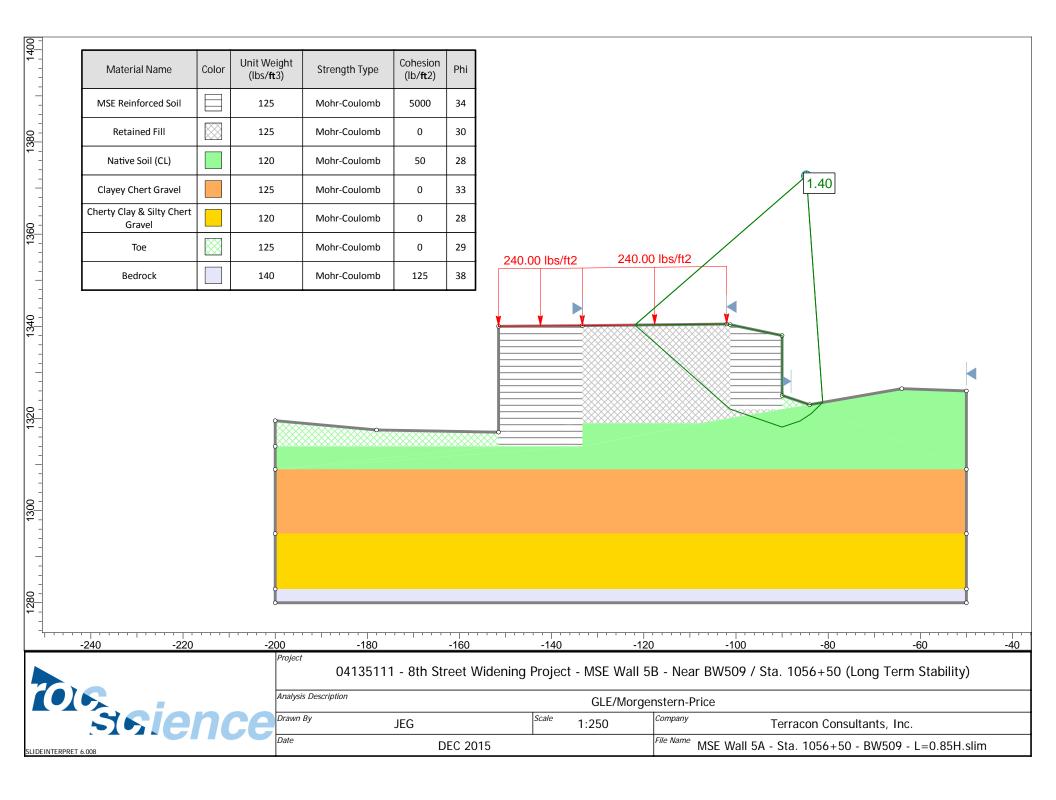


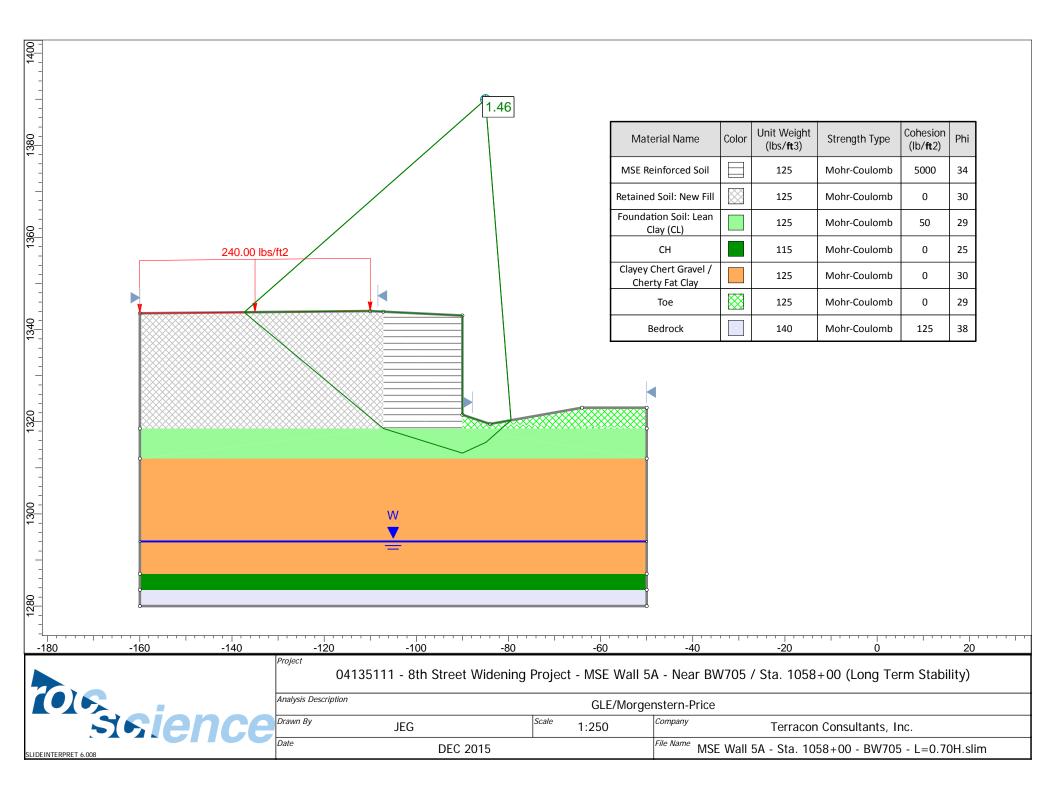


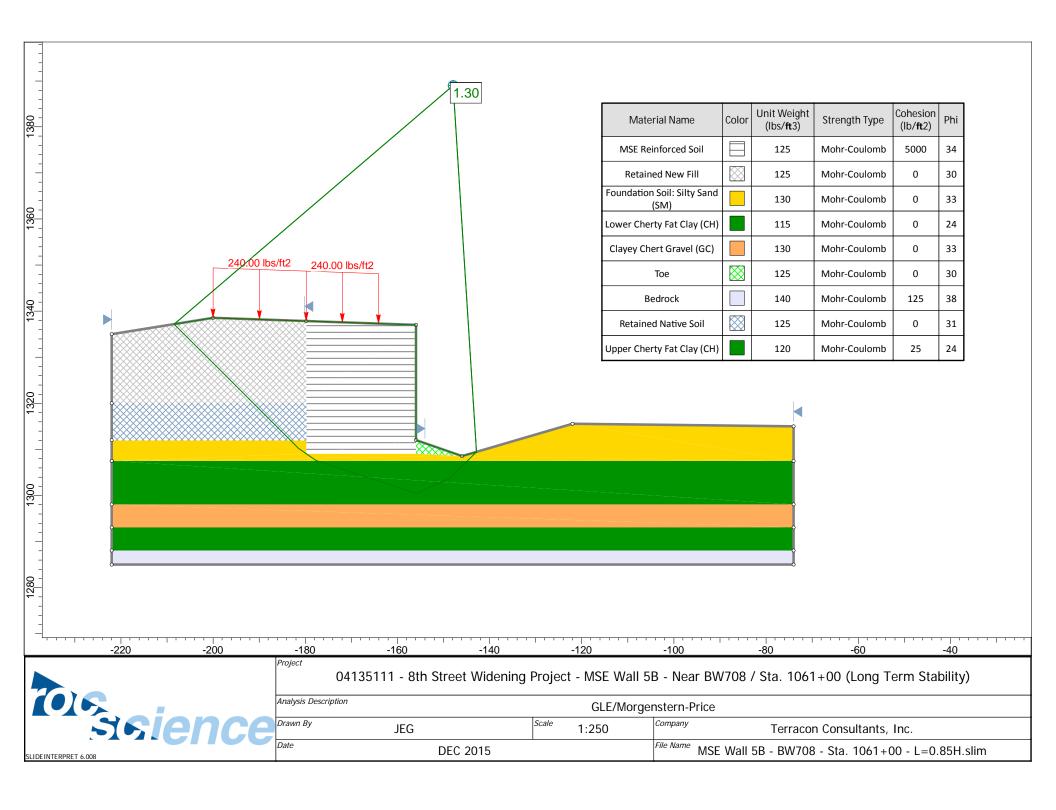


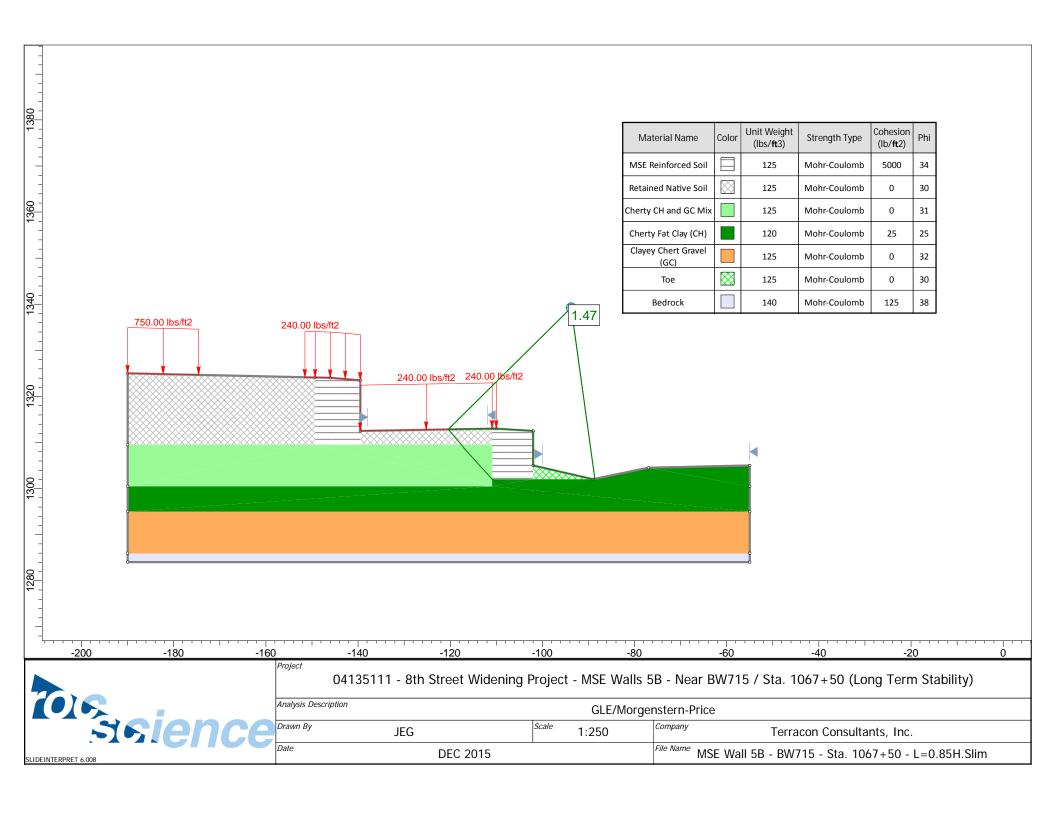


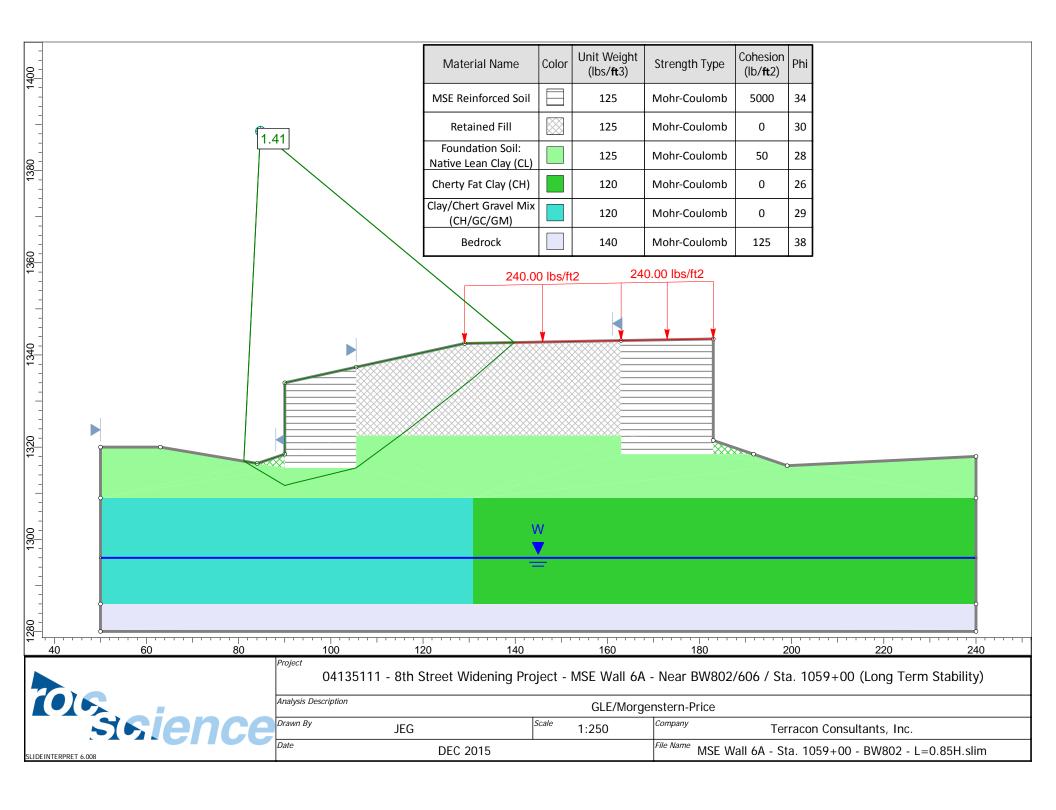


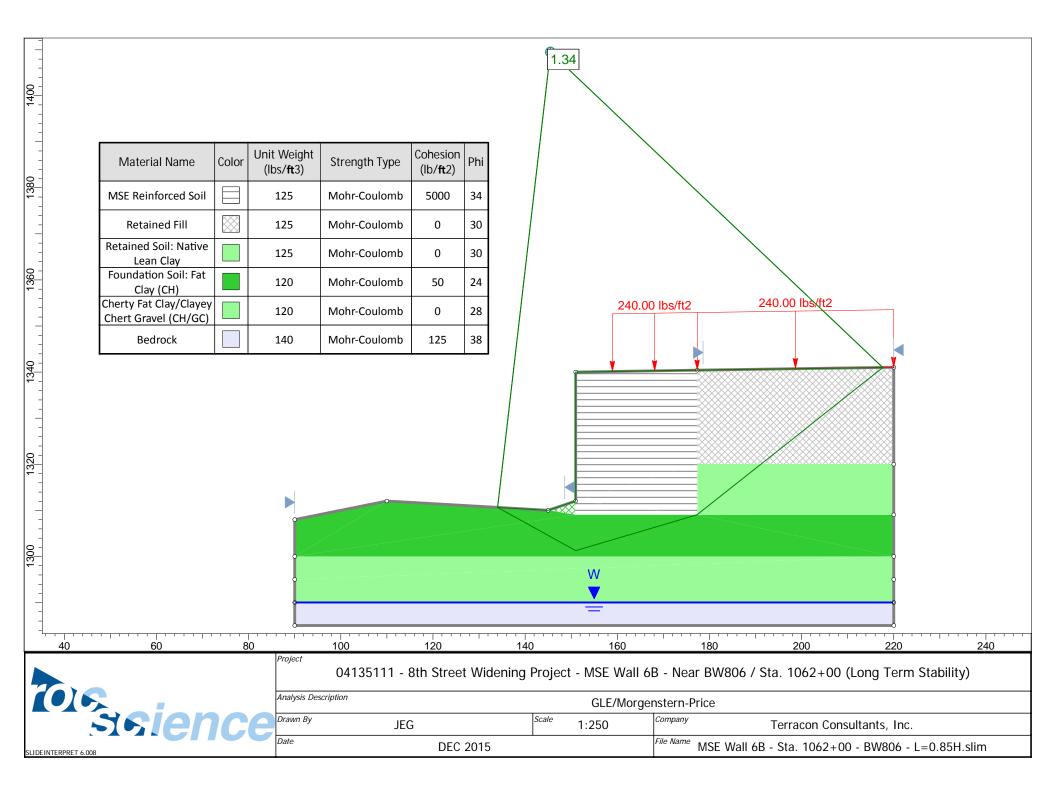


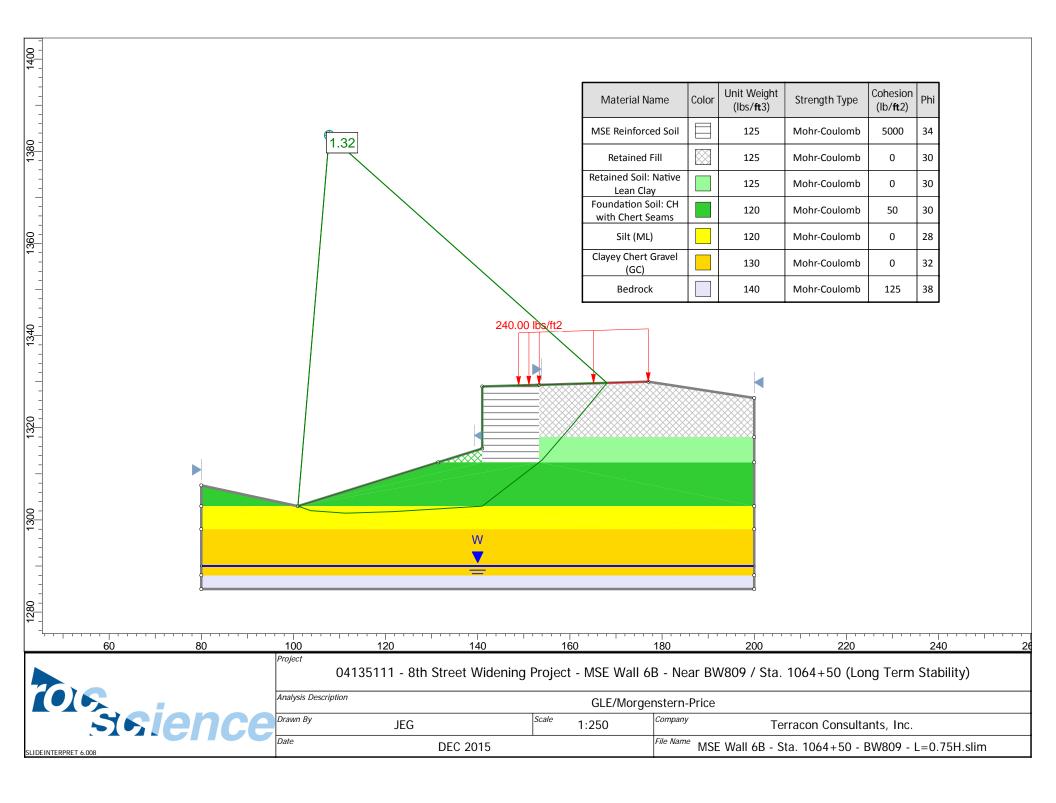


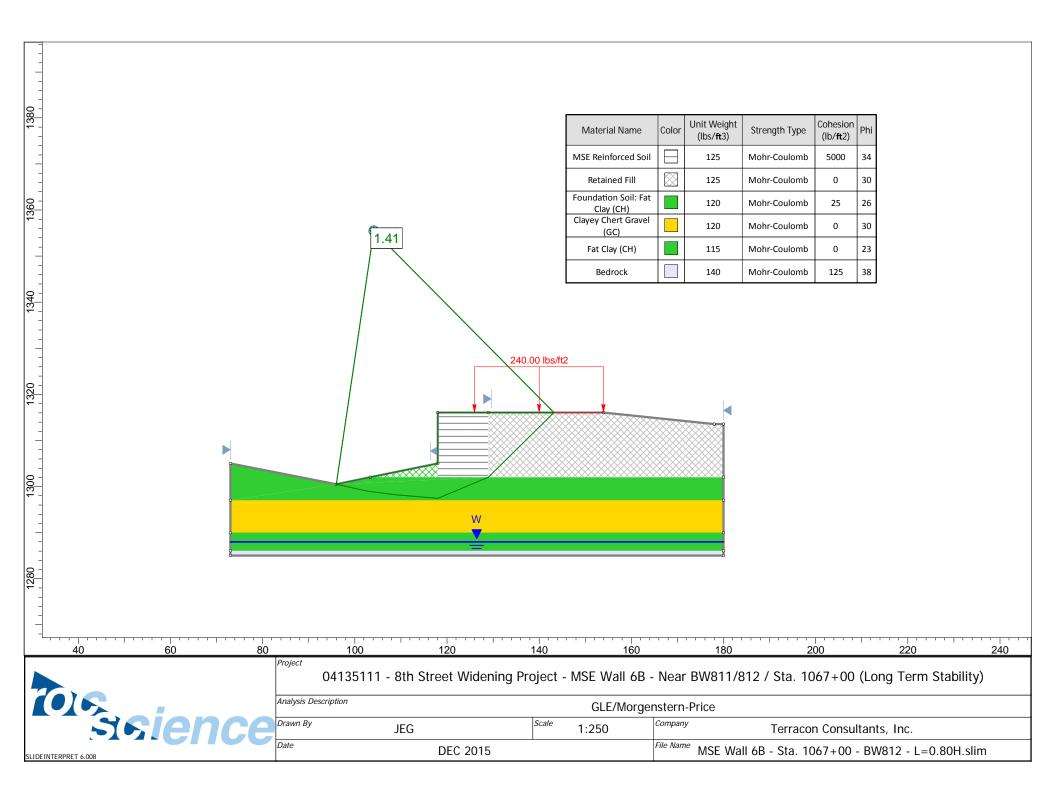


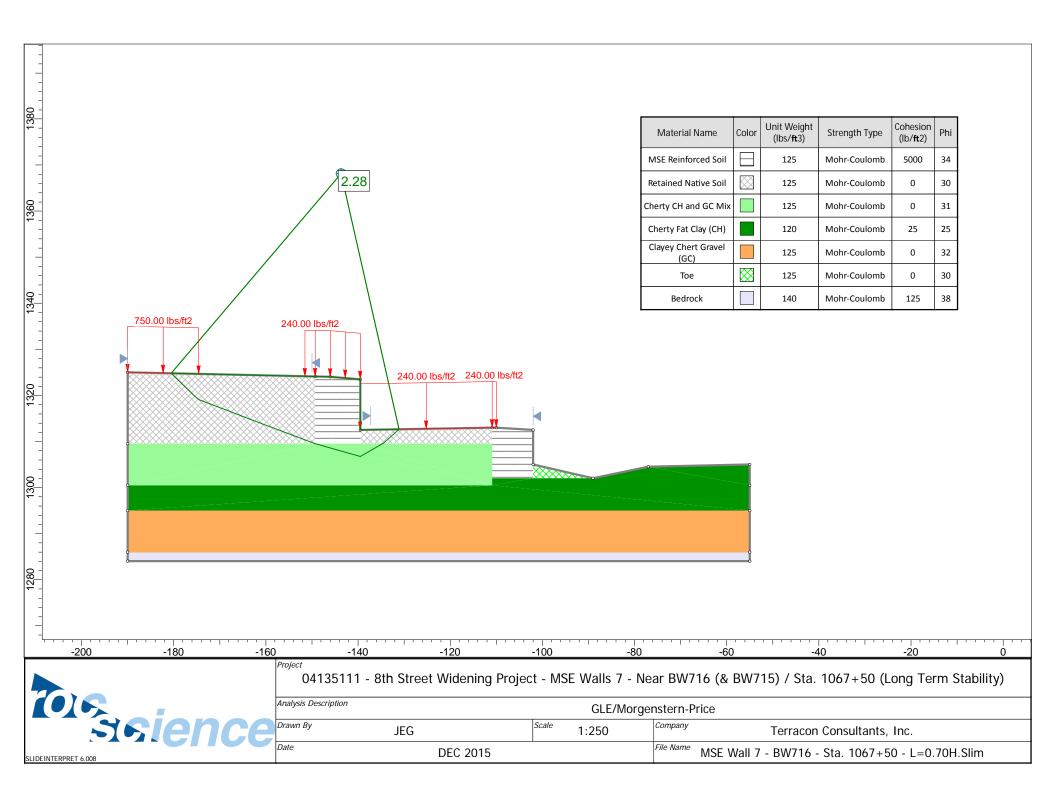


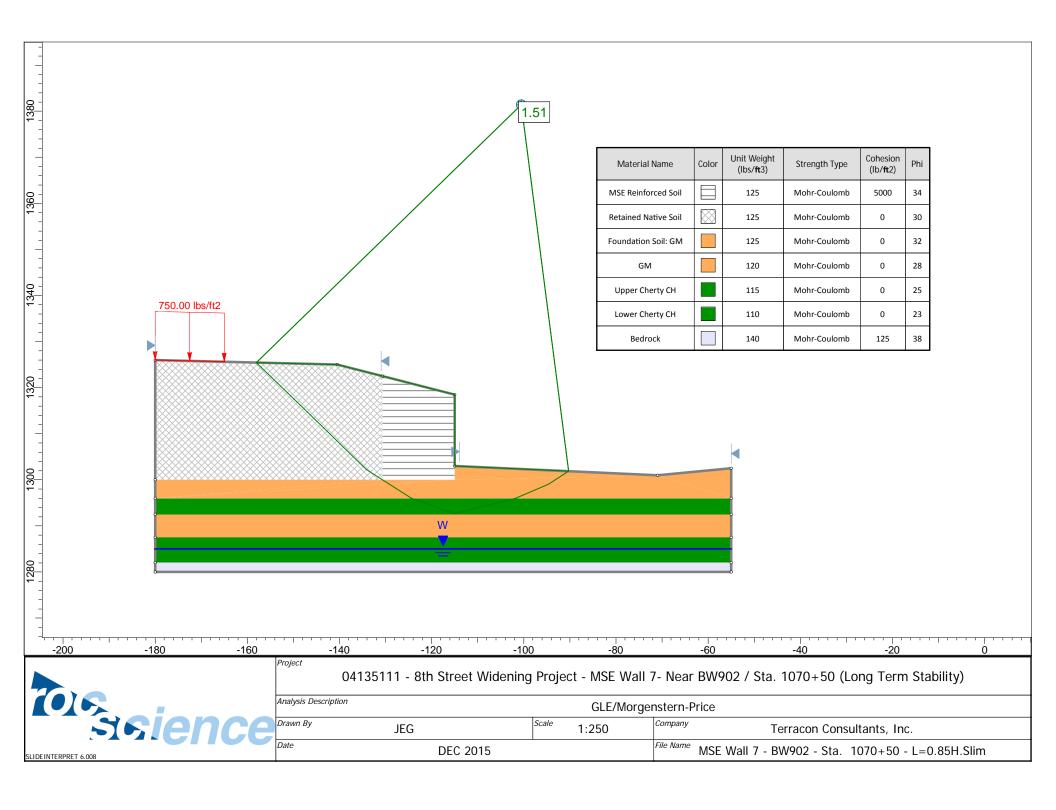


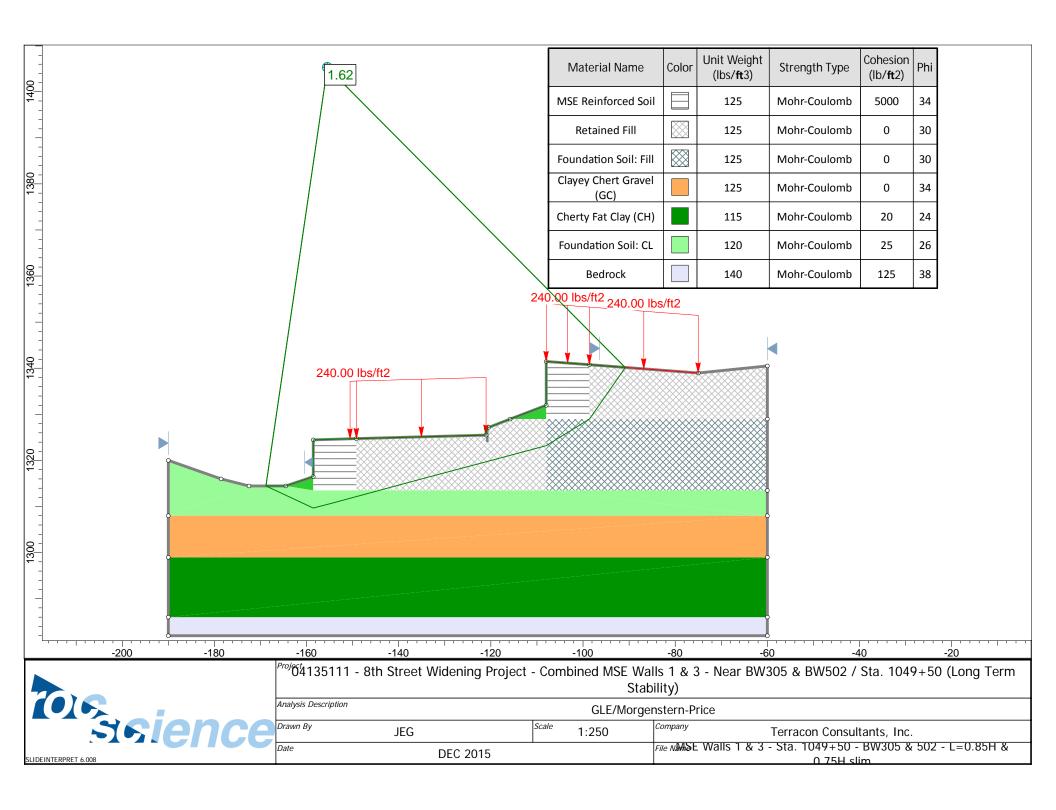


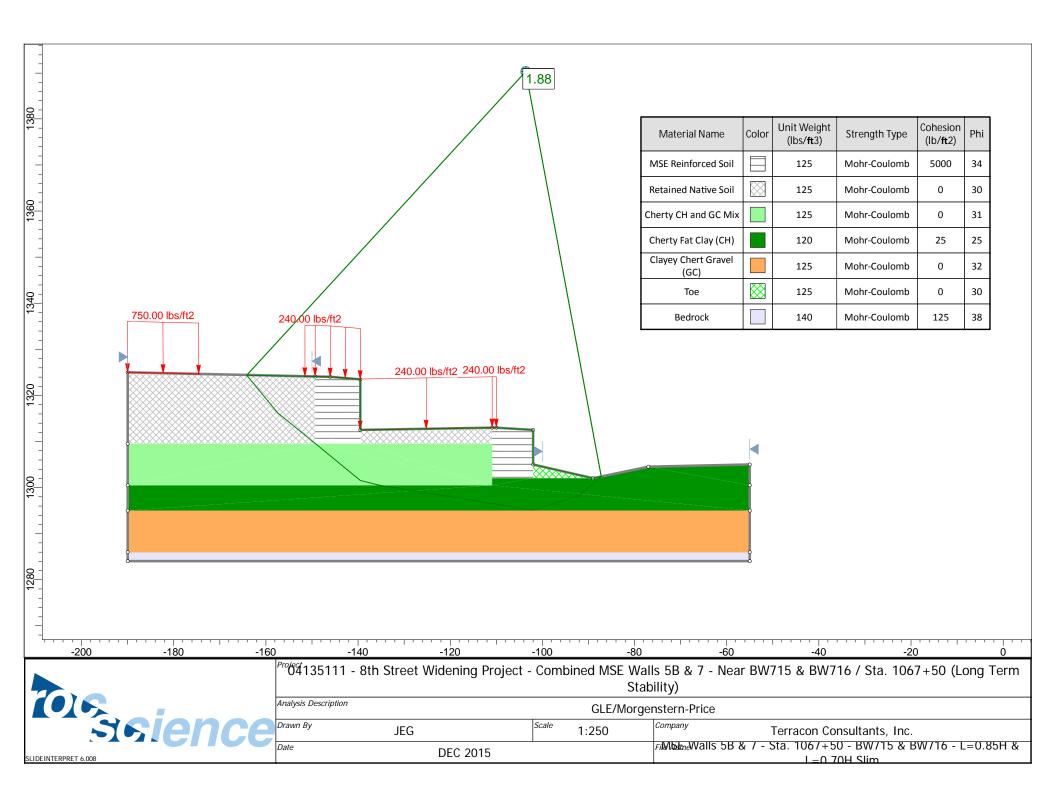


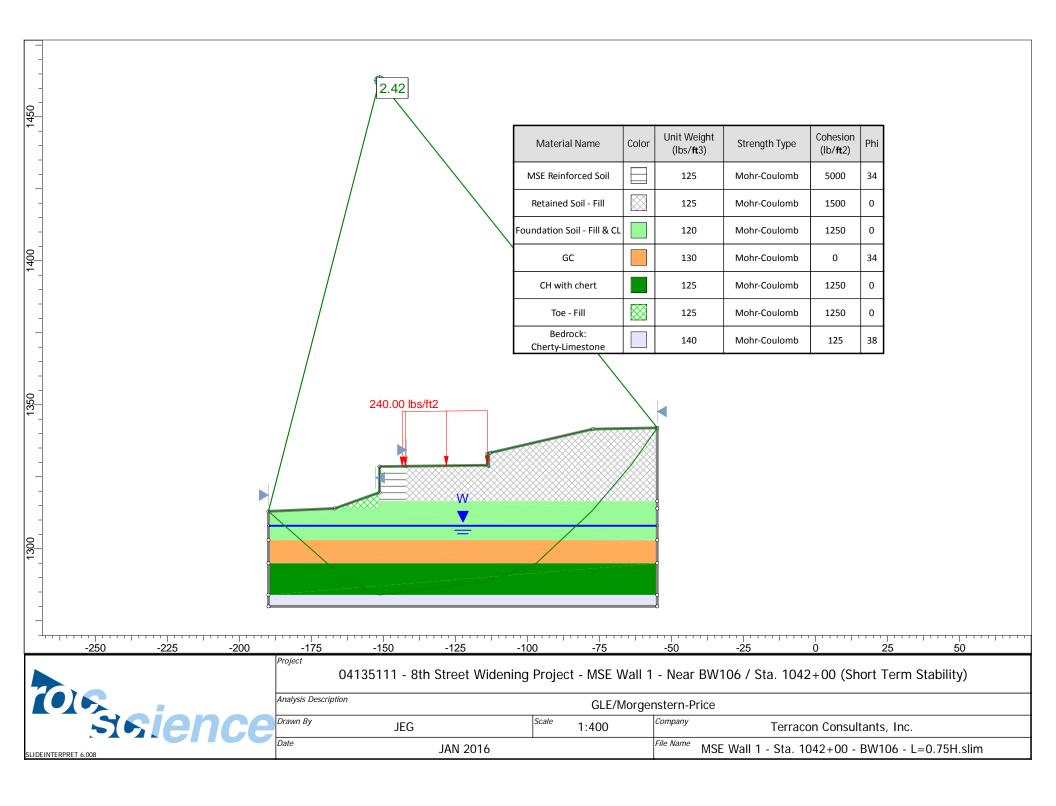


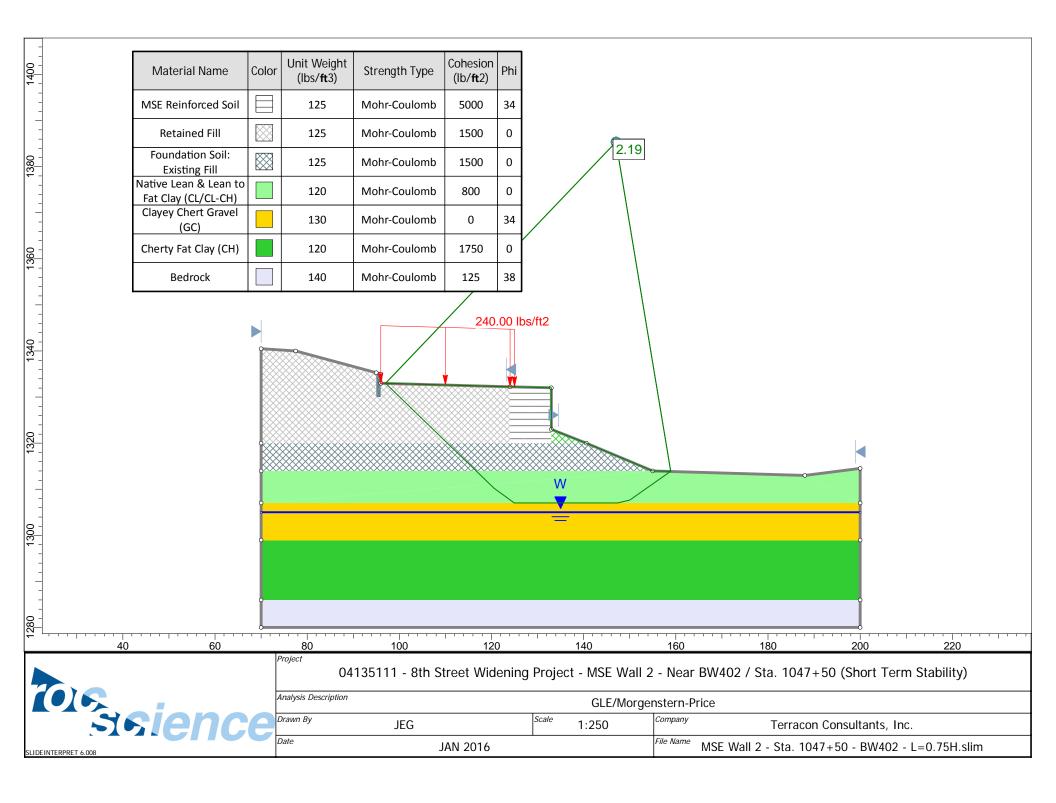


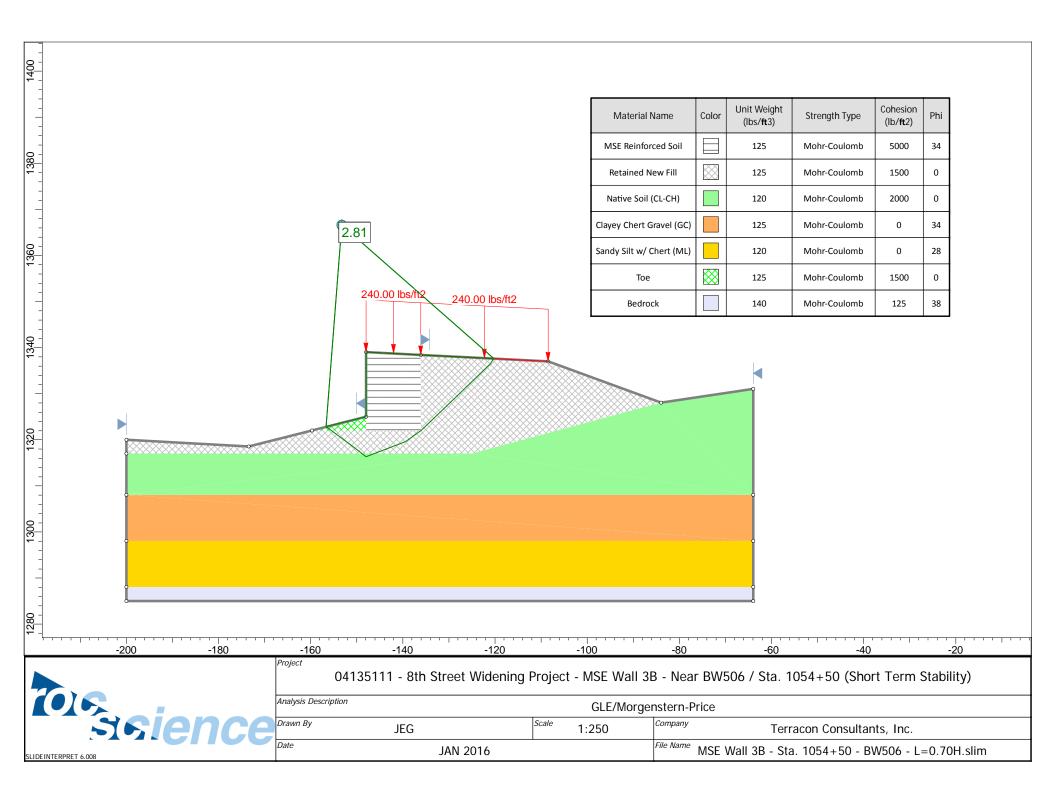


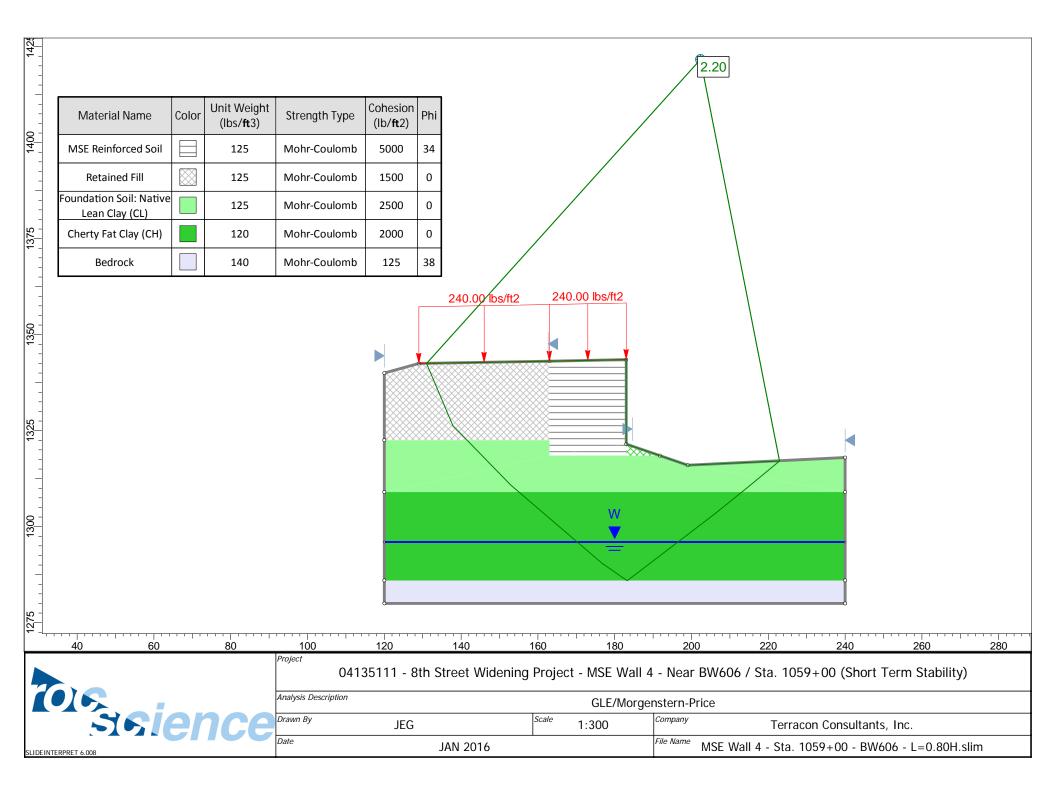


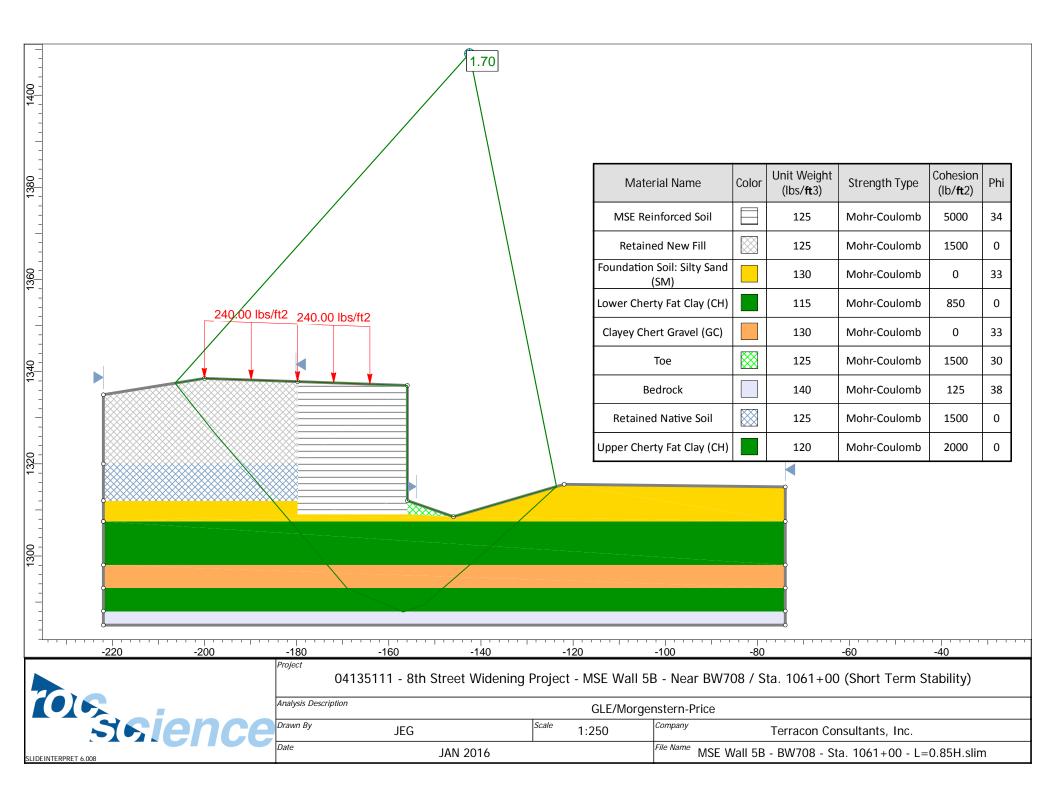


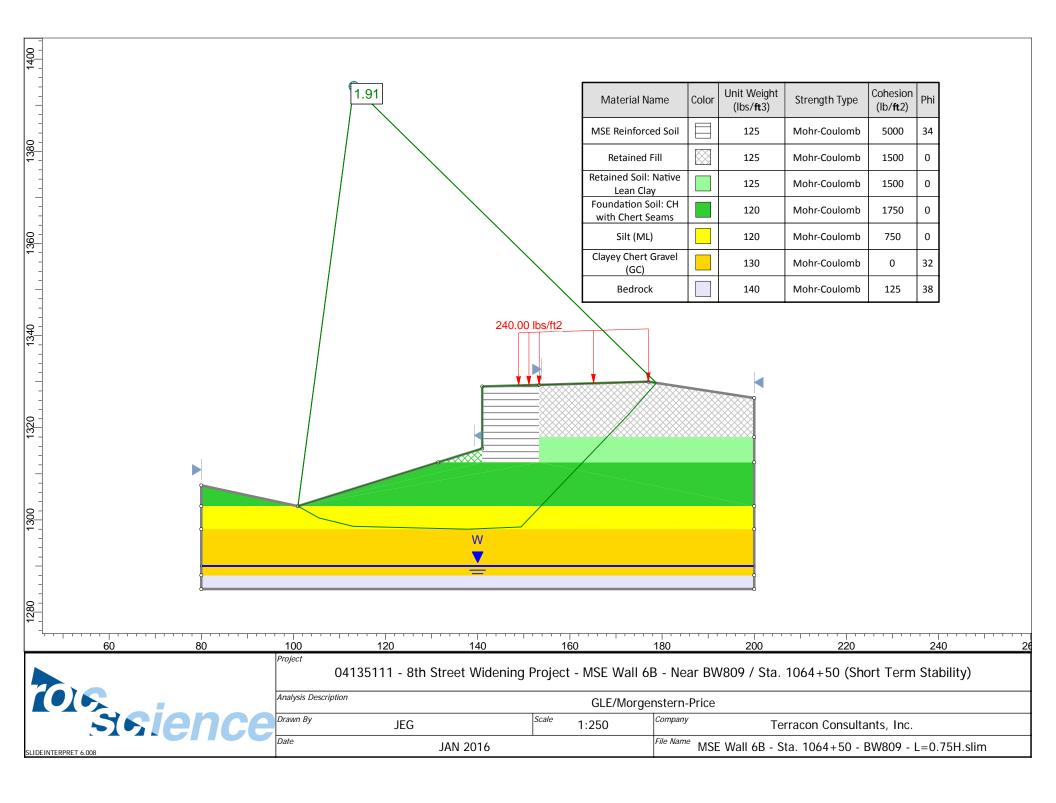


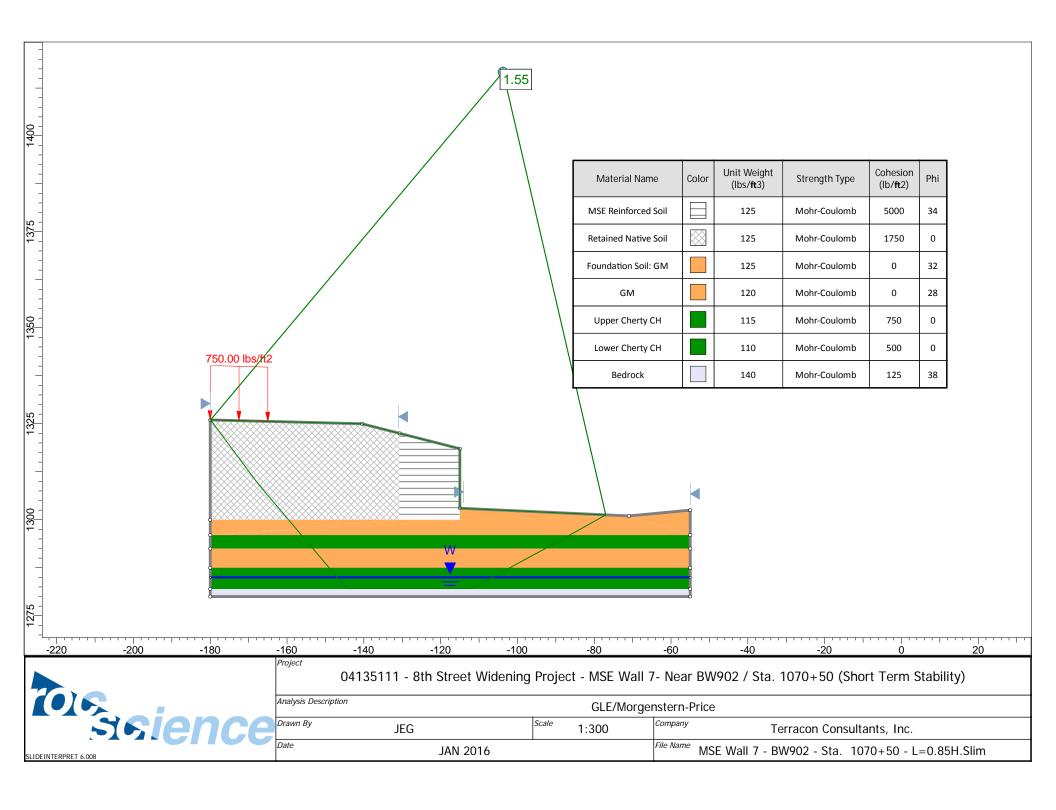

LONG TERM GLOBAL STABILITY COMBINED CROSS SECTIONS











APPENDIX D SUPPORTING DOCUMENTS

GENERAL NOTES

DESCRIPTION OF SYMBOLS AND ABBREVIATIONS

		\square		Water Initially Encountered		(HP)	Hand Penetrometer
	Auger	Split Spoon		Water Level After a Specified Period of Time		(T)	Torvane
NG	Challey Tuba	Maara Cara	LEVEL	Water Level After a Specified Period of Time	ESTS	(b/f)	Standard Penetration Test (blows per foot)
IPLIN	Shelby Tube	Macro Core	<u>~</u>	Water levels indicated on the soil boring logs are the levels measured in the	D TE	(PID)	Photo-Ionization Detector
SAMP	Ring Sampler	Rock Core	WATE	borehole at the times indicated. Groundwater level variations will occur over time. In low permeability soils, accurate determination of groundwater levels is not possible with short term	FIEL	(OVA)	Organic Vapor Analyzer
	Grab Sample	No Recovery		water level observations.			

DESCRIPTIVE SOIL CLASSIFICATION

Soil classification is based on the Unified Soil Classification System. Coarse Grained Soils have more than 50% of their dry weight retained on a #200 sieve; their principal descriptors are: boulders, cobbles, gravel or sand. Fine Grained Soils have less than 50% of their dry weight retained on a #200 sieve; they are principally described as clays if they are plastic, and silts if they are slightly plastic or non-plastic. Major constituents may be added as modifiers and minor constituents may be added according to the relative proportions based on grain size. In addition to gradation, coarse-grained soils are defined on the basis of their in-place relative density and fine-grained soils on the basis of their consistency.

LOCATION AND ELEVATION NOTES

Unless otherwise noted, Latitude and Longitude are approximately determined using a hand-held GPS device. The accuracy of such devices is variable. Surface elevation data annotated with +/- indicates that no actual topographical survey was conducted to confirm the surface elevation. Instead, the surface elevation was approximately determined from topographic maps of the area.

	(More than Density determine	NSITY OF COARSE-GRAI n 50% retained on No. 200 ed by Standard Penetration des gravels, sands and sil	sieve.) on Resistance	CONSISTENCY OF FINE-GRAINED SOILS (50% or more passing the No. 200 sieve.) Consistency determined by laboratory shear strength testing, field visual-manual procedures or standard penetration resistance			
TERMS	Descriptive Term (Density)	Standard Penetration or N-Value Blows/Ft.	Ring Sampler Blows/Ft.	Descriptive Term (Consistency)	Unconfined Compressive Strength, Qu, psf	Standard Penetration or N-Value Blows/Ft.	Ring Sampler Blows/Ft.
뿔	Very Loose	0 - 3	0 - 6	Very Soft	less than 500	0 - 1	< 3
	Loose	4 - 9	7 - 18	Soft	500 to 1,000	2 - 4	3 - 4
TRENGT	Medium Dense	10 - 29	19 - 58	Medium-Stiff	1,000 to 2,000	4 - 8	5 - 9
ြင	Dense	30 - 50	59 - 98	Stiff	2,000 to 4,000	8 - 15	10 - 18
	Very Dense	> 50	<u>≥</u> 99	Very Stiff	4,000 to 8,000	15 - 30	19 - 42
				Hard	> 8,000	> 30	> 42

RELATIVE PROPORTIONS OF SAND AND GRAVEL

<u>Descriptive Term(s)</u>	<u>Percent of</u>	<u>Major Component</u>	Particle Size
of other constituents	<u>Dry Weight</u>	<u>of Sample</u>	
Trace With Modifier	< 15 15 - 29 > 30	Boulders Cobbles Gravel Sand Silt or Clay	Over 12 in. (300 mm) 12 in. to 3 in. (300mm to 75mm) 3 in. to #4 sieve (75mm to 4.75 mm) #4 to #200 sieve (4.75mm to 0.075mm Passing #200 sieve (0.075mm)

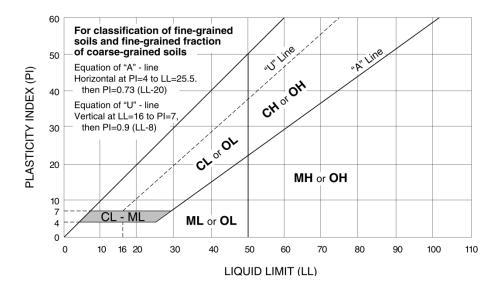
GRAIN SIZE TERMINOLOGY

PLASTICITY DESCRIPTION

RELATIVE PROPORTIONS OF FINES

Descriptive Term(s) of other constituents	Percent of Dry Weight	<u>Term</u>	Plasticity Index
or other constituents	Dry Weight	Non-plastic	0
Trace	< 5	Low	1 - 10
With	5 - 12	Medium	11 - 30
Modifier	> 12	High	> 30

UNIFIED SOIL CLASSIFICATION SYSTEM


	Δ.				Soil Classification
Criteria for Assign	ning Group Symbols	s and Group Names	s Using Laboratory Tests ^A	Group Symbol	Group Name ^B
	Gravels:	Clean Gravels:	Cu ≥ 4 and 1 ≤ Cc ≤ 3 ^E	GW	Well-graded gravel F
	More than 50% of	Less than 5% fines ^C	Cu < 4 and/or 1 > Cc > 3 ^E	GP	Poorly graded gravel F
	raction retained on	Gravels with Fines:	Fines classify as ML or MH	GM	Silty gravel F,G, H
Coarse Grained Soils: More than 50% retained	No. 4 sieve	More than 12% fines ^C	Fines classify as CL or CH	GC	Clayey gravel F,G,H
on No. 200 sieve	Sands:	Clean Sands:	Cu ≥ 6 and 1 ≤ Cc ≤ 3 ^E	SW	Well-graded sand
511 1161 200 51610	50% or more of coarse fraction passes	Less than 5% fines D	Cu < 6 and/or 1 > Cc > 3 ^E	SP	Poorly graded sand
		Sands with Fines:	Fines classify as ML or MH	SM	Silty sand G,H,I
	No. 4 sieve	More than 12% fines D	Fines Classify as CL or CH	SC	Clayey sand G,H,I
		Inorgania	PI > 7 and plots on or above "A" line	J CL	Lean clay K,L,M
	Silts and Clays:	Inorganic:	PI < 4 or plots below "A" line J	ML	Silt K,L,M
	Liquid limit less than 50	Organia	Liquid limit - oven dried < 0.75	OL	Organic clay K,L,M,N
Fine-Grained Soils:		Organic:	Liquid limit - not dried < 0.75	OL OL	Organic silt K,L,M,O
No. 200 sieve	50% or more passes the	Inorganic:	PI plots on or above "A" line	CH	Fat clay K,L,M
110. 200 01010	Silts and Clays:	inorganic.	PI plots below "A" line	MH	Elastic Silt K,L,M
	Liquid limit 50 or more	Organic:	Liquid limit - oven dried	ОН	Organic clay K,L,M,P
			Liquid limit - not dried < 0.75	< 0.75 OH	Organic silt K,L,M,Q
Highly organic soils:	Primarily	y organic matter, dark in o	color, and organic odor	PT	Peat

- ^A Based on the material passing the 3-in. (75-mm) sieve
- ^B If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.
- ^C Gravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with silt, GW-GC well-graded gravel with clay, GP-GM poorly graded gravel with silt, GP-GC poorly graded gravel with clay.
- D Sands with 5 to 12% fines require dual symbols: SW-SM well-graded sand with silt, SW-SC well-graded sand with clay, SP-SM poorly graded sand with silt, SP-SC poorly graded sand with clay

^E
$$Cu = D_{60}/D_{10}$$
 $Cc = \frac{(D_{30})^2}{D_{10} \times D_{60}}$

- $^{\text{F}}$ If soil contains \geq 15% sand, add "with sand" to group name.
- ^G If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

- ^H If fines are organic, add "with organic fines" to group name.
- If soil contains ≥ 15% gravel, add "with gravel" to group name.
- If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay.
- K If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel," whichever is predominant.
- L If soil contains ≥ 30% plus No. 200 predominantly sand, add "sandy" to group name.
- M If soil contains ≥ 30% plus No. 200, predominantly gravel, add "gravelly" to group name.
- N PI \geq 4 and plots on or above "A" line.
- $^{\rm O}$ PI < 4 or plots below "A" line.
- P PI plots on or above "A" line.
- Q PI plots below "A" line.

GENERAL NOTES

Sedimentary Rock Classification

DESCRIPTIVE ROCK CLASSIFICATION:

Sedimentary rocks are composed of cemented clay, silt and sand sized particles. The most common minerals are clay, quartz and calcite. Rock composed primarily of calcite is called limestone; rock of sand size grains is called sandstone, and rock of clay and silt size grains is called mudstone or claystone, siltstone, or shale. Modifiers such as shaly, sandy, dolomitic, calcareous, carbonaceous, etc. are used to describe various constituents. Examples: sandy

shale; calcareous sandstone.

LIMESTONE Light to dark colored, crystalline to fine-grained texture, composed of CaCo₃, reacts readily

with HCI.

Light to dark colored, crystalline to fine-grained texture, composed of CaMg(CO₃)₂, harder DOLOMITE

than limestone, reacts with HCl when powdered.

Light to dark colored, very fine-grained texture, composed of micro-crystalline quartz (SiO₂), CHERT

brittle, breaks into angular fragments, will scratch glass.

Very fine-grained texture, composed of consolidated silt or clay, bedded in thin layers. The SHALE

unlaminated equivalent is frequently referred to as siltstone, claystone or mudstone.

SANDSTONE Usually light colored, coarse to fine texture, composed of cemented sand size grains of quartz.

feldspar, etc. Cement usually is silica but may be such minerals as calcite, iron-oxide, or some

other carbonate.

CONGLOMERATE Rounded rock fragments of variable mineralogy varying in size from near sand to boulder size

but usually pebble to cobble size (1/2 inch to 6 inches). Cemented together with various cementing agents. Breccia is similar but composed of angular, fractured rock particles cemented

together.

PHYSICAL PROPERTIES:

DEGREE OF WEATHERING

Sliaht Slight decomposition of parent

material on joints. May be color

change.

Moderate Some decomposition and color

change throughout.

High Rock highly decomposed, may be ex-

tremely broken.

BEDDING AND JOINT CHARACTERISTICS Bed Thickness

Joint Spacing **Dimensions** Very Thick Very Wide >10' Thick Wide 3' - 10' Medium Moderately Close 1' -3' Thin Close 2" -1′ .4" -Very Thin Very Close 2" .1" -Laminated

Bedding Plane A plane dividing sedimentary rocks of

the same or different lithology.

HARDNESS AND DEGREE OF CEMENTATION Joint Fracture in rock, generally more or

less vertical or transverse to bedding, Limestone and Dolomite: along which no appreciable move-Difficult to scratch with knife ment has occurred.

Can be scratched easily with knife.

Generally applies to bedding plane Hard cannot be scratched with fingernail.

Seam

with an unspecified degree of

weathering.

Shale, Siltstone and Claystone

Hard Can be scratched easily with knife.

Can be scratched with fingernail.

cannot be scratched with fingernail.

Moderately

Hard

Soft

Moderately

Hard Can be scratched with fingernail.

Soft Can be easily dented but not molded

with fingers.

Sandstone and Conglomerate

Well Capable of scratching a knife blade.

Cemented

Cemented Can be scratched with knife.

Poorly Can be broken apart easily with

Cemented fingers.

SOLUTION AND VOID CONDITIONS

Solid Contains no voids.

Vuggy (Pitted) Rock having small solution pits or

cavities up to 1/2 inch diameter, fre-

quently with a mineral lining.

Containing numerous voids, pores, or Porous

other openings, which may or may

not interconnect.

Cavernous Containing cavities or caverns, some-

times quite large.

8th Street Widening Project Proposed Pavements 8th Street from SW I Street to Interstate 49 Bentonville, Arkansas

March 13, 2015 Terracon Project No. 04135111

Prepared for:

Burns & McDonnell Engineering Company, Inc. Kansas City, Missouri

Prepared by:

Terracon Consultants, Inc. Tulsa, Oklahoma

Offices Nationwide Employee-Owned

Established in 1965 terracon.com

March 13, 2015

Burns & McDonnell Engineering Company, Inc. 9400 Ward Parkway Kansas City, MO 64114

Attn:

Mr. David Hurt, P.E.

P: (816) 822 3426

E: dhurt@burnsmcd.com

Re:

Geotechnical Engineering Report

8th Street Widening Project - Proposed Pavements

8th Street from SW I Street to Interstate 49

Bentonville, Arkansas

Terracon Project No. 04135111

Dear Mr. Hurt:

Terracon Consultants, Inc. (Terracon) has completed the geotechnical engineering services for the above referenced project. This study was performed in general accordance with our proposal number P04090495 dated February 26, 2010. This report presents the findings of the subsurface exploration and provides geotechnical recommendations concerning general earthwork and design and construction of the proposed pavements.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report, or if we may be of further service, please contact us.

Sincerely,

Terracon Consultants, Inc. Cert. Of Auth. #CA-233 exp. 12/31/15

Jaime E. Granados <

Staff Geotechnical Engineer

JEG:MHH:lo Enclosures

Addressee (3 via US Mail and 1 via email)

Michael H. Homan, P.E.

Arkansas No. 7052

TABLE OF CONTENTS

					Page		
1.0		_	_				
2.0							
	2.1	•	•				
	2.2			ription			
3.0	SUBS						
	3.1		•	knesses			
	3.2	Typica	I Subsurface Prof	file	3		
	3.3						
4.0	ANAL	YSIS A	ND RECOMMEN	DATIONS	4		
	4.1	4.1 Geotechnical Considerations					
	4.2	Earthy	ork		5		
		4.2.1	Site Preparation		5		
		4.2.2	Fill Material Type	es	5		
		4.2.3	Compaction Red	quirements	6		
		4.2.4	Earthwork Cons	truction Considerations	7		
	4.3	Gener	al Pavement Des	ign Recommendations	7		
				ons for the City of Bentonville Pavement Sections			
				ons for the AHTD Pavement Sections			
	4.4			ecommendations			
		4.4.1		age			
		4.4.2		enance			
5.0	GENE						
APPE	NDIX A	– FIEL	D EXPLORATIO	N			
	Exhibi			ite Location Map			
	Exhibi			oring Location Plans			
	Exhibi	t A-3		ield Exploration Description			
	Exhibi	t A-4 to	A-44 B	oring Logs			
	Exhibi	t A-45	Р	hotographic Pavement Core Logs			
	Exhibi	t A-46	A	pproximate Boring Coordinates			
APPE	NDIX B	– LAB	ORATORY TEST	'S			
	Exhibi	t B-1	L	aboratory Test Description			
	Exhibi	t B-2 to	B-16 G	rain Size Distribution Curves			
	Exhibi	t B-17 t	B-20 N	loisture-Density Relationship Curves			
	Exhibi	t B-21 t	b B-44 R	esilient Modulus			
APPE	NDIX C	– ADD	ITIONAL FIELD	TESTS			

Dynamic Cone Penetration Tests

Exhibit C-1

TABLE OF CONTENTS (continued)

APPENDIX D - SUPPORTING DOCUMENTS

Exhibit D-1 General Notes

Exhibit D-2 Unified Soil Classification System

Exhibit D-3 General Notes – Description of Rock Properties

GEOTECHNICAL ENGINEERING REPORT 8TH STREET WIDENING PROJECT – PROPOSED PAVEMENTS 8TH STREET FROM SW I STREET TO INTERSTATE 49 BENTONVILLE, ARKANSAS

Terracon Project No. 04135111 March 13, 2015

1.0 INTRODUCTION

This geotechnical engineering report has been completed as a part of the 8th Street widening project in Bentonville, Arkansas. This report addresses our geotechnical recommendations for pavements along 8th Street from SW I Street to Interstate 49.

A total of 41 borings, designated BR-001 through BR-041, were drilled for the project to depths of approximately 0.5 to 10 feet below the existing ground surface. One boring, BR-011, was not extended deeper than the asphalt pavement bottom due to the presence of underground and overhead utilities and its proximity to the Bentonville City Fire Department. A site location map along with boring location plans and boring logs are included in Appendix A of this report.

The purpose of these services is to provide information and geotechnical engineering recommendations relative to:

- subsurface soil conditions
- groundwater conditions

- pavement subgrade preparation
- pavement design recommendations

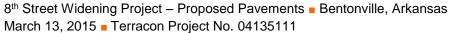
2.0 PROJECT INFORMATION

2.1 Project Description

Item	Description				
Site Layout	See Appendix A, Figure A-2, Boring Location Plan.				
Proposed Construction	This phase of the project will consist of widening 8 th Street from SW I Street to Moberly Lane and extending 8 th Street from Moberly Lane to the intersection of 8 th Street with Interstate 49. On and off-ramps and tunnel pavements will also be constructed. The total length of the project is approximately 2.6 miles.				
General Considerations	We understand that the Arkansas Highway Transportation Department (AHTD) and the City of Bentonville will per be responsible for the project and that pavement design and construction should be performed according to their specifications.				

8th Street Widening Project – Proposed Pavements ■ Bentonville, Arkansas March 13, 2015 ■ Terracon Project No. 04135111

2.2 Site Location and Description


Item	Description
Location	8 th Street from SW I Street to Interstate 49 in Bentonville, Arkansas.
Current Ground Cover	Existing asphalt paved surfaces and grass areas with some concrete paved areas and concrete sidewalks.
Traffic Information and Pavement Design	We understand that Burns & McDonnell will be responsible for traffic information and pavement design.
Grading	Based on the preliminary plans provided to us by Burns & McDonnell (Bentonville\8 th _Street_Final\Civil\Drawings\120\PLAN_09_090218_150.dgn) and the elevation of the borings, the proposed road alignment will have slopes between 0.5% and 3.0%. Road alignment slopes in excess of about 3.0% are anticipated for the proposed bridge abutments and ramps.

3.0 SUBSURFACE CONDITIONS

3.1 Existing Pavement Thicknesses

The summary of the asphalt thicknesses measured in our borings is provided below. Due to the pavement coring methods used to extend our borings, we were not able to accurately measure aggregate base thicknesses. Therefore, the aggregate base thicknesses presented below should be considered approximate.

Boring No.	Asphalt Thickness (inches)	Aggregate Base Thickness (inches)
BR-001	9	Not Measured
BR-002	N/A	Not Measured
BR-003	11	Not Measured
BR-004	3 ½	2 ½
BR-005	5 ½	Not Measured
BR-006	4 3/4	6
BR-007	N/A	Not Measured
BR-008	6	Not Measured
BR-009	5	Not Measured
BR-010	6	Not Measured
BR-011	5	Not Measured
BR-012	4 – (concrete parking lot)	Not Measured
BR-013	N/A	Not Measured
BR-014	4	Not Measured
BR-015	N/A	Not Measured
BR-016	6 ½	Not Measured
BR-017	N/A	Not Measured
BR-018	N/A	Not Measured

Boring No.	Asphalt Thickness (inches)	Aggregate Base Thickness (inches)
BR-019	5	Not Measured
BR-020	9	Not Measured
BR-021	8	Not Measured
BR-022	5	2
BR-023	4 ½ asphalt over 7 ¾ concrete	Not Measured
BR-024	6 3⁄4	3
BR-025	6 ½	Not Measured
BR-026	7 ½	Not Measured
BR-027	5	6
BR-028	3 ½	3
BR-029	2 ½	3
BR-030	2 ½	3
BR-031	3 ½	2
BR-032	3 ½	2
BR-033	4	Not Measured
BR-034	5	Not Measured
BR-035	3 ½	2
BR-036	4 1/4	2 ½
BR-037	N/A	Not Measured
BR-038	N/A	Not Measured
BR-039	N/A	Not Measured
BR-040	N/A	Not Measured
BR-041	N/A	Not Measured

3.2 Typical Subsurface Profile

Based on the results of the borings, subsurface conditions along the project alignment can be generalized as follows:

Stratum	Approximate Depth to Bottom of Stratum	Material Encountered	Consistency/Density
11	1 to 5 feet	Fill: Low to medium plasticity clay with various amounts of sand and gravel and chert or limestone gravel with various amounts of fines	N/A
2 2	Borings terminated in this stratum at depths of 4.5 to 10 feet	Low to high plasticity clay with various amounts of silt, sand, and chert gravel	Soft to stiff

The composition of the fill materials encountered during our field exploration varies along the project alignment. Actual fill depths are sometimes difficult to identify due to similarities of the fill with the native soils and preliminary earthwork activities. Fill materials may exist in the vicinity of the construction areas at locations away from our borings. Existing fill materials were encountered in all borings except BR-013/015/017/018/024/039/040.

8th Street Widening Project – Proposed Pavements ■ Bentonville, Arkansas March 13, 2015 ■ Terracon Project No. 04135111

Continued from page 3

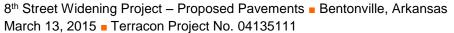
2. All borings terminated in this stratum except BR-007, which was terminated in apparent fill materials; BR-011, which was not extended into the subgrade soils; BR-024, which was terminated in apparent weathered sandstone; BR-025, which was terminated in apparent shale; and BR-040, which was terminated in silty chert gravel.

Conditions encountered at each boring location are indicated on the individual boring logs. Stratification boundaries on the boring logs represent the approximate location of changes in material types; in-situ, the transition between materials may be gradual.

Laboratory tests were conducted on select soil samples. The test results are presented on the individual boring logs in Appendix A.

3.3 Groundwater

The boreholes were observed while drilling and immediately after boring completion for the presence and level of groundwater. Groundwater was only observed in boring BR-041 at depths of about 4 feet and 3 feet while drilling and after boring, respectively. Groundwater was not observed in the other borings during our field exploration.


The groundwater level observations made during our exploration provide an indication of the groundwater conditions at the time the borings were drilled. Longer monitoring in piezometers or cased holes, sealed from the influence of surface water, would be required to evaluate longer-term groundwater conditions. During some periods of the year, perched water could be present at various depths. Fluctuations in groundwater levels should be expected throughout the year depending upon variations in the amount of rainfall, runoff, evaporation, and other hydrological factors not apparent at the time the boring was performed.

4.0 ANALYSIS AND RECOMMENDATIONS

4.1 Geotechnical Considerations

As described in the Project Information section of this report, we understand that the total length of the project will be approximately 2.6 miles and that the City of Bentonville and the Arkansas Highway Transportation Department (AHTD) will be responsible for the project. We also understand that Burns & McDonnell will perform the pavement design analysis based on the results of our geotechnical investigation and in general agreement with the City of Bentonville and AHTD standard specifications for pavement design and construction.

Due to the presence of underground and overhead utility lines, most of our borings were drilled through the existing 8th Street pavements. Based on the results of our borings, we determined that the asphalt thicknesses of the existing pavement sections vary between approximately 2

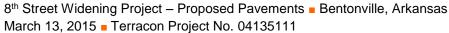
and 11 inches. At this time, we understand that the majority of the existing pavement sections will be replaced full depth with new pavement sections. If a mill and overlay of existing pavements will be considered in lieu of the new pavement sections, we will need to provide additional recommendations.

General recommendations regarding earthwork and subgrade preparation and the design and construction of pavements are presented in the following sections.

4.2 Earthwork

4.2.1 Site Preparation

Areas to be graded should be stripped and cleared of surface vegetation, topsoil, trees, bushes, debris, and any other deleterious material. Any loose or soft soils at the surface, tree stumps, and major root systems should be removed full-depth and the resultant excavations should be cleaned of all loose or soft material and water and properly backfilled with tested and approved engineered fill. In addition, surface and subsurface features such as existing pavements or underground abandoned utilities should be removed full-depth and the resultant excavations should be properly backfilled with tested and approved engineered fill.


After stripping and completing any required grading cuts, and before placing any new fill, the exposed subgrade should be proofrolled with a fully-loaded dump truck, scraper, or other rubber-tired construction equipment weighing at least 25 tons to evaluate the presence of any low strength, unstable soils. Any low strength, unstable soils identified by the proofrolling should be overexcavated and replaced with tested and approved engineered fill as indicated in section **4.3 Fill Material Types**, if they cannot be adequately stabilized in-place. Based on the results of our field exploration and experience with similar projects, unstable soils with high moisture content are typically encountered directly beneath existing pavements.

After completing a successful proofroll, and before placing any fill, the exposed subgrade should be scarified to a minimum depth of 10 inches, moisture conditioned, and compacted as recommended in section **4.4 Compaction Requirements**.

4.2.2 Fill Material Types

Engineered fill, where required to raise the subgrade elevation and to backfill excavations, should meet the following specifications:

Fill Type ¹	USCS Classification	Acceptable Location for Placement
"Hillside" Borrow Material ²	GC. GM	All locations and elevations
(off-site borrow)	GC, GIVI	All locations and elevations
Approved Crushed Stone ²	CW CD	All locations and alcustions
(off-site borrow)	GW, GP	All locations and elevations

Fill Type ¹	USCS Classification	Acceptable Location for Placement
Locally Available Crushed Shale and Sandstone ² (off-site borrow)	SC, SP, GC, GP	All locations and elevations
On-site Soils	Low to high plasticity clay ³ (CL, CL-CH, CH, CL-ML)	Upon approval of the geotechnical engineer
	Existing fill 4	Upon approval of the geotechnical engineer

- Controlled, compacted fill should consist of approved materials that are free of organic matter and debris and contain maximum rock size of 3 inches. Frozen material should not be used, and fill should not be placed on a frozen subgrade. A sample of each material type should be submitted to the geotechnical engineer for evaluation.
- 2. Approved, granular soils having a maximum Liquid Limit (LL) of 40, a maximum Plasticity Index (PI) of 15, and containing at least 15% fines (material passing the No. 200 sieve, based on dry weight).
- 3. On-site clay soils could be used as fill if the geotechnical engineer considers that those materials are suitable and meet the design specifications.
- 4. Existing fills could be used if the geotechnical engineer considers that those materials are suitable and meet the design specifications.

4.2.3 Compaction Requirements

The scarified and compacted subgrade and new fills should be moisture conditioned and compacted using the recommendations presented in the following table.

Item	Description
Subgrade Scarification Depth	10-inches
Fill Lift Thickness ¹	12-inches or less in loose thickness
Compaction Requirements ² At least 95% of the material's maximum dry density by AASHTO T-99 test protocol (standard Proctor compaction to	
Moisture Content	A level within minus 2 to plus 2 of the material's optimum moisture content, determined in accordance with AASHTO T-99. ³

- 1. Thinner lifts are recommended in confined areas or when hand-operated compaction equipment is used.
- 2. The scarified and compacted subgrade and new fills should be tested for moisture content and compaction during placement. Should the results of the in-place density tests indicate the specified moisture or compaction limits have not been met, the area represented by the test should be reworked and retested as required until the specified moisture and compaction requirements are achieved.
- 3. Granular materials, if any, should be compacted at a workable moisture content.

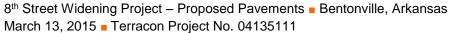
The recommended moisture content should be maintained in the scarified and compacted subgrade and new fills, until fills are completed and pavements are constructed.

8th Street Widening Project – Proposed Pavements ■ Bentonville, Arkansas March 13, 2015 ■ Terracon Project No. 04135111

4.2.4 Earthwork Construction Considerations

The surficial lean clay soils are moisture sensitive and subject to disturbance and instability when they experience increases in moisture content. If wet conditions exist during construction, equipment mobility will be hindered and it will be necessary to overexcavate and replace or stabilize the full-depth of these soils to develop support for new fills and pavements, and allow construction to proceed.

Upon completion of filling and grading, care should be taken to maintain the subgrade moisture content prior to pavement construction. Construction traffic over the completed subgrade should be avoided to the extent practical. The site should also be graded to prevent ponding of surface water on the prepared subgrades or in excavations. If the subgrade should become frozen, excessively wet or dry, or disturbed, the affected material should be removed or these materials should be scarified, moisture conditioned, and recompacted prior to pavement construction.


As a minimum, all temporary excavations should be sloped or braced as required by Occupational Health and Safety Administration (OSHA) regulations to provide stability and safe working conditions. The grading contractor, by his contract, is usually responsible for designing and constructing stable, temporary excavations and should shore, slope or bench the sides of the excavations as required, to maintain stability of both the excavation sides and bottom. All excavations should comply with applicable local, state and federal safety regulations, including the current OSHA Excavation and Trench Safety Standards.

The geotechnical engineer should be retained during the construction phase of the project to provide observation and testing during subgrade preparation and earthwork.

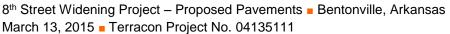
4.3 General Pavement Design Recommendations

The on-site subgrade materials were evaluated using various *in-situ* and laboratory test procedures including Standard Penetration Tests (SPT), Dynamic Cone Penetration (DCP), soil index properties, and Resilient Modulus (MR) tests. Due to the presence of chert and limestone gravel within the subgrade soils, DCP refusal was realized at several locations and thus, resilient modulus test results are recommended as the most suitable alternative to determine the recompacted subgrade support values for pavement design.

Four composite soil samples compacted at their Optimum Moisture Content (OMC) and OMC+2% were tested in our laboratory to determine their Resilient Modulus (MR) values. The samples were selected from different boring locations to represent the general subgrade soil conditions along the project alignment. The samples were collected as composite samples based on their similar soil properties and soil texture. The resilient modulus test results are summarized in the following table.

			Resilient Modulus (MR) Ranges (psi) ¹	
Composite Sample	Borings	Soil Type	OMC	OMC+2%
Bulk 1	BR-004/9/12/14	Lean clay PI = 17	5,700 to 9,500	4,200 to 8,000
Bulk 2	BR-017/19/21	Lean Clay PI = 10	6,500 to 9,600	5,000 to 7,900
Bulk 3	BR-030/35/36	Lean Clay PI = 25	5,200 to 9,100	3,400 to 7,400
Bulk 4	BR-003/4/5/12	Silty Clayey Gravel	11,700 to 16,300	8,600 to 13,100

^{1.} Values rounded to the nearest 100 psi. MR values for chamber confining pressure values (S₃) between approximately 2 and 4 pounds per square inch (psi) and nominal maximum axial stress (S_{cyclic}) values between 2 and 10 psi.


The above results are in general agreement with the soil descriptions shown on the boring logs in Appendix A. Resilient modulus results for Bulk samples 1 through 3 are within similar ranges. Recommendations for pavements for both the sections to be designed and constructed per the City of Bentonville and the sections to be designed and constructed per the Arkansas Highway Transportation Department pavement specifications are provided below.

4.3.1 Recommendations for the City of Bentonville Pavement Sections

The City of Bentonville recommends that as a minimum, the upper 24 inches of pavement subgrade be treated or removed and replaced if the California Bearing Ratio (CBR) is less than 8 and/or if the subgrade soils are susceptible to frost action. Based on a standard correlation of MR = 2,555*CBR^{0.64} (in psi units) as recommended by the Transportation and Road Research Laboratory (TRRL) and NCHRP 1-37A, 2004, a CBR value of 8 corresponds to a Resilient Modulus (MR) of about 9,700 psi. Our laboratory test results indicated that the on-site lean clay soils encountered along the project (i.e. bulk samples 1 through 3) generally do not meet this requirement. In addition, the on-site clay soils are susceptible to frost action.

If a subgrade resilient modulus of about 9,700 psi is required for the pavements to be constructed under the City of Bentonville pavement specifications, we recommend that as a minimum, clay soils within 10 inches of pavement subgrade be removed and replaced with imported engineered fill materials as recommended in section **4.2.2 Fill Material Types**. We understand that "hillside" materials consisting of clayey chert gravel and/or low plasticity cherty clay have been used in similar projects near the vicinity of this project site with satisfactory results.

As an alternative to removing and replacing the upper 10 to 24 inches of the subgrade soils and importing "off-site borrow" materials, the on-site clay soils could be used as fill within 10 inches of pavement subgrade, if they are effectively modified with Class "C" fly ash to achieve a California Bering Ratio (CBR) value of 8 or greater and/or a Resilient Modulus (MR) value of

9,700 psi or greater. We estimate a minimum of approximately 15 to 17 percent Class "C" fly ash, based on the soil's compacted dry weight, would be required to achieve the required CBR and/or MR values. The actual amounts of Class "C" fly ash should be determined in the laboratory and verified in the field as the amount required to achieve satisfactory CBR and/or MR values. Treating the on-site clay soils with Class "C" fly ash would also be a positive means to resist frost action.

4.3.2 Recommendations for the AHTD Pavement Sections

We understand that per the Arkansas Highway Transportation Department (AHTD) pavement design specifications, the pavement design will be performed based on existing subgrade conditions. Based on the resilient modulus test results performed on sample Bulk 3, we recommend that the pavement section from Moberly Lane to I-49, which we understand will be designed per AHTD specifications, be designed using a resilient modulus of 4,600 psi. This resilient modulus value was estimated as the MR value corresponding to a confining pressure (S₃) of 4 psi and a cyclic stress (S_{cyclic}) of about 6 psi for a composite sample compacted at approximately OMC+2%.

$$M_R = k_1 \times S_{cyclic}^{k_2}$$

Where

 $S_3 = 4$ psi (confining pressure) $S_{cyclic} = 6$ psi (cyclic stress) $k_1 = 9,716.6$

 $k_2 = -0.418$

The above values were obtained after normalizing the results of a resilient modulus test performed on Bulk Sample 3, which was prepared at a moisture content of 2 percent above the optimum moisture content, under different confining pressures and cyclic loads. Based on our experience, this confining pressure and cyclic stress typically model the anticipated traffic conditions. Resilient modulus test results are presented in Appendix B of this report.

We assume that the proposed ramps will be constructed with imported fills and that MR values of about 9,700 psi or higher may be achieved using locally available fill materials. We recommend that evaluation of fill materials be performed prior to construction of ramps to verify the pavement design.

4.4 Additional Pavement Recommendations

4.4.1 Pavement Drainage

Pavements should be sloped to provide rapid drainage of surface water. Water allowed to pond on or adjacent to the pavements could saturate the subgrade and contribute to premature pavement deterioration.

8th Street Widening Project – Proposed Pavements ■ Bentonville, Arkansas March 13, 2015 ■ Terracon Project No. 04135111

4.4.2 Pavement Maintenance

Periodic maintenance including crack and joint sealing, patching, and surface sealing should be performed. Prior to implementing any maintenance, additional engineering observation is recommended to determine the type and extent of preventive maintenance.

5.0 GENERAL COMMENTS

Terracon should be retained to review the final design plans and specifications so comments can be made regarding interpretation and implementation of our geotechnical recommendations in the design and specifications. Terracon also should be retained to provide observation and testing services during grading, excavation, foundation construction and other earth-related construction phases of the project.

The analysis and recommendations presented in this report are based upon the data obtained from the borings performed at the indicated locations and from other information discussed in this report. This report does not reflect variations that may occur between borings, across the site, or due to the modifying effects of construction or weather. The nature and extent of such variations may not become evident until during or after construction. If variations appear, we should be immediately notified so that further evaluation and supplemental recommendations can be provided.

The scope of services for this project does not include either specifically or by implication any environmental assessment of the site or identification or prevention of pollutants, hazardous materials or conditions. If the owner is concerned about the potential for such contamination or pollution, other studies should be undertaken.

This report has been prepared for the exclusive use of our client for specific application to the project discussed and has been prepared in accordance with generally accepted geotechnical engineering practices. No warranties, either express or implied, are intended or made. Site safety, excavation support, and dewatering requirements are the responsibility of others. In the event that changes in the nature, design, or location of the project as outlined in this report are planned, the conclusions and recommendations contained in this report shall not be considered valid unless Terracon reviews the changes and either verifies or modifies the conclusions of this report in writing.

APPENDIX A FIELD EXPLORATION

Project No. 04135111

Scale: SEE BAR SCALE

File No. 04135111

Date: JUNE 2014

SITE LOCATION MAP

GEOTECHNICAL EXPLORATION

8TH STREET WIDENING PROJECT
BENTONVILLE, ARKANSAS

EXHIBIT NO.

A-1

LEGEND BORING LOCATION

04135111	75
BAR SCALE	IIELL
04135111	Consulting Enginee
	9522 EAST 47TH PLACE, UNIT I
JUNE 2014	PH. (918) 250-0461

acon eers and Scientists T D TULSA, OKLAHOMA 74145 FAX. (918) 250-4570

BORING LOCATION PLAN GEOTECHNICAL EXPLORATION
8TH STREET WIDENING PROJECT BENTONVILLE, ARKANSAS

EXHIBIT NO.

DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES

PAGE 1 OF 4

LEGEND BORING LOCATION

Project Mngr:	JEG	Project No. 04135111	76
Orawn By:	JM	Scale: SEE BAR SCALE	IIE1
Checked By:	JEG	File No. 04135111	Consulting E
Approved By:	МНН	Date: JUNE 2014	9522 EAST 47TH PLAC PH. (918) 250-0461

llerracon 9522 EAST 47TH PLACE, UNIT D TULSA, OKLAHOMA 74145
PH. (918) 250-0461 FAX. (918) 250-4570

BORING LOCATION PLAN GEOTECHNICAL EXPLORATION 8TH STREET WIDENING PROJECT BENTONVILLE, ARKANSAS

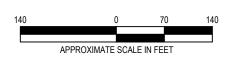

EXHIBIT NO.

DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES LEGEND

■ BORING LOCATION

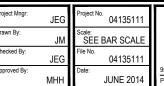
Project Mngr:	JEG	Project No. 04135111
Drawn By:	JM	Scale: SEE BAR SCALE
Checked By:	JEG	File No. 04135111
Approved By:	МНН	Date: JUNE 2014

BORING LOCATION PLAN

GEOTECHNICAL EXPLORATION

8TH STREET WIDENING PROJECT
BENTONVILLE, ARKANSAS

EXHIBIT NO.


PAGE 3 OF 4

BORING LOCATION PLAN GEOTECHNICAL EXPLORATION 8TH STREET WIDENING PROJECT BENTONVILLE, ARKANSAS

EXHIBIT NO.

Geotechnical Engineering Report

8th Street Widening Project – Proposed Pavements ■ Bentonville, Arkansas March 13, 2015 ■ Terracon Project No. 04135111

Field Exploration Description

The boring locations and elevations were established in the field by B & F Engineering, Inc. prior to commencement of our field activities. The majority of the borings located along sidewalks were offset to the road due to the presence of underground and overhead utility lines. Actual boring locations are shown on the boring location plan in Exhibit A-2 of this Appendix. Ground elevations at the boring locations and boring coordinates were estimated based on the distances measured in the field by our drill crew. Elevations shown on the logs have been rounded to the nearest 0.5 feet. The boring locations and elevations should be considered accurate only to the degree implied by the methods used to define them.

We drilled the borings with ATV-mounted rotary drill rigs using continuous flight augers and rotary cutting bits to advance the boreholes. Representative samples were obtained by the split-barrel sampling procedure. In the split-barrel sampling procedure, the number of blows required to advance a standard 2-inch O.D. split-barrel sampler the last 12 inches of the typical total 18-inch penetration by means of a 140-pound auto-hammer with a free fall of 30 inches, is the standard penetration resistance value (SPT-N). The N-value is used to estimate the in-situ relative density of cohesionless soils, and to a lesser degree of accuracy, the consistency of cohesive soils and hardness of weathered bedrock.

An automatic SPT hammer was used to advance the split-barrel sampler in the borings. Generally, a greater efficiency is achieved with the automatic hammer compared to the conventional safety hammer operated with a cathead and rope. The effect of the automatic hammer's efficiency has been considered in the interpretation and analysis of the subsurface information for this report. The sampling depths, penetration distances, and N-values are reported on the boring logs. The samples were tagged for identification, sealed to reduce moisture loss and returned to the laboratory for further examination, testing and classification. In addition to split-barrel samples, bulk samples were obtained from the subgrade soils from different locations.

We cored the existing pavement at select boring locations using a 6-inch inner diameter, diamondbit core barrel. After pavement coring, the thickness of the pavement was measured at each location and the pavement cores brought to our laboratory for observation. Photographic logs of the pavement cores are provided in this Appendix.

Dynamic Cone Penetration (DCP) tests were also performed on the subgrade soils at the majority of our boring locations, right beneath pavement and aggregate base, if any. The DCP test consists of driving a steel cone, by means of a 10.1-pound weight with a free fall of 22.5 inches, into the subgrade materials. The penetration depth and number of blows are used to calculate the DCP Penetration Index, which is in turns used to correlate the California Bearing Ratio (CBR) of the subgrade soils. Our DCP tests realized refusal at several locations due to the presence of gravel materials. Results of our DCP tests are provided in Appendix C.

Geotechnical Engineering Report

8th Street Widening Project – Proposed Pavements ■ Bentonville, Arkansas March 13, 2015 ■ Terracon Project No. 04135111

Field Exploration Description (Continued)

A field log of each boring was prepared by the drill crew along with the DCP tests. The logs included visual classifications of the materials encountered during drilling as well as the driller's interpretation of the subsurface conditions between samples. Final boring logs included with this report represent the engineer's interpretation of the subsurface conditions at the borings based on field and laboratory data and observation of the samples.

BORING LOG NO. BR-011 Page 1 of 1												
PF	ROJECT: 8th Street Widening Project - Proposed Pavements		CLIENT: Burns & McDonell Engineering Company, Inc.									
SI	TE:											
(1)	Bentonville, Arkansas LOCATION See Exhibit A-2				. ω		·			ATTERBERG	8 8	
GRAPHIC LOG	Latitude: 36.364183° Longitude: -94.210965°			[Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	LTS LTS	WATER CONTENT (%)	LIMITS	PERCENT FINES	
RAPH	, and the second	Surface F	Elev.: 1288 (Ft.)	DEPTH (Ft.)	ATER SERV	MPLE	COVE	FIELD TEST RESULTS	WAT	LL-PL-PI	SCEN	
O	DEPTH S" Apphalt		EVATION (Ft.)		8 €	SA	R	<u> </u>	ŏ		PE	
	5" Asphalt 0.5 Boring was not extended below asphalt due to the preser underground utilities	nce of	1287.5									
	Boring Terminated at 0.5 Foot											
E E												
NO WELL 04135111 - BR - 8TH STREET.GPJ												
HSTR												
3R - 81												
111 - E												
94 135												
WELL												
ON-5												
GEO SMAR I LOG-												
O SIM												
웃												
NAL R												
ORIGI												
L KOM												
AIED	Stratification lines are approximate. In-situ, the transition may be gradual.				Ham	mer -	Гуре:	Automatic				
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. Page Boring Bo	ncement Method:				Note	<u>. </u>						
→ Adva Pa	vement Core Bit procedures.	See Exhibit A-3 for description of field procedures. See Appendix B for description of laboratory			Notes	э.						
Ahan	procedures an	nd additiona	inplion of laborato al data (if any). anation of symbol:									
Su	face pavement patched upon completion.											
	WATER LEVEL OBSERVATIONS			Boring Started: 2/23/2014 Boring Completed: 2/23/2014								
ECK.	IIG		e col	\Box	Drill Rig: ATV#945				Driller: TJ			
<u> </u>	9522 East 47th Place, Unit Tulsa, Oklahoma				Project No.: 04135111				Exhibit: A-14			

GEO SMART LOG-NO WELL 04135111 - BR - 8TH STREET.GPJ

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT.

GEO SMART LOG-NO WELL 04135111 - BR - 8TH STREET.GPJ

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT.

CORE NUMBER DATE CORED	BR-001 2/22/2014		Sample <u>No</u>	Layer Type	Layer <u>Thickness (in.)</u>	Layer Characteristics*
COUNTY	BENTON					
NEAREST TOWN	BENTONVILLE, AR		1	Asphaltic Concrete	1 3/4	
CONTROL SECTION				Asphaltic Concrete	1 1/4	
ROUTE	8TH STREET			Asphaltic Concrete	2	
MILEPOST				Asphaltic Concrete	2	
LANE DIRECTION				Asphaltic Concrete	2	
CHAINAGE						
GPS	LATITUDE	LONGITUDE				
CORE DATA						
Surface Material Type:	✓ A.C. □ P.C.C.	Continuously Reinforced Concrete		Total Core Thickness	9	
Stripping or Separation in As	sphalt: Strippi	ng Separation 🗸 N/A				
Honeycomb or "D" Cracking	in PCC: Honeyo	omb				
Stabilized Subgrade Beneath	h Pavement or Sub-base?	Yes No U	nknown	* Asphalt type based on visual observation only		

CORE NUMBER DATE CORED	BR-003 2/2/2014				Sample <u>No</u>		Layer Thickness (in.)	Layer Characteristics*
COUNTY	BENTON							
NEAREST TOWN	BENTONV	ILLE, AR			1	Asphaltic Concrete	3	
CONTROL SECTION						Asphaltic Concrete	2 1/2	
ROUTE	8TH STRE	ET				Asphaltic Concrete	1 1/2	
MILEPOST						Asphaltic Concrete	4	
LANE DIRECTION								
CHAINAGE								
GPS	LATITUDE		LONGITUDE					
CORE DATA								
Surface Material Type:	A.C.	P.C.C.	Continuous	y Reinforced Con	crete	Total Core Thickness	11	•
Stripping or Separation in As	sphalt:	Stripping	■ Separation	▼ N/A				
Honeycomb or "D" Cracking	in PCC:	☐ Honeycomb	"D" Crackin	J √ N/A				
Stabilized Subgrade Beneath	n Pavement or	Sub-base?	☐ Yes	☑ No [Unknown	* Asphalt type based on visual observation only	1	

CORE NUMBER	BR-004				Sample	Li	ayer	
DATE CORED	2/1/2014				No .			Layer Characteristics*
COUNTY	BENTON							
NEAREST TOWN	BENTONV	ILLE, AR			1	Asphaltic Concrete	1 1/2	
CONTROL SECTION						Asphaltic Concrete	2	
ROUTE	8TH STRE	ET						
MILEPOST								
LANE DIRECTION								
CHAINAGE								
GPS	LATITUDE		LONGITUDE					
CORE DATA								
Surface Material Type:	A.C.	P.C.C.	Continuous	y Reinforced Cond	crete	Total Core Thickness	3 1/2	•
Stripping or Separation in As	sphalt:	Stripping	☐ Separation	▼ N/A				
Honeycomb or "D" Cracking	in PCC:	☐ Honeycomb	"D" Crackin	g ☑ N/A				
Stabilized Subgrade Beneath	n Pavement or	Sub-base?	☐ Yes	☑ No [Unknown	* Asphalt type based on visual observation only		

CORE NUMBER	BR-005				Sample	La	ayer
DATE CORED	2/2/2014				<u>No</u> .		nickness (in.) Layer Characteristics*
COUNTY	BENTON						
NEAREST TOWN	BENTON\	/ILLE, AR			1	Asphaltic Concrete	2
CONTROL SECTION						Asphaltic Concrete	3 3/5
ROUTE	8TH STRE	ET					
MILEPOST							
LANE DIRECTION							
CHAINAGE							
GPS	LATITUDE	Ī	LONGITUDE				
CORE DATA							
Surface Material Type:	A.C.	P.C.C.	Continuous	ly Reinforced Con	crete	Total Core Thickness	5 1/2
Stripping or Separation in As	sphalt:	■ Stripping	■ Separation	☑ N/A			
Honeycomb or "D" Cracking	in PCC:	☐ Honeycomb	"D" Crackin	g 🔽 N/A			
Stabilized Subgrade Beneath	n Pavement or	Sub-base?	☐ Yes	☑ No [Unknown	* Asphalt type based on visual observation only	

CORE NUMBER DATE CORED COUNTY	BR-006 2/16/2014 BENTON				Sample <u>No</u>		Layer Thickness (in.)	Layer Characteristics*
NEAREST TOWN	BENTONVI	LLE, AR			1	Asphaltic Concrete	1 3/4	
CONTROL SECTION						Asphaltic Concrete	3	
ROUTE MILEPOST LANE DIRECTION CHAINAGE	8TH STRE	ΕΤ						
GPS	LATITUDE		LONGITUDE					
CORE DATA								
Surface Material Type:	A.C.	P.C.C.	Continuous	ly Reinforced Cor	ncrete	Total Core Thickness	4 3/4	-
Stripping or Separation in As	sphalt:	■ Stripping	Separation	▼ N/A				
Honeycomb or "D" Cracking	in PCC:	☐ Honeycomb	"D" Crackin	g ☑ N/A				
Stabilized Subgrade Beneath	n Pavement or S	Sub-base?	Yes	☑ No	Unknown	* Asphalt type based on visual observation only	y	

CORE NUMBER	BR-008				Sample		Layer	Lever Characteristics*
DATE CORED COUNTY	2/16/2014 BENTON				No	Layer Type	i nickness (in.)	Layer Characteristics*
NEAREST TOWN	BENTONV	ILLE, AR			1	Asphaltic Concrete	1	
CONTROL SECTION						Asphaltic Concrete	1 1/4	
ROUTE	8TH STRE	ET				Asphaltic Concrete	1 1/4	
MILEPOST						Asphaltic Concrete	2 1/2	
LANE DIRECTION								
CHAINAGE								
GPS	LATITUDE		LONGITUDE					
CORE DATA								
Surface Material Type:	A.C.	P.C.C.	Continuous	ly Reinforced C	Concrete	Total Core Thickness	6	_
Stripping or Separation in As	phalt:	■ Stripping	■ Separation	☑ N/A				
Honeycomb or "D" Cracking i	in PCC:	☐ Honeycomb	"D" Crackin	g 🔽 N/A				
Stabilized Subgrade Beneath	Pavement or	Sub-base?	☐ Yes	☑ No	Unknown	* Asphalt type based on visual observation only	•	

BR-009

CORE NUMBER

CORE NUMBER	BR-009				Sample		Layer	
DATE CORED	2/16/2014				No .	Layer Type	Thickness (in.)	Layer Characteristics*
COUNTY	BENTON							
NEAREST TOWN	BENTON'	VILLE, AR			1	Asphaltic Concrete	1 1/4	
CONTROL SECTION						Asphaltic Concrete	1 3/4	
ROUTE	8TH STR	EET				Asphaltic Concrete	2	
MILEPOST								
LANE DIRECTION								
CHAINAGE								
GPS	LATITUDI	E	LONGITUDE					
CORE DATA								
Surface Material Type:	☑ A.C.	P.C.C.	☐ Continuous	ly Reinforced Cond	crete	Total Core Thickness	5	
Stripping or Separation in	Asphalt:	■ Stripping	Separation	✓ N/A				
Honeycomb or "D" Crackin	g in PCC:	☐ Honeycomi	D" Crackin	g 🔽 N/A				
Stabilized Subgrade Benea	ath Pavement or	r Sub-base?	Yes	✓ No	Unknown	* Asphalt type based on visual observe	ation only	

CORE NUMBER DATE CORED COUNTY	BR-010 2/22/2014 BENTON				Sample No	Layer Type	Layer Thickness (in.) Layer Characteristics*
NEAREST TOWN	BENTONV	ILLE. AR			1	Asphaltic Concrete	1 1/2
CONTROL SECTION		,				Asphaltic Concrete	3
ROUTE	8TH STRE	ET				Asphaltic Concrete	1 1/2
MILEPOST							
LANE DIRECTION							
CHAINAGE							
GPS	LATITUDE		LONGITUDE				
CORE DATA							
Surface Material Type:	✓ A.C.	P.C.C.	Continuous	ly Reinforced Co	oncrete	Total Core Thickness	6
Stripping or Separation in As	sphalt:	Stripping	☐ Separation	✓ N/A			
Honeycomb or "D" Cracking	in PCC:	☐ Honeycomb	"D" Crackir	g 🔽 N/A			
Stabilized Subgrade Beneath	h Pavement or	Sub-base?	Yes	☑ No	Unknown	* Asphalt type based on visual observation	on only

CORE NUMBER DATE CORED	BR-011 2/23/2014				Sample <u>No</u>		Layer Thickness (in.)	Layer Characteristics*
COUNTY	BENTON							
NEAREST TOWN	BENTONV	ILLE, AR			1	Asphaltic Concrete	1 1/2	
CONTROL SECTION						Asphaltic Concrete	2 1/4	
ROUTE	8TH STRE	EΤ				Asphaltic Concrete	1 1/4	
MILEPOST								ļ
LANE DIRECTION								
CHAINAGE								
GPS	LATITUDE		LONGITUDE					
CORE DATA								
Surface Material Type:	A.C.	P.C.C.	Continuous	y Reinforced Cond	crete	Total Core Thickness	5	-
Stripping or Separation in As	sphalt:	☐ Stripping	☐ Separation	✓ N/A				
Honeycomb or "D" Cracking	in PCC:	☐ Honeycomb	☐ "D" Crackin	J ☑ N/A				
Stabilized Subgrade Beneatl	n Pavement or	Sub-base?	☐ Yes	☑ No ☐	Unknown	* Asphalt type based on visual observation only	y	

CORE NUMBER	BR-014				Sample	La	ayer	
DATE CORED	2/1/2014				No .			Layer Characteristics*
COUNTY	BENTON							
NEAREST TOWN	BENTONVI	ILLE, AR			1	Asphaltic Concrete	1 1/2	
CONTROL SECTION						Asphaltic Concrete	2 1/2	
ROUTE	8TH STREE	ET				Asphaltic Concrete		
MILEPOST						Asphaltic Concrete		
LANE DIRECTION						Asphaltic Concrete		
CHAINAGE						Asphaltic Concrete		
GPS	LATITUDE		LONGITUDE					
CORE DATA								
Surface Material Type:	A.C.	P.C.C.	Continuous	y Reinforced Conc	rete	Total Core Thickness	4	
Stripping or Separation in As	phalt:	■ Stripping	☐ Separation	☑ N/A				
Honeycomb or "D" Cracking	in PCC:	☐ Honeycomb	"D" Crackin	J ✓ N/A				
Stabilized Subgrade Beneath	Pavement or S	Sub-base?	Yes	☑ No	Unknown	* Asphalt type based on visual observation only		

CORE NUMBER	BR-016				Sample	L	ayer	
DATE CORED	2/1/2014				No	Layer Type T	hickness (in.)	Layer Characteristics*
COUNTY	BENTON							
NEAREST TOWN	BENTONV	ILLE, AR			1	Asphaltic Concrete	1 1/4	
CONTROL SECTION						Asphaltic Concrete	2 1/4	
ROUTE	8TH STRE	ET				Asphaltic Concrete	3/4	
MILEPOST						Asphaltic Concrete	3/4	
LANE DIRECTION						Asphaltic Concrete	3/4	
CHAINAGE						Asphaltic Concrete	3/4	
GPS	LATITUDE		LONGITUDE					
CORE DATA								
Surface Material Type:	A.C.	P.C.C.	Continuous	y Reinforced Concr	ete	Total Core Thickness	6 1/2	-
Stripping or Separation in As	phalt:	Stripping	☐ Separation	✓ N/A				
Honeycomb or "D" Cracking	in PCC:	☐ Honeycomb	☐ "D" Crackin	J ✓ N/A				
Stabilized Subgrade Beneath	n Pavement or \$	Sub-base?	Yes	☑ No □	Unknown	* Asphalt type based on visual observation only		

CORE NUMBER	BR-019			Sample		Layer
DATE CORED	2/16/2014			No .	Layer Type	Thickness (in.) Layer Characteristics*
COUNTY	BENTON					
NEAREST TOWN	BENTON	/ILLE, AR		1	Asphaltic Concrete	1 1/2
CONTROL SECTION					Asphaltic Concrete	3 1/2
ROUTE	8TH STRE	ET				
MILEPOST						
LANE DIRECTION						
CHAINAGE						
GPS	LATITUDE		LONGITUDE			
CORE DATA						
	_	_	_		T. (10 T): 1	
Surface Material Type:	✓ A.C.	P.C.C.	Continuously Reinforced Concr	ete	Total Core Thickness	5
		- Chatanatana	☐ Separation ☑ N/A			
Stripping or Separation in As	phalt:	Stripping	☐ Separation ☑ N/A			
		- Hanasanah	D" Cracking 🗸 N/A			
Honeycomb or "D" Cracking	in PCC:	☐ Honeycomb	L S SIGSSAN V IVA			
Stabilized Subgrade Beneath	n Pavement or	Sub-base?	Yes No	Unknown	* Asphalt type based on visual observation onl	у

CORE NUMBER	BF	R-021				Sample	L	.ayer	
DATE CORED	2/	16/2014				No	Layer Type T	hickness (in.)	Layer Characteristics*
COUNTY	BE	ENTON							
NEAREST TOW	N BE	ENTONVII	LLE, AR			1	Asphaltic Concrete	1 1/2	
CONTROL SEC	TION						Asphaltic Concrete	2 1/4	
ROUTE	8T	H STREE	T				Asphaltic Concrete	1	
MILEPOST							Asphaltic Concrete	1 1/4	
LANE DIRECTIO	N						Asphaltic Concrete	1	
CHAINAGE							Asphaltic Concrete	1	
GPS	LA	TITUDE		LONGITUDE					
CORE DATA									
Surface Material Typ	e: 🔽	A.C.	P.C.C.	Continuous	y Reinforced Co	ncrete	Total Core Thickness	8	
Stripping or Separati	on in Asphal	lt:	Stripping	■ Separation	▼ N/A				
Honeycomb or "D" C	racking in P	CC:	☐ Honeycomb	☐ "D" Crackin	g ☑ N/A				
Stabilized Subgrade	Beneath Pa	vement or S	ub-base?	Yes	☑ No	Unknown	* Asphalt type based on visual observation only		

CORE NUMBER	BR-022				Sample		Layer	
DATE CORED	2/16/2014				<u>No</u>	Layer Type	Thickness (in.) Layer Characteristics*	
COUNTY	BENTON							
NEAREST TOWN	BENTON'	VILLE, AR			1	Asphaltic Concrete	1 1/4	
CONTROL SECTION						Asphaltic Concrete	3	
ROUTE	8TH STR	EET				Asphaltic Concrete	3/4	
MILEPOST						Asphaltic Concrete		
LANE DIRECTION						Asphaltic Concrete		
CHAINAGE						Asphaltic Concrete		
GPS	LATITUD	E	LONGITUDE					
CORE DATA								
Surface Material Type:	✓ A.C.	P.C.C.	Continuous	ly Reinforced	Concrete	Total Core Thickness	5	
Stripping or Separation in A	Asphalt:	■ Stripping	■ Separation	☑ N/A				
Honeycomb or "D" Cracking	g in PCC:	☐ Honeycom	nb 🔲 "D" Crackin	g 🔽 N/A				
Stabilized Subgrade Benea	ath Pavement o	r Sub-base?	☐ Yes	☑ No	Unknown	* Asphalt type based on visual of	bservation only	

CORE NUIVIDER	DK-023				Sample		.ayer	
DATE CORED	2/16/2014				No	Layer Type T	hickness (in.)	Layer Characteristics*
COUNTY	BENTON							
NEAREST TOWN	BENTONV	ILLE, AR			1	Asphaltic Concrete	4 1/2	
CONTROL SECTION								
ROUTE	8TH STRE	ET						
MILEPOST								
LANE DIRECTION								
CHAINAGE								
GPS	LATITUDE		LONGITUDE					
CORE DATA								
Surface Material Type:	✓ A.C.	P.C.C.	Continuous	y Reinforced Concrete	9	Total Core Thickness	4 1/2	_
Stripping or Separation in As	sphalt:	Stripping	Separation	✓ N/A				
Honeycomb or "D" Cracking	in PCC:	Honeycomb	"D" Crackin	J N/A				
Stabilized Subgrade Beneath	n Pavement or	Sub-base?	Yes	✓ No	Unknown	* Asphalt type based on visual observation only		
			_			•		

CORE NUMBER	BR-023				Sample		Layer	
DATE CORED	2/16/2014				No .			Layer Characteristics*
COUNTY	BENTON							
NEAREST TOWN	BENTONVI	ILLE, AR			2	Portland Concrete Cement	7 1/4	
CONTROL SECTION								
ROUTE	8TH STREE	ET						
MILEPOST								
LANE DIRECTION								
CHAINAGE								
GPS	LATITUDE		LONGITUDE					
CORE DATA								
Surface Material Type:	☐ A.C.	P.C.C.	Continuous	y Reinforced Concre	te	Total Core Thickness	7 1/4	-
Stripping or Separation in As	sphalt:	■ Stripping	☐ Separation	▼ N/A				
Honeycomb or "D" Cracking	in PCC:	☐ Honeycomb	☐ "D" Crackin	J ✓ N/A				
Stabilized Subgrade Beneath	n Pavement or S	Sub-base?	☐ Yes	☑ No □	Unknown	* Asphalt type based on visual observation only	у	

BR-024

CORE NUMBER

CORE NUMBER	BR-024				Sample		Layer	
DATE CORED	2/1/2014				No .	Layer Type	Thickness (in.)	Layer Characteristics*
COUNTY	BENTON							
NEAREST TOWN	BENTONV	ILLE, AR			1	Asphaltic Concrete	1 1/2	
CONTROL SECTION						Asphaltic Concrete	1 1/2	
ROUTE	8TH STRE	ET				Asphaltic Concrete	3 1/4	
MILEPOST								
LANE DIRECTION								
CHAINAGE								
GPS	LATITUDE		LONGITUDE					
CORE DATA								
								_
Surface Material Type:	✓ A.C.	P.C.C.	Continuous	y Reinforced Concre	ete	Total Core Thickness	6 1/4	
			_					
Stripping or Separation in A	sphalt:	Stripping	■ Separation	✓ N/A				
			_	_				
Honeycomb or "D" Cracking	in PCC:	☐ Honeycomb	☐ "D" Cracking	N/A				
			_					
Stabilized Subgrade Beneat	h Pavement or	Sub-base?	Yes	☑ No □	Unknown	* Asphalt type based on visual observation only	/	

CORE NUMBER DATE CORED	BR-025 2/16/2014				Sample <u>No</u>	_Layer Type	Layer Thickness (in.)	Layer Characteristics*
COUNTY	BENTON				4	Application Congress	1 1/2	
NEAREST TOWN	BENTONV	ILLE, AR			ı	Asphaltic Concrete		
CONTROL SECTION						Asphaltic Concrete	2	
ROUTE	8TH STRE	ET				Asphaltic Concrete	3	
MILEPOST								
LANE DIRECTION								
CHAINAGE								
GPS	LATITUDE		LONGITUDE					
CORE DATA								
Surface Material Type:	A.C.	P.C.C.	Continuous	y Reinforced Conc	rete	Total Core Thickness	6 1/2	-
Stripping or Separation in As	sphalt:	Stripping	■ Separation	☑ N/A				
Honeycomb or "D" Cracking	in PCC:	Honeycomb	☐ "D" Crackin	J N/A				
Stabilized Subgrade Beneath	h Pavement or	Sub-base?	☐ Yes	☑ No	Unknown	* Asphalt type based on visual observation onl	у	

CORE NUMBER DATE CORED	BR-026 2/16/2014				Sample No	Layer Type	Layer Thickness (in.)	Layer Characteristics*
COUNTY	BENTON					A 1 11: 0	4.46	
NEAREST TOWN	BENTONV	ILLE, AR			1	Asphaltic Concrete	1 1/2	
CONTROL SECTION						Asphaltic Concrete	6	
ROUTE	8TH STRE	ET						
MILEPOST								
LANE DIRECTION								
CHAINAGE								
GPS	LATITUDE		LONGITUDE					
CORE DATA								
Surface Material Type:	✓ A.C.	P.C.C.	Continuous	y Reinforced Concr	rete	Total Core Thickness	7 1/2	-
Stripping or Separation in As	phalt:	■ Stripping	■ Separation	✓ N/A				
Honeycomb or "D" Cracking	in PCC:	☐ Honeycomb	"D" Crackin	J ☑ N/A				
Stabilized Subgrade Beneatl	n Pavement or S	Sub-base?	☐ Yes	☑ No □	Unknown	* Asphalt type based on visual observation onl	у	

CORE NUMBER	BR-027				Sample	L	_ayer
DATE CORED	2/16/2014				No .		Thickness (in.) Layer Characteristics*
COUNTY	BENTON						
NEAREST TOWN	BENTON	/ILLE, AR			1	Asphaltic Concrete	1 1/2
CONTROL SECTION						Asphaltic Concrete	3 1/2
ROUTE	8TH STRE	ET					
MILEPOST							
LANE DIRECTION							
CHAINAGE							
GPS	LATITUDE	Ī	LONGITUDE				
CORE DATA							
			_				
Surface Material Type:	✓ A.C.	P.C.C.	Continuous	ly Reinforced Concret	te	Total Core Thickness	5
		_	-	_			
Stripping or Separation in As	sphalt:	Stripping	■ Separation	☑ N/A			
		_					
Honeycomb or "D" Cracking	in PCC:	☐ Honeycomb	"D" Crackin	g⊌ N/A			
Ctabilized Culturada Dancet	h Da	Cut hass?	_			* A ambalt type based on visual absentation only	
Stabilized Subgrade Beneat	n Pavement or	Sub-base?	Yes	☑ No □	Unknown	* Asphalt type based on visual observation only	

DATE CORED 2/22/2014 No Layer Type Thickness (in.) Layer Characteristics COUNTY BENTON NEAREST TOWN BENTONVILLE, AR 1 Asphaltic Concrete 1 3/4 CONTROL SECTION Asphaltic Concrete 1 3/4
NEAREST TOWN BENTONVILLE, AR 1 Asphaltic Concrete 1 3/4
NEARLEST TOWN BENTONNIELE, AND
CONTROL SECTION Asphaltic Concrete 1 3/4
ROUTE 8TH STREET
MILEPOST
LANE DIRECTION
CHAINAGE
GPS LATITUDE LONGITUDE
CORE DATA
Surface Material Type:
Stripping or Separation in Asphalt: Stripping Stripping N/A
Honeycomb or "D" Cracking in PCC: Honeycomb "D" Cracking N/A

CORE NUMBER	BR-030				Sample	i	Layer	
DATE CORED	2/22/2014				No .			Layer Characteristics*
COUNTY	BENTON							
NEAREST TOWN	BENTONV	/ILLE, AR			1	Asphaltic Concrete	3/4	
CONTROL SECTION						Asphaltic Concrete	1 3/4	
ROUTE	8TH STRE	ET						
MILEPOST								
LANE DIRECTION								
CHAINAGE								
GPS	LATITUDE	1	LONGITUDE					
0005.0474								
CORE DATA								
Surface Material Type:	A.C.	P.C.C.	Continuous	ly Reinforced Concre	te	Total Core Thickness	2 1/2	-
Stripping or Separation in As	phalt:	■ Stripping	☐ Separation	☑ N/A				
Honeycomb or "D" Cracking	in PCC:	☐ Honeycomb	"D" Crackin	g ☑ N/A				
Stabilized Subgrade Beneath	Pavement or	Sub-base?	Yes	☑ No □	Unknown	* Asphalt type based on visual observation only		

BR-031

CORE NUMBER

CORE NUMBER	BR-031				Sample		Layer	
DATE CORED	2/22/2014				No .	Layer Type	Thickness (in.)	Layer Characteristics*
COUNTY	BENTON							
NEAREST TOWN	BENTONV	ILLE, AR			1	Asphaltic Concrete	1 1/4	
CONTROL SECTION						Asphaltic Concrete	2 1/4	
ROUTE	8TH STRE	ET						
MILEPOST								
LANE DIRECTION								
CHAINAGE								
GPS	LATITUDE		LONGITUDE					
CORE DATA								
		_	-			Total Core Thickness	3 1/2	_
Surface Material Type:	✓ A.C.	P.C.C.	Continuousi	y Reinforced Concrete		Total Core Trickness	3 1/2	
Stripping or Separation in As	sphalt:	■ Stripping	■ Separation	☑ N/A				
Honeycomb or "D" Cracking	in PCC:	☐ Honeycomb	"D" Cracking	J ☑ N/A				
Stabilized Subgrade Beneath	n Pavement or \$	Sub-base?	☐ Yes	☑ No □ U	Inknown	* Asphalt type based on visual observation onl	у	

CORE NUMBER	BR-032				Sample	l	.ayer	
DATE CORED	2/1/2014				No	Layer Type	hickness (in.)	Layer Characteristics*
COUNTY	BENTON							
NEAREST TOWN	BENTONV	ILLE, AR			1	Asphaltic Concrete	1 1/4	
CONTROL SECTION						Asphaltic Concrete	1 1/4	
ROUTE	8TH STRE	ET				Asphaltic Concrete	1	
MILEPOST								
LANE DIRECTION								
CHAINAGE								
GPS	LATITUDE		LONGITUDE					
CORE DATA								
Surface Material Type:	A.C.	P.C.C.	☐ Continuous	y Reinforced Co	oncrete	Total Core Thickness	3 1/2	_
Stripping or Separation in As	phalt:	■ Stripping	Separation	□ N/A				
Honeycomb or "D" Cracking i	n PCC:	☐ Honeycomb	☐ "D" Crackin	g ☑ N/A				
Stabilized Subgrade Beneath	Pavement or \$	Sub-base?	☐ Yes	☑ No	Unknown	* Asphalt type based on visual observation only		

CORE NUMBER DATE CORED	BR-033 2/22/2014				Sample No		Layer Thickness (in.)	Layer Characteristics*
COUNTY	BENTON							
NEAREST TOWN	BENTONV	ILLE, AR			1	Asphaltic Concrete	1 1/2	
CONTROL SECTION						Asphaltic Concrete	1 1/2	
ROUTE	8TH STRE	ET				Asphaltic Concrete	1	
MILEPOST								
LANE DIRECTION								
CHAINAGE								
GPS	LATITUDE		LONGITUDE					
CORE DATA								
Surface Material Type:	A.C.	P.C.C.	☐ Continuous	y Reinforced Conc	rete	Total Core Thickness	4	-
Stripping or Separation in As	phalt:	Stripping	■ Separation	▼ N/A				
Honeycomb or "D" Cracking	in PCC:	☐ Honeycomb	☐ "D" Crackin	g ☑ N/A				
Stabilized Subgrade Beneath	n Pavement or	Sub-base?	☐ Yes	☑ No ☐	Unknown	* Asphalt type based on visual observation only	y	

CORE NUMBER DATE CORED	BR-034 2/1/2014				Sample <u>No</u>		ayer hickness (in.)	Layer Characteristics*
COUNTY	BENTON					-	_	
NEAREST TOWN	BENTONV	ILLE, AR			1	Asphaltic Concrete	1 1/2	
CONTROL SECTION						Asphaltic Concrete	1	
ROUTE	8TH STRE	ET				Asphaltic Concrete	1	
MILEPOST						Asphaltic Concrete	1 1/2	
LANE DIRECTION								
CHAINAGE								
GPS	LATITUDE		LONGITUDE					
CORE DATA								
Surface Material Type:	A.C.	P.C.C.	Continuous	ly Reinforced Co	oncrete	Total Core Thickness	5	-
Stripping or Separation in As	sphalt:	☐ Stripping	■ Separation	☑ N/A				
Honeycomb or "D" Cracking	in PCC:	☐ Honeycomb	"D" Crackin	g ☑ N/A				
Stabilized Subgrade Beneath	n Pavement or	Sub-base?	☐ Yes	☑ No	Unknown	* Asphalt type based on visual observation only		

CORE NUMBER DATE CORED	BR-035 2/22/2014				Sample <u>No</u>		Layer Thickness (in.)	Layer Characteristics*
COUNTY	BENTON							
NEAREST TOWN	BENTONV	ILLE, AR			1	Asphaltic Concrete	1 1/4	
CONTROL SECTION						Asphaltic Concrete	1 1/2	
ROUTE	8TH STRE	ET				Asphaltic Concrete	3/4	
MILEPOST								
LANE DIRECTION								
CHAINAGE								
GPS	LATITUDE		LONGITUDE					
CORE DATA								
Surface Material Type:	A.C.	P.C.C.	Continuous	y Reinforced Cond	crete	Total Core Thickness	3 1/2	-
Stripping or Separation in As	sphalt:	Stripping	■ Separation	▼ N/A				
Honeycomb or "D" Cracking	in PCC:	☐ Honeycomb	"D" Crackin	g ☑ N/A				
Stabilized Subgrade Beneath	n Pavement or	Sub-base?	☐ Yes	☑ No [Unknown	* Asphalt type based on visual observation only	y	

CORE NUMBER	BR-036			Sample		Layer	
DATE CORED	2/1/2014			No	Layer Type	Thickness (in.)	Layer Characteristics*
COUNTY	BENTON						
NEAREST TOWN	BENTONV	ILLE, AR		1	Asphaltic Concrete	1 1/2	
CONTROL SECTION					Asphaltic Concrete	1 1/4	
ROUTE	8TH STRE	ET			Asphaltic Concrete	1 1/2	
MILEPOST							
LANE DIRECTION							
CHAINAGE							
GPS	LATITUDE		LONGITUDE				
CORE DATA							
Surface Material Type:	A.C.	P.C.C.	Continuously Reinforced Concrete		Total Core Thickness	4 1/4	-
Stripping or Separation in As	sphalt:	■ Stripping	✓ Separation				
Honeycomb or "D" Cracking	in PCC:	☐ Honeycomb	D" Cracking N/A				
Stabilized Subgrade Beneath	h Payament or	Cub boso?	Yes No U	nknown	* Asphalt type based on visual observation only	•	

Approximate boring coordinates and elevations

Revolt		Approximate	Approximate Coordinates								
BR-001 1279 36.36433391 -94.22157012 746680 658258 BR-002 1285 36.36439033 -94.2203197 746692 658627 BR-003 1287.5 36.36436747 -94.2192277 746677 658949 BR-004 1288.5 36.364364448 -94.21826447 746662 659232 BR-005 1290 36.36426007 -94.21713939 746624 659562 BR-007 1287.5 36.36415162 -94.21534115 746572 660090 BR-008 1286 36.36418162 -94.21325161 746570 660705 BR-010 1285.5 36.36418129 -94.21325161 746570 660705 BR-011 1288 36.364183 -94.210965 746557 661020 BR-011 1288 36.36427081 -94.2104741 746583 661524 BR-012 1289.5 36.36427081 -94.20788526 746552 662285 BR-014 1291 36.36434465 -94.20788526 746512 <t< th=""><th>Boring</th><th></th><th></th><th>1</th><th colspan="3"></th></t<>	Boring			1							
BR-002 1285 36.36439033 -94.2203197 746692 658627 BR-003 1287.5 36.36436747 -94.2192277 746677 658949 BR-004 1288.5 36.36434448 -94.2192277 746677 658949 BR-005 1290 36.36426007 -94.21713393 746624 659562 BR-006 1290 36.36424306 -94.21633313 746614 659711 BR-007 1287.5 36.36415162 -94.21534115 746572 660090 BR-008 1286 36.36421341 -94.21428342 746588 660402 BR-091 1285.5 36.36418129 -94.21217996 746570 661020 BR-011 1288 36.36418129 -94.2104741 746553 661020 BR-012 1298.5 36.36427081 -94.2104741 746527 661020 BR-013 1291 36.36427081 -94.2098613 746527 661220 BR-014 1291 36.36423465 -94.20574375 746552 <t< th=""><th>DD 001</th><th></th><th></th><th></th><th></th><th>-</th></t<>	DD 001					-					
BR-003 1287.5 36.36436747 -94.2192277 746677 658949 BR-004 1288.5 36.36434448 -94.21826447 746662 659232 BR-005 1290 36.36426007 -94.21733939 746624 659562 BR-006 1290 36.36426007 -94.21663313 746614 659711 BR-007 1287.5 36.36415162 -94.21534115 746572 660090 BR-008 1286 36.36418149 -94.21325161 746570 660705 BR-009 1285.5 36.36418183 -94.21047996 746557 661020 BR-011 1288 36.364183 -94.2104741 746583 661524 BR-012 1289.5 36.36415788 -94.20788526 746557 661320 BR-013 1291 36.36415788 -94.20788526 746531 661928 BR-014 1291 36.36423202 -94.20662564 746512 662656 BR-015 1293.5 36.36414265 -94.20357457 746579											
BR-004 1288.5 36.36434448 -94.21826447 746662 659232 BR-005 1290 36.36426007 -94.21713939 746624 659562 BR-006 1290 36.36424306 -94.2163313 746614 659711 BR-007 1287.5 36.36415162 -94.21534115 746572 660090 BR-008 1286 36.36418129 -94.21428342 746588 660402 BR-009 1285.5 36.36418129 -94.212325161 746570 660705 BR-010 1286.5 36.364183 -94.210965 746557 661020 BR-011 1288 36.36427081 -94.210965 746557 661020 BR-012 1299.5 36.36427081 -94.2047841 746583 661524 BR-013 1291 36.3642378 -94.2086613 746531 661928 BR-014 1291 36.36423202 -94.20788526 746522 662285 BR-015 1293.5 36.3642379 -94.20357457 746579											
BR-005 1290 36.36426007 -94.21713939 746624 659562 BR-006 1290 36.36424306 -94.21663313 746614 659711 BR-007 1287.5 36.36415162 -94.21534115 746572 660090 BR-008 1286 36.36421341 -94.21428342 746588 660402 BR-001 1286.5 36.36418129 -94.21325161 746570 660705 BR-010 1286.5 36.364183 -94.2104765 746557 661020 BR-011 1288 36.364183 -94.2104741 746583 661524 BR-012 1289.5 36.36427081 -94.2104741 746583 661524 BR-013 1291 36.36423202 -94.20662564 746552 662285 BR-014 1291 36.36423202 -94.20662564 746512 662656 BR-015 1293.5 36.3642379 -94.2043806 746531 66397 BR-018 1300.5 36.3639424 -94.1974375 74657 663						+					
BR-006 1290 36.36424306 -94.21663313 746614 659711 BR-007 1287.5 36.36415162 -94.21534115 746572 660090 BR-008 1286 36.36415162 -94.21325161 746588 660402 BR-009 1285.5 36.36418129 -94.21217996 746557 661020 BR-010 1286.5 36.36416649 -94.21217996 746557 661020 BR-011 1288 36.364183 -94.210965 746527 661380 BR-012 1289.5 36.36427081 -94.2104741 746583 661524 BR-013 1291 36.36427081 -94.2088613 746531 661998 BR-014 1291 36.36423022 -94.20788526 746552 662285 BR-015 1293.5 36.36423792 -94.20788526 746512 662656 BR-016 1298 36.3642379 -94.2043806 746531 663318 BR-018 1300.5 36.36428472 -94.20327869 746539 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
BR-007 1287.5 36.36415162 -94.21534115 746572 660090 BR-008 1286 36.36421341 -94.21428342 746588 660402 BR-009 1285.5 36.36418129 -94.21325161 746570 660705 BR-010 1286.5 36.36416649 -94.2107995 746557 661020 BR-011 1288 36.36427081 -94.2104741 746583 661524 BR-012 1289.5 36.36427081 -94.2104741 746583 661524 BR-013 1291 36.36415788 -94.2088613 746531 661998 BR-014 1291 36.36423020 -94.20862564 746512 662285 BR-015 1293.5 36.36414265 -94.2062564 746512 662285 BR-016 1298 36.3642379 -94.2043806 746531 663318 BR-017 1301.5 36.36428172 -94.2043806 74653 663642 BR-018 1300.5 36.36399523 -94.20215958 746444 <					-						
BR-008 1286 36.36421341 -94.21428342 746588 660402 BR-009 1285.5 36.36418129 -94.21325161 746570 660705 BR-010 1286.5 36.36416649 -94.21217996 746557 661020 BR-011 1288 36.364183 -94.210965 746527 661380 BR-012 1289.5 36.36418788 -94.2104741 746583 661524 BR-013 1291 36.36415788 -94.2086613 746531 661998 BR-014 1291 36.36442202 -94.20788526 746552 662285 BR-015 1293.5 36.36414265 -94.20662564 746572 662285 BR-016 1298 36.36434465 -94.20574375 746579 662917 BR-017 1301.5 36.36428172 -94.20327869 746531 663318 BR-018 1300.5 36.3649477 -94.20215958 746454 663971 BR-020 1291.5 36.36399523 -94.200852 746420 <											
BR-009 1285.5 36.36418129 -94.21325161 746570 660705 BR-010 1286.5 36.36416649 -94.21217996 746557 661020 BR-011 1288 36.364183 -94.210965 746527 661380 BR-012 1289.5 36.36427081 -94.2104741 746583 661524 BR-013 1291 36.36423202 -94.2088613 746552 662285 BR-014 1291 36.36423202 -94.20788526 746552 662285 BR-015 1293.5 36.36414265 -94.20662564 746512 662656 BR-016 1298 36.3642379 -94.20327869 746579 662917 BR-017 1301.5 36.36428172 -94.20327869 746539 663642 BR-018 1300.5 36.364928172 -94.20215958 746454 663971 BR-020 1291.5 36.36399523 -94.2015958 746440 664354 BR-021 1290 36.36399324 -94.19973959 746411											
BR-010 1286.5 36.36416649 -94.21217996 746557 661020 BR-011 1288 36.364183 -94.210965 746527 661380 BR-012 1289.5 36.36427081 -94.2104741 746583 661524 BR-013 1291 36.36415788 -94.2088613 746531 661998 BR-014 1291 36.36423202 -94.20788526 746552 662285 BR-015 1293.5 36.36414265 -94.20662564 746572 662266 BR-016 1298 36.36434465 -94.20574375 746579 662917 BR-017 1301.5 36.364228172 -94.20327869 746539 663642 BR-018 1300.5 36.36428172 -94.20327869 746539 663642 BR-019 1295.5 36.36399523 -94.20215958 746454 663971 BR-020 1291.5 36.36399324 -94.19973959 746411 664683 BR-021 1304 36.3639931 -94.19873959 746403											
BR-011 1288 36.364183 -94.210965 746527 661380 BR-012 1289.5 36.36427081 -94.2104741 746583 661524 BR-013 1291 36.36415788 -94.2088613 746531 661998 BR-014 1291 36.36423202 -94.20788526 746552 662285 BR-015 1293.5 36.36414265 -94.20662564 746512 662656 BR-016 1298 36.36434465 -94.20574375 746579 662917 BR-017 1301.5 36.3642379 -94.2043806 746531 663318 BR-018 1300.5 36.36428172 -94.20215958 746454 663971 BR-021 1291.5 36.36399523 -94.20015958 746454 663971 BR-021 1290 36.36399324 -94.19973959 746411 664683 BR-022 1292.5 36.36399331 -94.19873959 746411 664683 BR-023 1304 36.36395351 -94.1980899 746371 <td< td=""><td></td><td>1285.5</td><td>36.36418129</td><td>-94.21325161</td><td>746570</td><td>660705</td></td<>		1285.5	36.36418129	-94.21325161	746570	660705					
BR-012 1289.5 36.36427081 -94.2104741 746583 661524 BR-013 1291 36.36415788 -94.2088613 746531 661998 BR-014 1291 36.36423202 -94.20788526 746552 662285 BR-015 1293.5 36.36414265 -94.20662564 746512 662656 BR-016 1298 36.36434465 -94.20574375 746579 662917 BR-017 1301.5 36.3642379 -94.2043806 746531 663318 BR-018 1300.5 36.36428172 -94.20327869 746539 663642 BR-019 1295.5 36.36406477 -94.20215958 746454 663971 BR-020 1291.5 36.36399523 -94.200852 746420 664354 BR-021 1290 36.3639934 -94.19859746 746403 665019 BR-022 1292.5 36.3639932 -94.19727447 746373 665407 BR-023 1314.5 36.3639436 -94.19727447 746373	BR-010	1286.5	36.36416649	-94.21217996	746557	661020					
BR-013 1291 36.36415788 -94.2088613 746531 661998 BR-014 1291 36.36423202 -94.20788526 746552 662285 BR-015 1293.5 36.36414265 -94.20662564 746512 662656 BR-016 1298 36.36434465 -94.20574375 746579 662917 BR-017 1301.5 36.3642379 -94.2043806 746531 663318 BR-018 1300.5 36.36428172 -94.20327869 746539 663642 BR-019 1295.5 36.36406477 -94.20215958 746454 663971 BR-020 1291.5 36.36399523 -94.200852 746420 664354 BR-021 1290 36.36399264 -94.19973959 746411 664683 BR-022 1292.5 36.36399321 -94.19859746 746403 665019 BR-023 1304 36.36398537 -94.19608908 746373 665407 BR-024 1309 36.36396537 -94.1950879 746371	BR-011	1288	36.364183	-94.210965	746527	661380					
BR-014 1291 36.36423202 -94.20788526 746552 662285 BR-015 1293.5 36.36414265 -94.20662564 746512 662656 BR-016 1298 36.36434465 -94.20574375 746579 662917 BR-017 1301.5 36.3642379 -94.2043806 746531 663318 BR-018 1300.5 36.36428172 -94.20327869 746539 663642 BR-019 1295.5 36.36406477 -94.20215958 746454 663971 BR-020 1291.5 36.36399523 -94.200852 746420 664354 BR-021 1290 36.36399523 -94.200852 746411 664683 BR-021 1290 36.36399264 -94.19973959 746411 664683 BR-022 1292.5 36.36399031 -94.19859746 746403 665019 BR-023 1304 36.36398608 -94.19727447 746373 665407 BR-024 1309 36.36394386 -94.1950879 746371 <	BR-012	1289.5	36.36427081	-94.2104741	746583	661524					
BR-015 1293.5 36.36414265 -94.20662564 746512 662656 BR-016 1298 36.36434465 -94.20574375 746579 662917 BR-017 1301.5 36.3642379 -94.2043806 746531 663318 BR-018 1300.5 36.36428172 -94.20327869 746539 663642 BR-019 1295.5 36.36406477 -94.20215958 746454 663971 BR-020 1291.5 36.36399523 -94.200852 746420 664354 BR-021 1290 36.36399264 -94.19973959 746411 664683 BR-022 1292.5 36.36399031 -94.19859746 746403 665019 BR-023 1304 36.3639326 -94.19727447 746373 665407 BR-024 1309 36.36398608 -94.1950879 746371 666052 BR-025 1314.5 36.36394386 -94.19419173 746371 666052 BR-026 1318.5 36.36392428 -94.1930245 746342	BR-013	1291	36.36415788	-94.2088613	746531	661998					
BR-016 1298 36.36434465 -94.20574375 746579 662917 BR-017 1301.5 36.3642379 -94.2043806 746531 663318 BR-018 1300.5 36.36428172 -94.20327869 746539 663642 BR-019 1295.5 36.36399523 -94.200852 746420 664354 BR-020 1291.5 36.36399264 -94.19973959 746411 664683 BR-021 1290 36.36399031 -94.19973959 746411 664683 BR-022 1292.5 36.36399031 -94.19859746 746403 665019 BR-023 1304 36.36398608 -94.19727447 746373 665407 BR-024 1309 36.36398608 -94.19608908 746375 6665407 BR-025 1314.5 36.36394386 -94.1950879 746371 666052 BR-026 1318.5 36.36394386 -94.19419173 746357 666315 BR-027 1320.5 36.36392428 -94.19108345 746297	BR-014	1291	36.36423202	-94.20788526	746552	662285					
BR-017 1301.5 36.3642379 -94.2043806 746531 663318 BR-018 1300.5 36.36428172 -94.20327869 746539 663642 BR-019 1295.5 36.36406477 -94.20215958 746454 663971 BR-020 1291.5 36.36399231 -94.200852 746420 664354 BR-021 1290 36.36399264 -94.19973959 746411 664683 BR-022 1292.5 36.36399031 -94.19859746 746403 665019 BR-023 1304 36.36398608 -94.19727447 746373 665407 BR-024 1309 36.36398608 -94.19608908 746385 665757 BR-025 1314.5 36.36394386 -94.1940879 746371 666052 BR-026 1318.5 36.36394386 -94.19419173 746357 666315 BR-027 1320.5 36.3639932 -94.19214895 746364 666917 BR-028 1317.5 36.36383552 -94.19108345 746297	BR-015	1293.5	36.36414265	-94.20662564	746512	662656					
BR-018 1300.5 36.36428172 -94.20327869 746539 663642 BR-019 1295.5 36.36406477 -94.20215958 746454 663971 BR-020 1291.5 36.36399523 -94.200852 746420 664354 BR-021 1290 36.36399264 -94.19973959 746411 664683 BR-022 1292.5 36.36399031 -94.19859746 746403 665019 BR-023 1304 36.3639326 -94.19727447 746373 665407 BR-024 1309 36.36398608 -94.19608908 746385 665757 BR-025 1314.5 36.36394386 -94.19419173 746371 666052 BR-026 1318.5 36.36394386 -94.19419173 746357 666315 BR-027 1320.5 36.3639932 -94.19103245 746342 666659 BR-028 1317.5 36.36393428 -94.19214895 746364 666917 BR-030 1314.5 36.36383552 -94.19108345 746296	BR-016	1298	36.36434465	-94.20574375	746579	662917					
BR-019 1295.5 36.36406477 -94.20215958 746454 663971 BR-020 1291.5 36.36399523 -94.200852 746420 664354 BR-021 1290 36.36399264 -94.19973959 746411 664683 BR-022 1292.5 36.36399031 -94.19859746 746403 665019 BR-023 1304 36.3639326 -94.19727447 746373 665407 BR-024 1309 36.36398608 -94.19608908 746385 665757 BR-025 1314.5 36.36394386 -94.19419173 746371 666052 BR-026 1318.5 36.36394386 -94.19419173 746357 666315 BR-027 1320.5 36.3639932 -94.1930245 746342 666659 BR-028 1317.5 36.3639932 -94.19108345 746297 667229 BR-030 1314.5 36.36383552 -94.19108345 746297 667229 BR-031 1313 36.3638607 -94.18900365 746277	BR-017	1301.5	36.3642379	-94.2043806	746531	663318					
BR-020 1291.5 36.36399523 -94.200852 746420 664354 BR-021 1290 36.36399264 -94.19973959 746411 664683 BR-022 1292.5 36.36399031 -94.19859746 746403 665019 BR-023 1304 36.3639326 -94.19727447 746373 665407 BR-024 1309 36.36398608 -94.19608908 746385 665757 BR-025 1314.5 36.36396537 -94.1950879 746371 666052 BR-026 1318.5 36.36394386 -94.19419173 746357 666315 BR-027 1320.5 36.36392428 -94.1930245 746342 666659 BR-028 1317.5 36.36389932 -94.19214895 746364 666917 BR-029 1315 36.36383552 -94.19108345 746297 667229 BR-031 1313 36.3638189 -94.18900365 746277 667842 BR-032 1310 36.36376817 -94.18791965 746266	BR-018	1300.5	36.36428172	-94.20327869	746539	663642					
BR-021 1290 36.36399264 -94.19973959 746411 664683 BR-022 1292.5 36.36399031 -94.19859746 746403 665019 BR-023 1304 36.3639326 -94.19727447 746373 665407 BR-024 1309 36.36398608 -94.19608908 746385 665757 BR-025 1314.5 36.36396537 -94.1950879 746371 666052 BR-026 1318.5 36.36394386 -94.19419173 746357 666315 BR-027 1320.5 36.36392428 -94.1930245 746342 666659 BR-028 1317.5 36.36389932 -94.19214895 746344 666917 BR-029 1315 36.3638552 -94.19000222 746296 667548 BR-031 1313 36.3638189 -94.18900365 746277 667842 BR-032 1310 36.36376817 -94.18705516 746266 668161 BR-033 1308 36.3637285 -94.1849849 746220 <td< td=""><td>BR-019</td><td>1295.5</td><td>36.36406477</td><td>-94.20215958</td><td>746454</td><td>663971</td></td<>	BR-019	1295.5	36.36406477	-94.20215958	746454	663971					
BR-022 1292.5 36.36399031 -94.19859746 746403 665019 BR-023 1304 36.3639326 -94.19727447 746373 665407 BR-024 1309 36.36398608 -94.19608908 746385 665757 BR-025 1314.5 36.36396537 -94.1950879 746371 666052 BR-026 1318.5 36.36394386 -94.19419173 746357 666315 BR-027 1320.5 36.36392428 -94.1930245 746342 666659 BR-028 1317.5 36.36399932 -94.19214895 746364 666917 BR-029 1315 36.36383552 -94.19108345 746297 667229 BR-030 1314.5 36.36388149 -94.18900365 746277 667842 BR-031 1313 36.36380607 -94.18791965 746266 668161 BR-032 1310 36.36376817 -94.18795516 746246 668415 BR-034 1311 36.36372987 -94.1849849 746220	BR-020	1291.5	36.36399523	-94.200852	746420	664354					
BR-023 1304 36.3639326 -94.19727447 746373 665407 BR-024 1309 36.36398608 -94.19608908 746385 665757 BR-025 1314.5 36.36396537 -94.1950879 746371 666052 BR-026 1318.5 36.36394386 -94.19419173 746357 666315 BR-027 1320.5 36.36392428 -94.1930245 746342 666659 BR-028 1317.5 36.36399932 -94.19214895 746364 666917 BR-029 1315 36.36383552 -94.19108345 746297 667229 BR-030 1314.5 36.36385149 -94.19000222 746296 667548 BR-031 1313 36.36388189 -94.18791965 746266 668161 BR-032 1310 36.36376817 -94.18705516 746246 668415 BR-033 1308 36.36376052 -94.18589578 746236 668756 BR-035 1316 36.36372987 -94.18399196 746212	BR-021	1290	36.36399264	-94.19973959	746411	664683					
BR-024 1309 36.36398608 -94.19608908 746385 665757 BR-025 1314.5 36.36396537 -94.1950879 746371 666052 BR-026 1318.5 36.36394386 -94.19419173 746357 666315 BR-027 1320.5 36.36392428 -94.1930245 746342 666659 BR-028 1317.5 36.36389932 -94.19214895 746364 666917 BR-029 1315 36.36383552 -94.19108345 746297 667229 BR-030 1314.5 36.36385149 -94.19000222 746296 667548 BR-031 1313 36.3638189 -94.18900365 746277 667842 BR-032 1310 36.36376817 -94.18791965 746266 668161 BR-033 1308 36.36376052 -94.1859578 746236 668756 BR-034 1311 36.36372987 -94.18399196 746220 669023 BR-036 1319 36.36372887 -94.18299681 746212	BR-022	1292.5	36.36399031	-94.19859746	746403	665019					
BR-025 1314.5 36.36396537 -94.1950879 746371 666052 BR-026 1318.5 36.36394386 -94.19419173 746357 666315 BR-027 1320.5 36.36392428 -94.1930245 746342 666659 BR-028 1317.5 36.36399932 -94.19214895 746364 666917 BR-029 1315 36.36383552 -94.19108345 746297 667229 BR-030 1314.5 36.36385149 -94.19000222 746296 667548 BR-031 1313 36.3638189 -94.18900365 746277 667842 BR-032 1310 36.36386007 -94.18791965 746266 668161 BR-033 1308 36.36376817 -94.18705516 746246 668415 BR-034 1311 36.36372987 -94.1849849 746220 669023 BR-035 1316 36.36372987 -94.18399196 746212 669316 BR-037 1321 36.36387086 -94.18299681 746221	BR-023	1304	36.3639326	-94.19727447	746373	665407					
BR-026 1318.5 36.36394386 -94.19419173 746357 666315 BR-027 1320.5 36.36392428 -94.1930245 746342 666659 BR-028 1317.5 36.36399932 -94.19214895 746364 666917 BR-029 1315 36.36383552 -94.19108345 746297 667229 BR-030 1314.5 36.36385149 -94.19000222 746296 667548 BR-031 1313 36.3638189 -94.18900365 746277 667842 BR-032 1310 36.36380607 -94.18791965 746266 668161 BR-033 1308 36.36376817 -94.18705516 746246 668415 BR-034 1311 36.36376052 -94.18589578 746236 668756 BR-035 1316 36.36372987 -94.18399196 746212 669316 BR-037 1321 36.36387906 -94.18299681 746257 669610 BR-038 1323.5 36.36372825 -94.18045492 746190	BR-024	1309	36.36398608	-94.19608908	746385	665757					
BR-027 1320.5 36.36392428 -94.1930245 746342 666659 BR-028 1317.5 36.36399932 -94.19214895 746364 666917 BR-029 1315 36.36383552 -94.19108345 746297 667229 BR-030 1314.5 36.36385149 -94.19000222 746296 667548 BR-031 1313 36.3638189 -94.18900365 746277 667842 BR-032 1310 36.36380607 -94.18791965 746266 668161 BR-033 1308 36.36376817 -94.18705516 746246 668415 BR-034 1311 36.36376052 -94.18589578 746236 668756 BR-035 1316 36.36372987 -94.1849849 746220 669023 BR-036 1319 36.36372987 -94.18299681 746257 669610 BR-038 1323.5 36.36379009 -94.18190021 746221 669931 BR-039 1327 36.36372825 -94.18045492 746190 <	BR-025	1314.5	36.36396537	-94.1950879	746371	666052					
BR-028 1317.5 36.36399932 -94.19214895 746364 666917 BR-029 1315 36.36383552 -94.19108345 746297 667229 BR-030 1314.5 36.36385149 -94.19000222 746296 667548 BR-031 1313 36.3638189 -94.18900365 746277 667842 BR-032 1310 36.36380607 -94.18791965 746266 668161 BR-033 1308 36.36376817 -94.18705516 746246 668415 BR-034 1311 36.36376052 -94.18589578 746236 668756 BR-035 1316 36.36373215 -94.1849849 746220 669023 BR-036 1319 36.36372987 -94.18399196 746212 669316 BR-037 1321 36.36379009 -94.18190021 746221 669931 BR-039 1327 36.36372825 -94.18045492 746190 670357 BR-040 1324 36.3638271 -94.17944946 746218 6	BR-026	1318.5	36.36394386	-94.19419173	746357	666315					
BR-029 1315 36.36383552 -94.19108345 746297 667229 BR-030 1314.5 36.36385149 -94.19000222 746296 667548 BR-031 1313 36.3638189 -94.18900365 746277 667842 BR-032 1310 36.36380607 -94.18791965 746266 668161 BR-033 1308 36.36376817 -94.18705516 746246 668415 BR-034 1311 36.36376052 -94.18589578 746236 668756 BR-035 1316 36.36373215 -94.1849849 746220 669023 BR-036 1319 36.36372987 -94.18399196 746212 669316 BR-037 1321 36.36387086 -94.18299681 746257 669610 BR-038 1323.5 36.36372825 -94.18045492 746190 670357 BR-040 1324 36.3638271 -94.17944946 746218 670654	BR-027	1320.5	36.36392428	-94.1930245	746342	666659					
BR-030 1314.5 36.36385149 -94.19000222 746296 667548 BR-031 1313 36.3638189 -94.18900365 746277 667842 BR-032 1310 36.36380607 -94.18791965 746266 668161 BR-033 1308 36.36376817 -94.18705516 746246 668415 BR-034 1311 36.36376052 -94.18589578 746236 668756 BR-035 1316 36.36373215 -94.1849849 746220 669023 BR-036 1319 36.36372987 -94.18399196 746212 669316 BR-037 1321 36.3637906 -94.18299681 746257 669610 BR-038 1323.5 36.36372825 -94.18045492 746190 670357 BR-040 1324 36.3638271 -94.17944946 746218 670654	BR-028	1317.5	36.36399932	-94.19214895	746364	666917					
BR-031 1313 36.3638189 -94.18900365 746277 667842 BR-032 1310 36.36380607 -94.18791965 746266 668161 BR-033 1308 36.36376817 -94.18705516 746246 668415 BR-034 1311 36.36376052 -94.18589578 746236 668756 BR-035 1316 36.36373215 -94.1849849 746220 669023 BR-036 1319 36.36372987 -94.18399196 746212 669316 BR-037 1321 36.36387086 -94.18299681 746257 669610 BR-038 1323.5 36.36372825 -94.18045492 746190 670357 BR-040 1324 36.3638271 -94.17944946 746218 670654	BR-029	1315	36.36383552	-94.19108345	746297	667229					
BR-032 1310 36.36380607 -94.18791965 746266 668161 BR-033 1308 36.36376817 -94.18705516 746246 668415 BR-034 1311 36.36376052 -94.18589578 746236 668756 BR-035 1316 36.36373215 -94.1849849 746220 669023 BR-036 1319 36.36372987 -94.18399196 746212 669316 BR-037 1321 36.36387086 -94.18299681 746257 669610 BR-038 1323.5 36.36379009 -94.18190021 746221 669931 BR-039 1327 36.36372825 -94.18045492 746190 670357 BR-040 1324 36.3638271 -94.17944946 746218 670654	BR-030	1314.5	36.36385149	-94.19000222	746296	667548					
BR-033 1308 36.36376817 -94.18705516 746246 668415 BR-034 1311 36.36376052 -94.18589578 746236 668756 BR-035 1316 36.36373215 -94.1849849 746220 669023 BR-036 1319 36.36372987 -94.18399196 746212 669316 BR-037 1321 36.36387086 -94.18299681 746257 669610 BR-038 1323.5 36.36379009 -94.18190021 746221 669931 BR-039 1327 36.36372825 -94.18045492 746190 670357 BR-040 1324 36.3638271 -94.17944946 746218 670654	BR-031	1313	36.3638189	-94.18900365	746277	667842					
BR-034 1311 36.36376052 -94.18589578 746236 668756 BR-035 1316 36.36373215 -94.1849849 746220 669023 BR-036 1319 36.36372987 -94.18399196 746212 669316 BR-037 1321 36.36387086 -94.18299681 746257 669610 BR-038 1323.5 36.36379009 -94.18190021 746221 669931 BR-039 1327 36.36372825 -94.18045492 746190 670357 BR-040 1324 36.3638271 -94.17944946 746218 670654	BR-032	1310	36.36380607	-94.18791965	746266	668161					
BR-035 1316 36.36373215 -94.1849849 746220 669023 BR-036 1319 36.36372987 -94.18399196 746212 669316 BR-037 1321 36.36387086 -94.18299681 746257 669610 BR-038 1323.5 36.36379009 -94.18190021 746221 669931 BR-039 1327 36.36372825 -94.18045492 746190 670357 BR-040 1324 36.3638271 -94.17944946 746218 670654	BR-033	1308	36.36376817	-94.18705516	746246	668415					
BR-036 1319 36.36372987 -94.18399196 746212 669316 BR-037 1321 36.36387086 -94.18299681 746257 669610 BR-038 1323.5 36.36379009 -94.18190021 746221 669931 BR-039 1327 36.36372825 -94.18045492 746190 670357 BR-040 1324 36.3638271 -94.17944946 746218 670654	BR-034	1311	36.36376052	-94.18589578	746236	668756					
BR-037 1321 36.36387086 -94.18299681 746257 669610 BR-038 1323.5 36.36379009 -94.18190021 746221 669931 BR-039 1327 36.36372825 -94.18045492 746190 670357 BR-040 1324 36.3638271 -94.17944946 746218 670654	BR-035	1316	36.36373215	-94.1849849	746220	669023					
BR-038 1323.5 36.36379009 -94.18190021 746221 669931 BR-039 1327 36.36372825 -94.18045492 746190 670357 BR-040 1324 36.3638271 -94.17944946 746218 670654	BR-036	1319	36.36372987	-94.18399196	746212	669316					
BR-039 1327 36.36372825 -94.18045492 746190 670357 BR-040 1324 36.3638271 -94.17944946 746218 670654	BR-037	1321	36.36387086	-94.18299681	746257	669610					
BR-040 1324 36.3638271 -94.17944946 746218 670654	BR-038	1323.5	36.36379009	-94.18190021	746221	669931					
	BR-039	1327	36.36372825	-94.18045492	746190	670357					
BR-041 1322.5 36.36382327 -94.17881456 746213 670841	BR-040	1324	36.3638271	-94.17944946	746218	670654					
	BR-041	1322.5	36.36382327	-94.17881456	746213	670841					

APPENDIX B LABORATORY TESTING

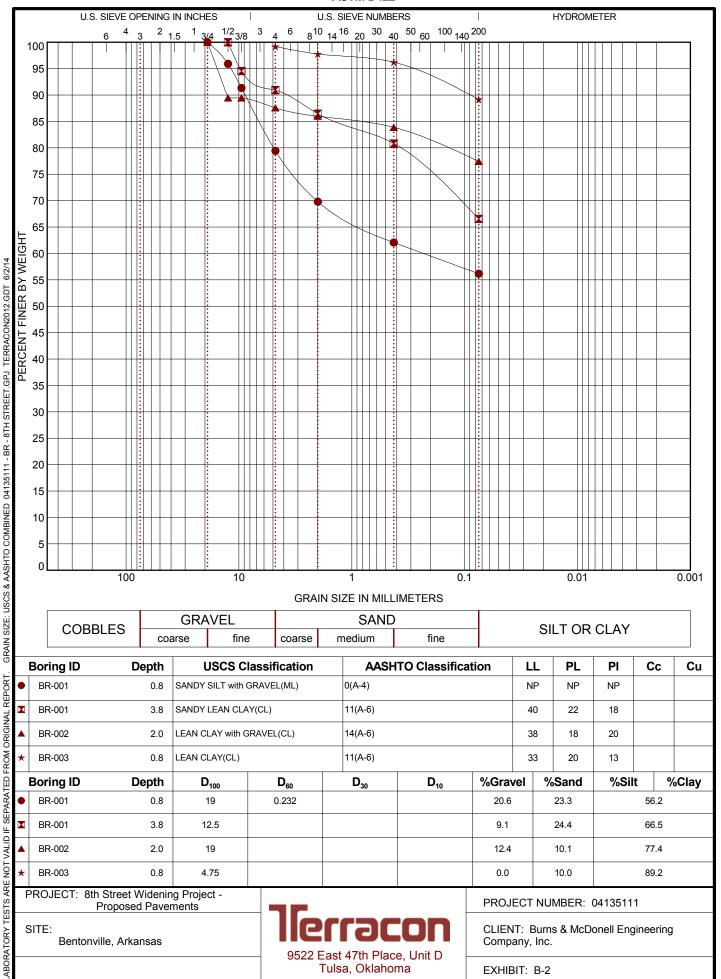
Geotechnical Engineering Report

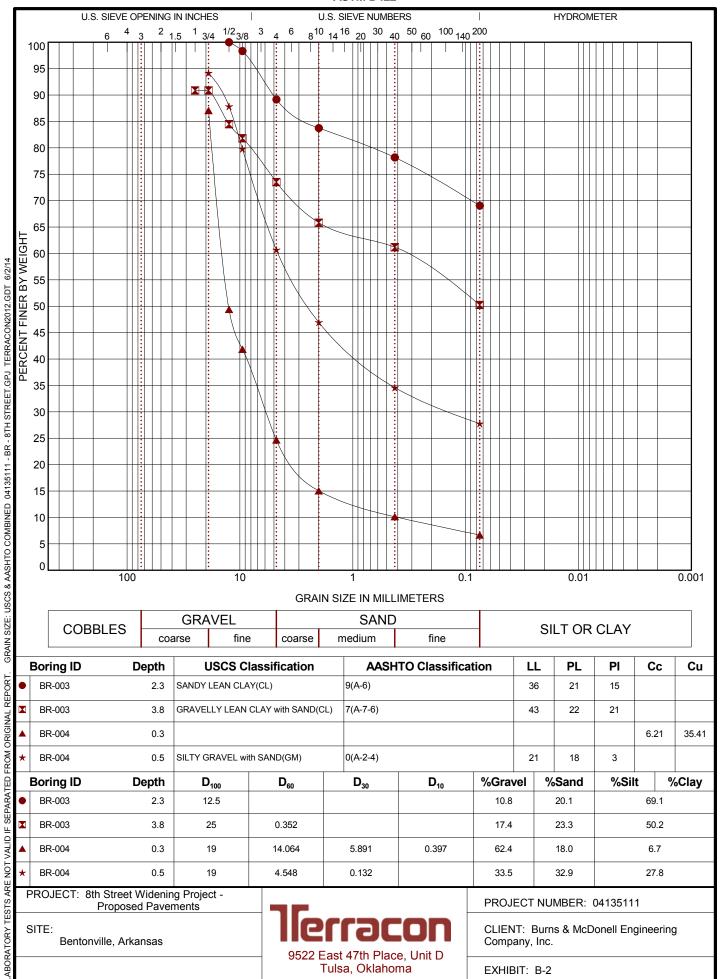
8th Street Widening Project – Proposed Pavements • Bentonville, Arkansas March 13, 2015 • Terracon Project No. 04135111

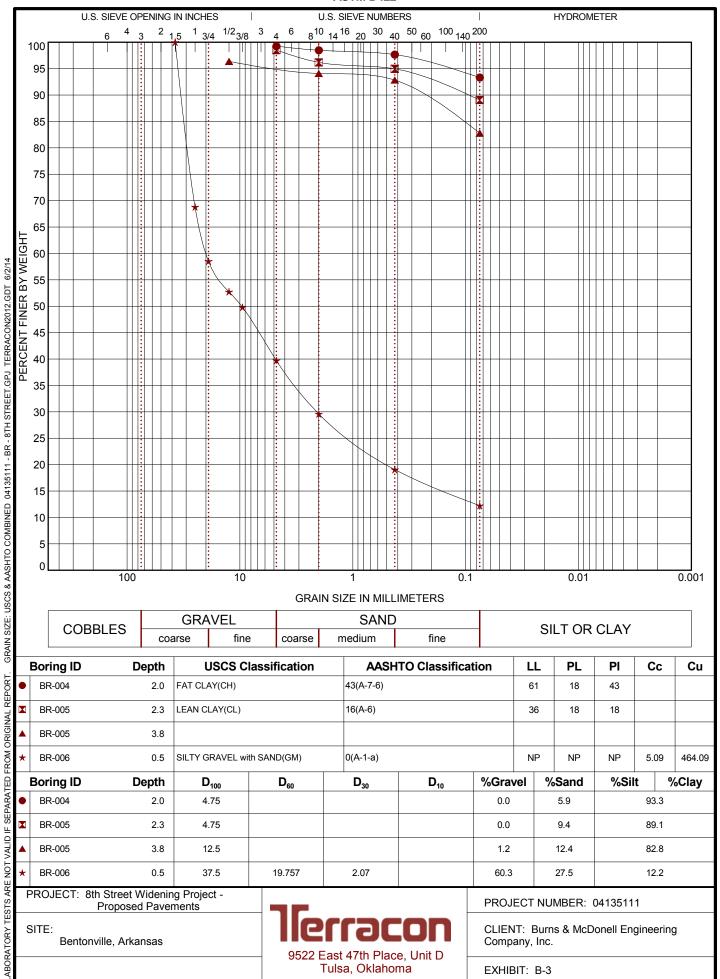
Laboratory Testing

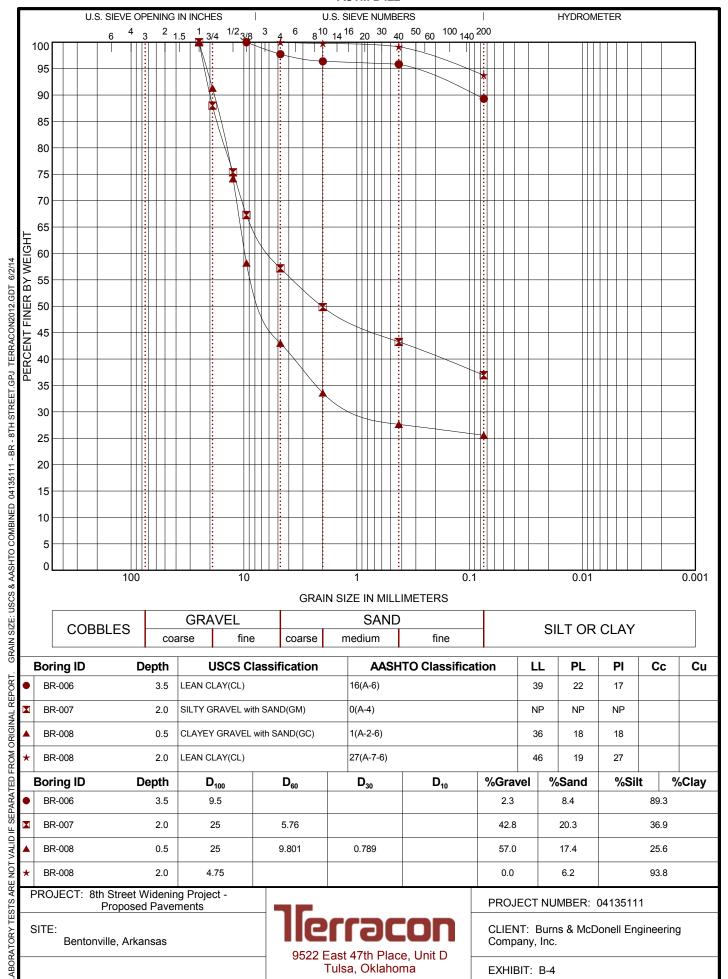
Samples retrieved during the field exploration were taken to the laboratory for further observation by the project geotechnical engineer and were classified in accordance with the Unified Soil Classification System (USCS) described in Appendix D. Bedrock materials were classified according to the General Notes and described using commonly accepted geotechnical terminology. The field descriptions were modified as necessary and an applicable laboratory testing program was formulated to determine engineering properties of the subsurface materials.

Laboratory tests were conducted on selected soil samples. The laboratory test results are presented on the boring logs next to the respective samples and attached to this appendix. Laboratory tests were performed in general accordance with the applicable ASTM, AASHTO, local or other accepted standards.

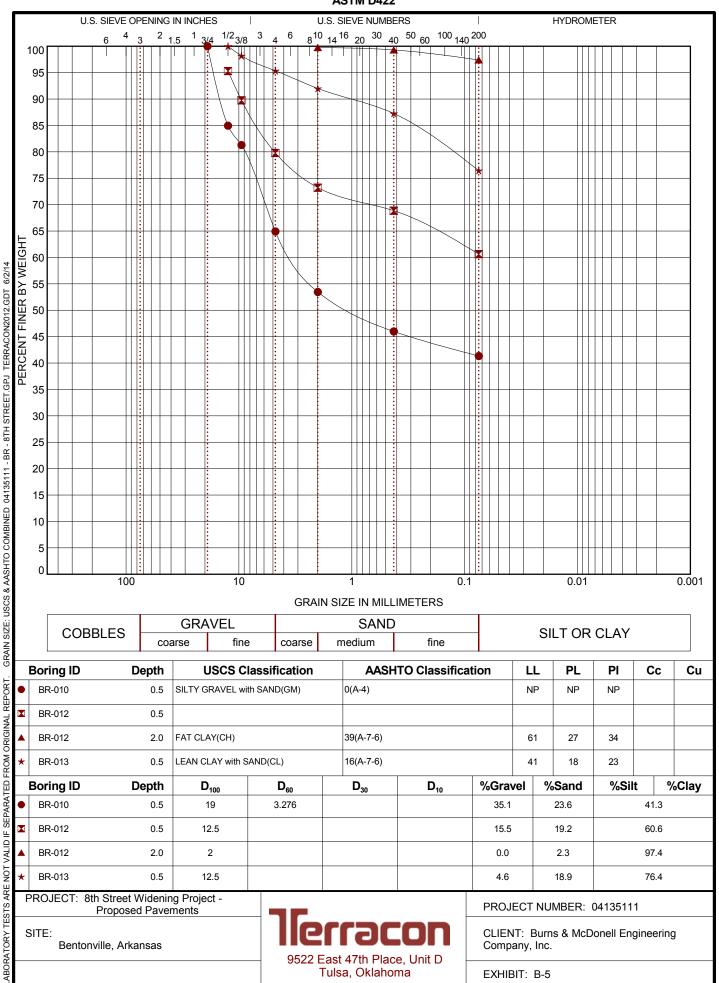

The following tests were performed on selected soil samples:

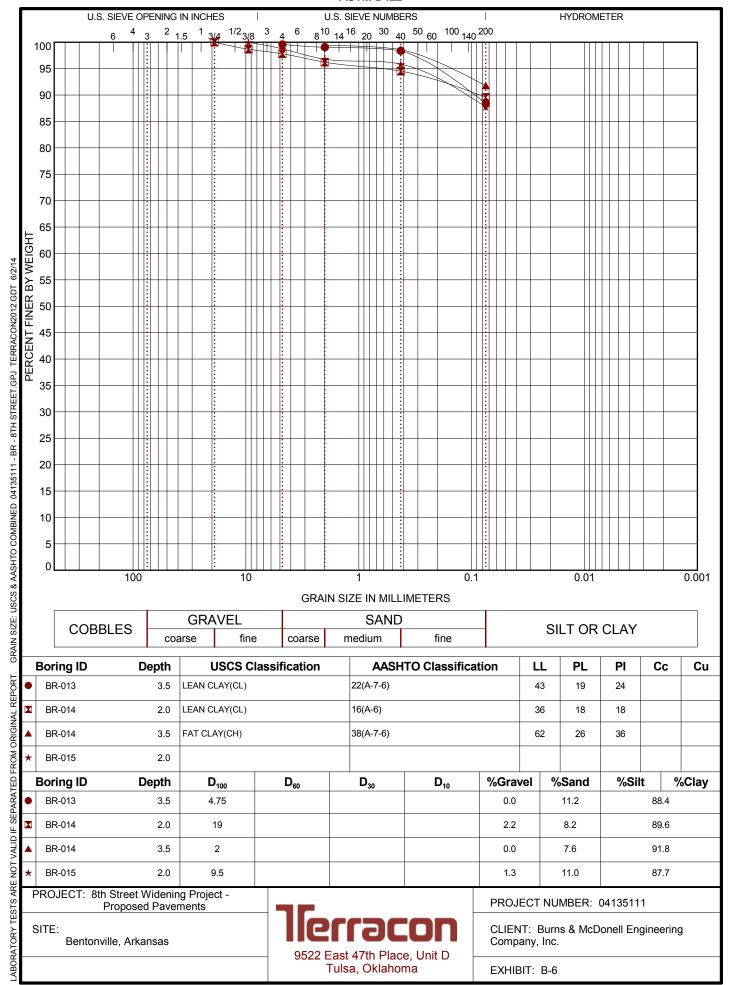

- Water content
- Atterberg limits
- Percent passing the No. 200 sieve
- Particle size distribution
- Moisture-Density relationships
- Resilient Modulus (MR)


Four soil composite samples were prepared for Resilient Modulus testing. The samples were taken from the subgrade soils from depths of about 1 to 3 feet below existing ground surface.

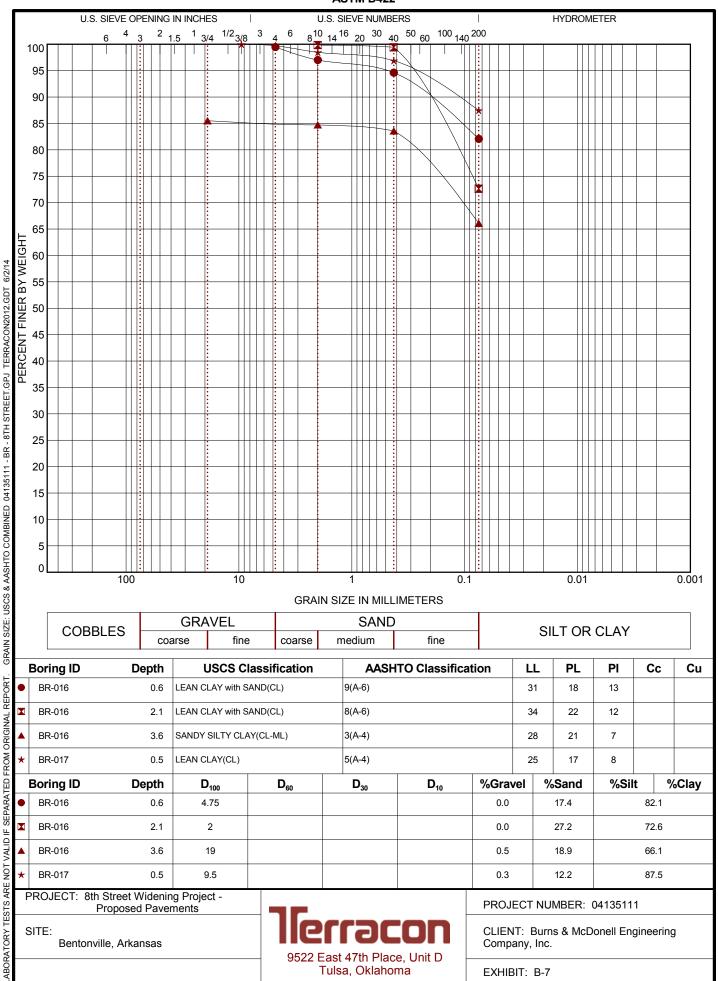

Composite Sample	Borings	Soil Type		
Bulk 1	BR-004/9/12/14	Lean clay		
Duik 1	DIX-004/9/12/14	PI = 17		
Bulk 2	BR-017/19/21	Lean Clay		
Duik 2	DIX-017/19/21	PI = 10		
Bulk 3	BR-030/35/36	Lean Clay		
Duik 3	DK-030/35/30	PI = 25		
Bulk 4	BR-003/4/5/12	Silty Clayey		
Duik 4	DIX-003/4/3/12	Gravel (Non-Plastic)		

Procedural standards noted above are for reference to methodology in general. In some cases, variations to methods are applied as a result of local practice and professional judgment.



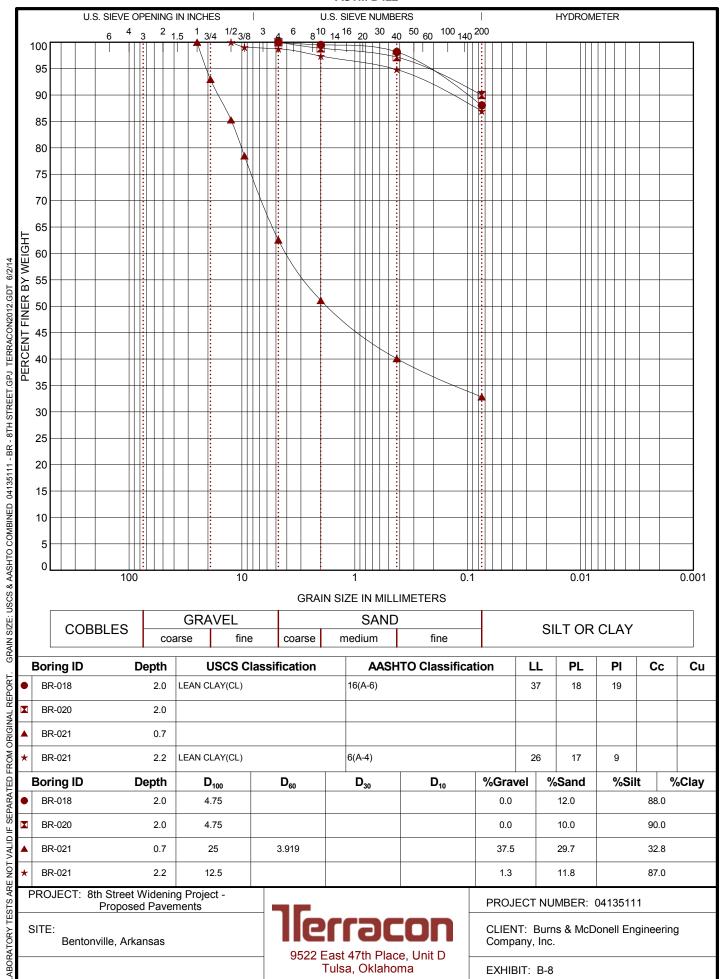


ASTM D422

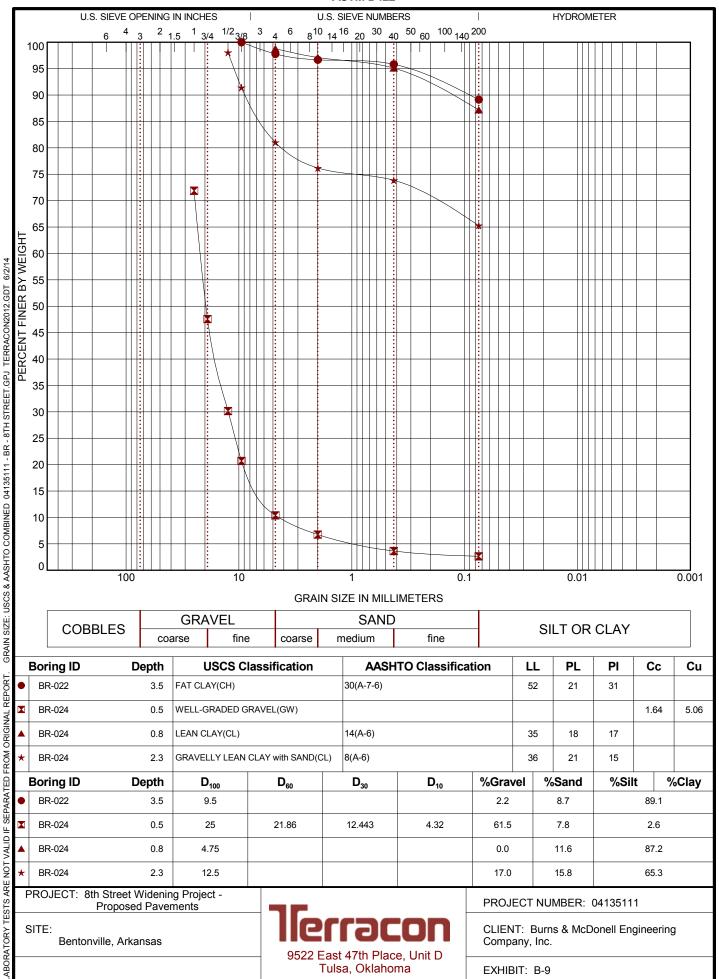


Tulsa, Oklahoma

EXHIBIT: B-5

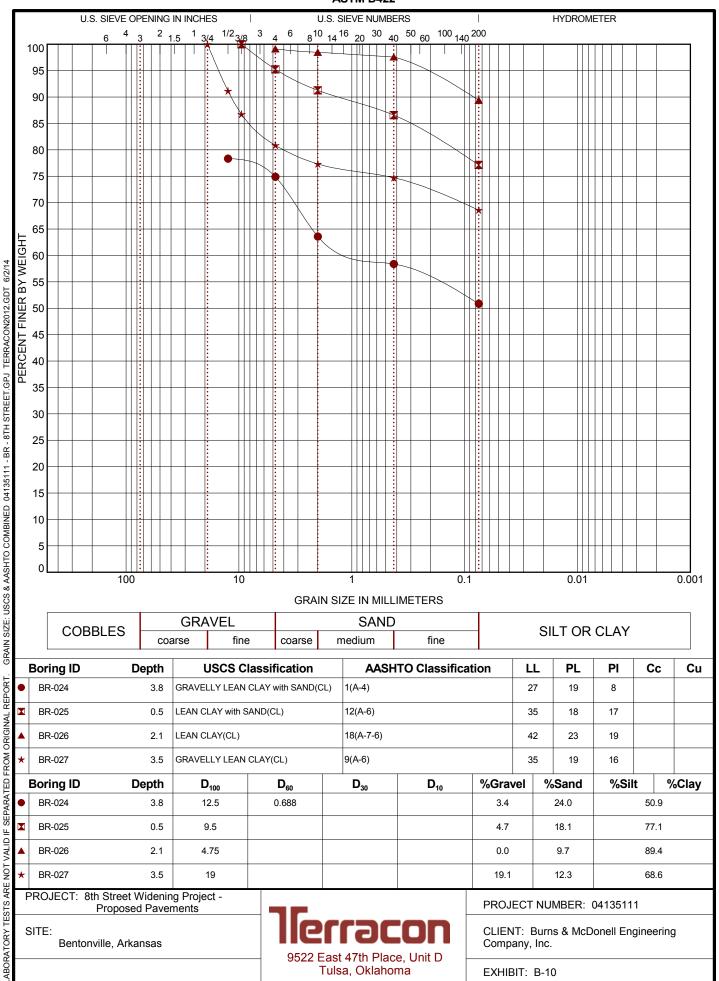


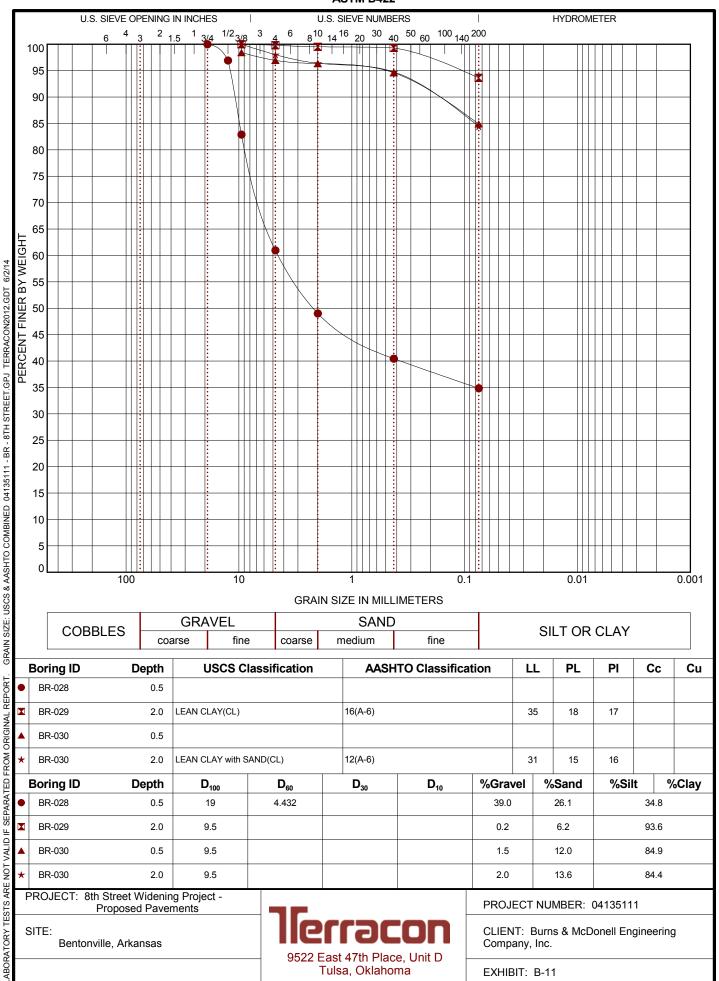
ASTM D422

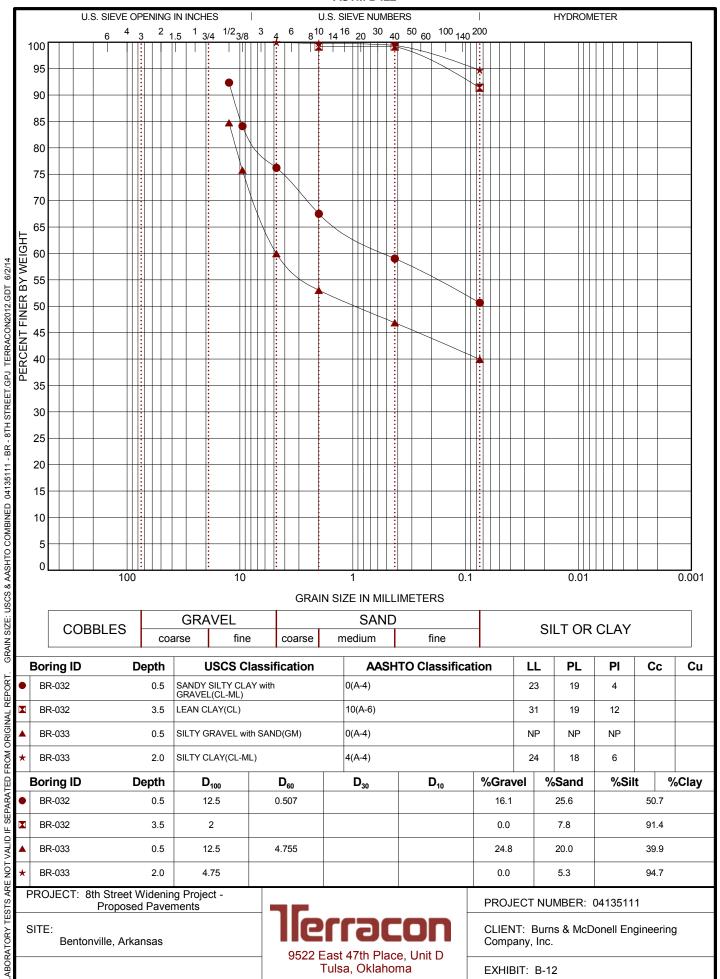


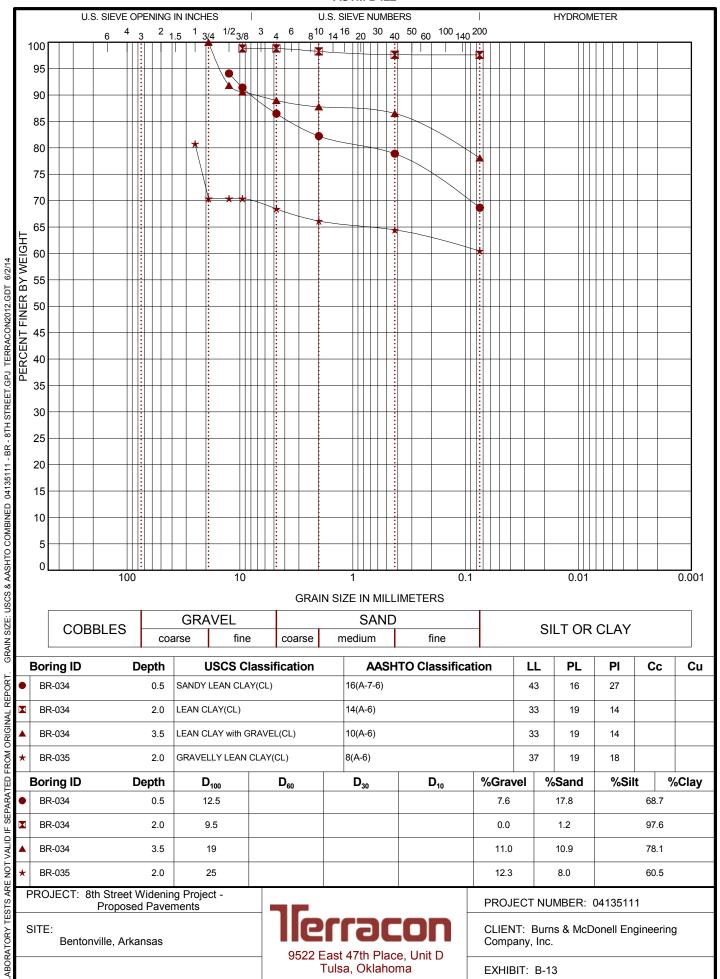
Tulsa, Oklahoma

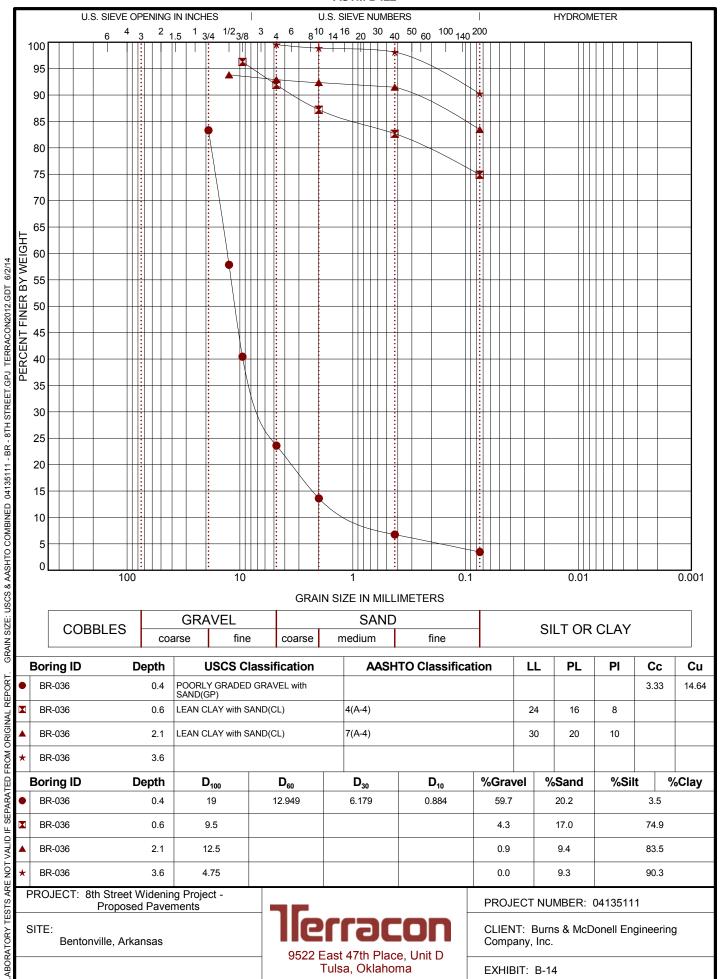
EXHIBIT: B-7

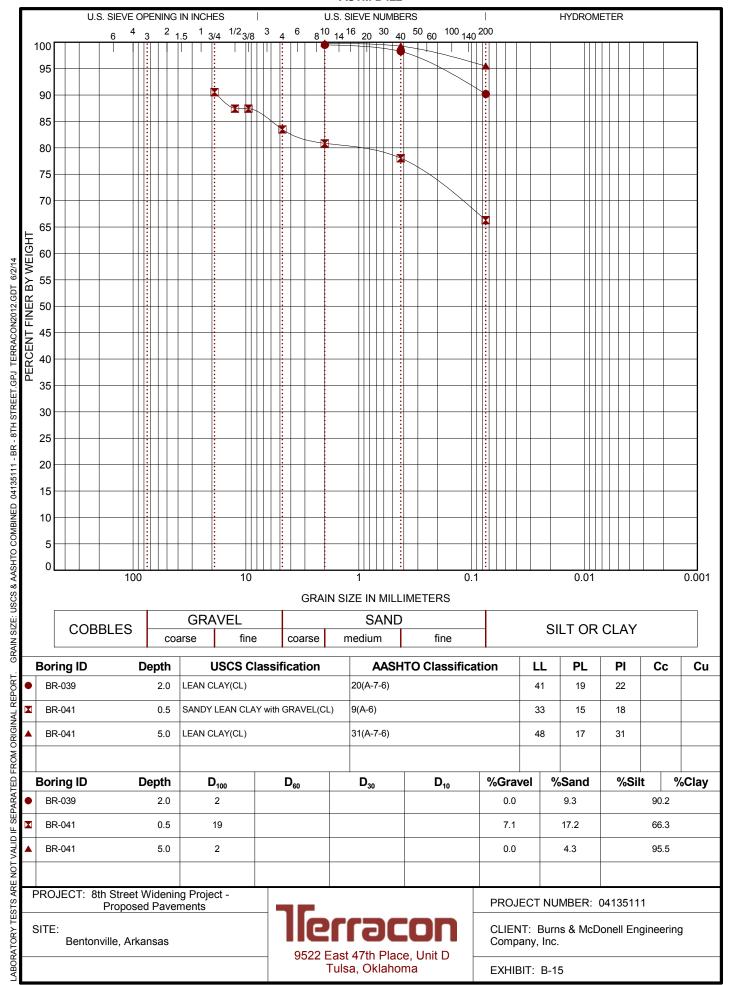


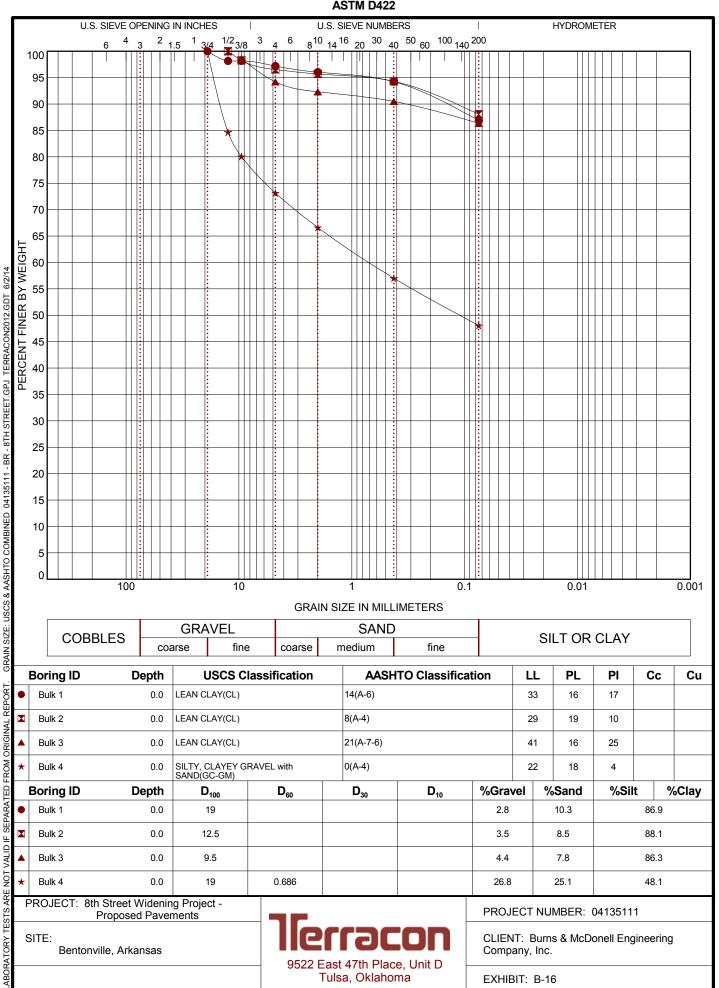

ASTM D422

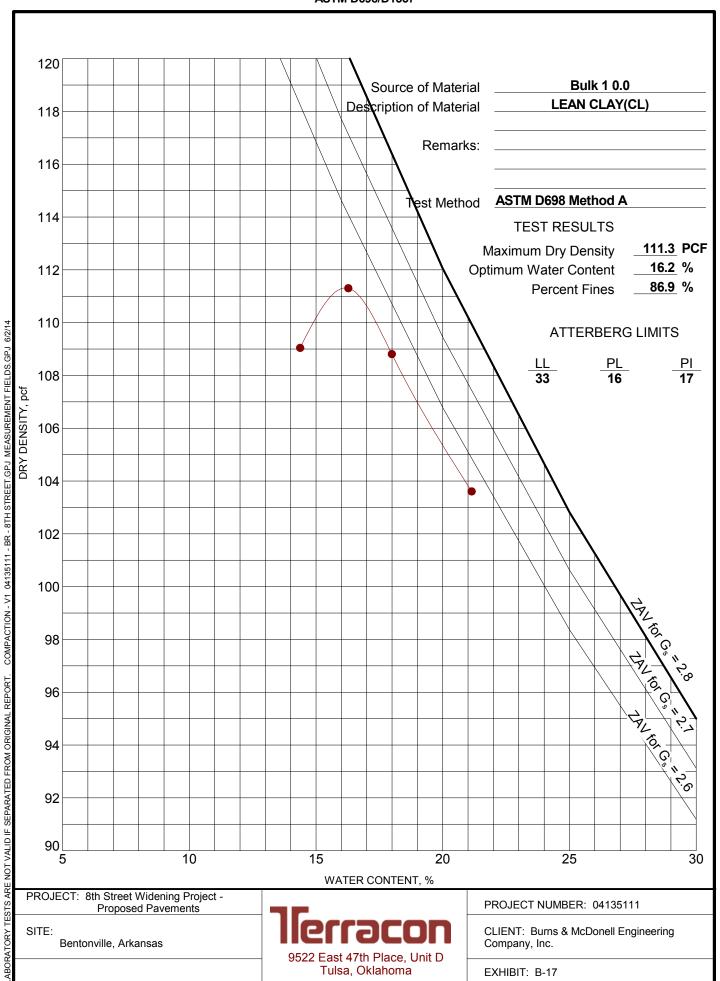


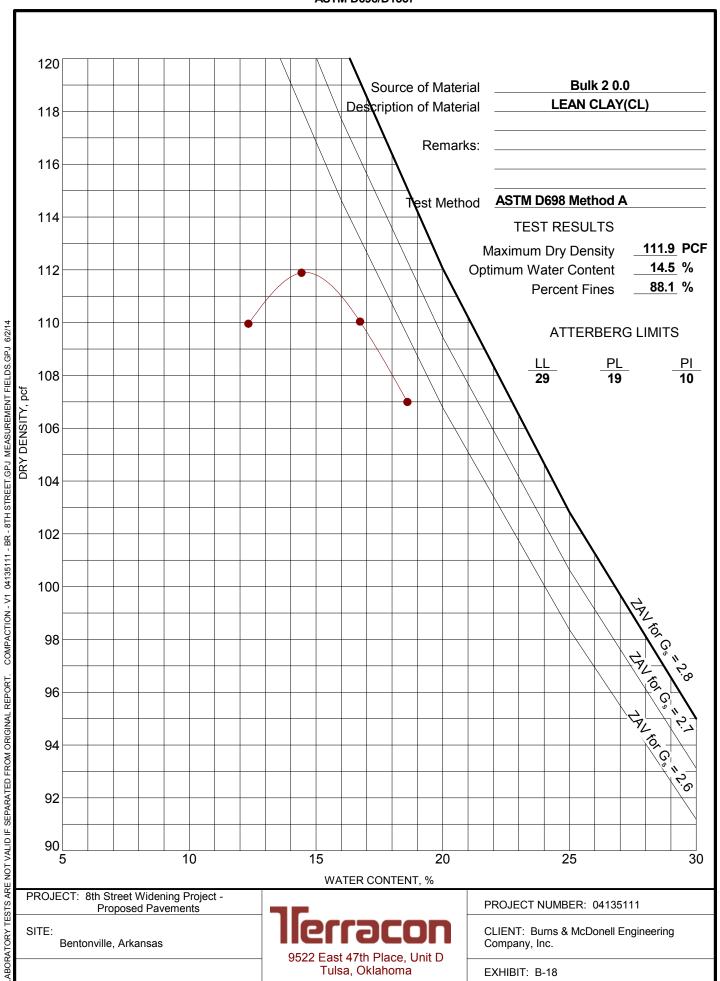

Tulsa, Oklahoma

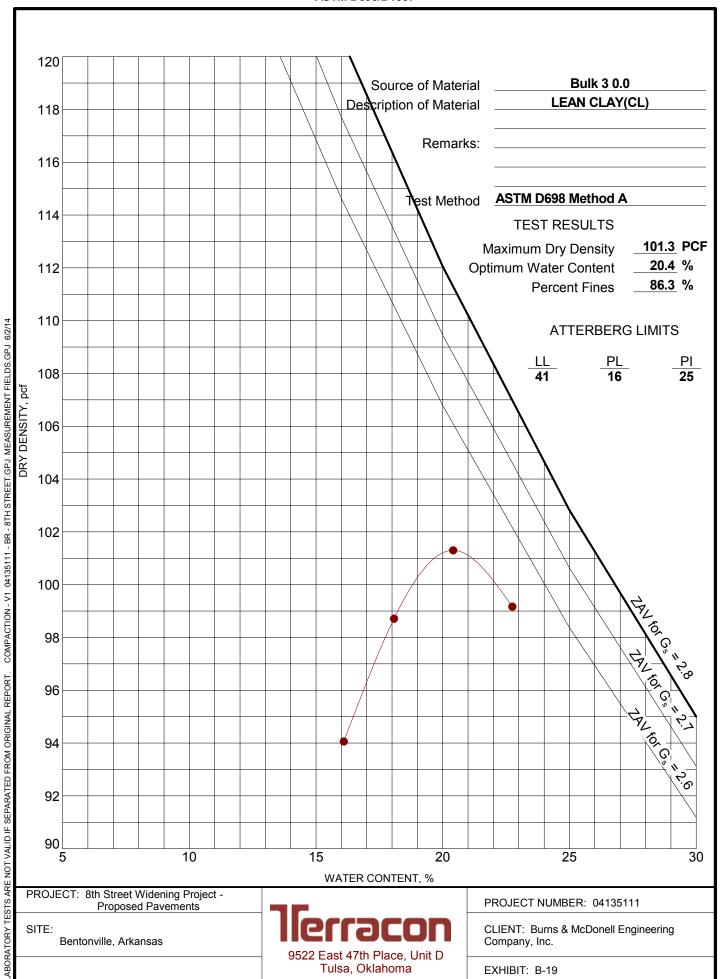

EXHIBIT: B-9

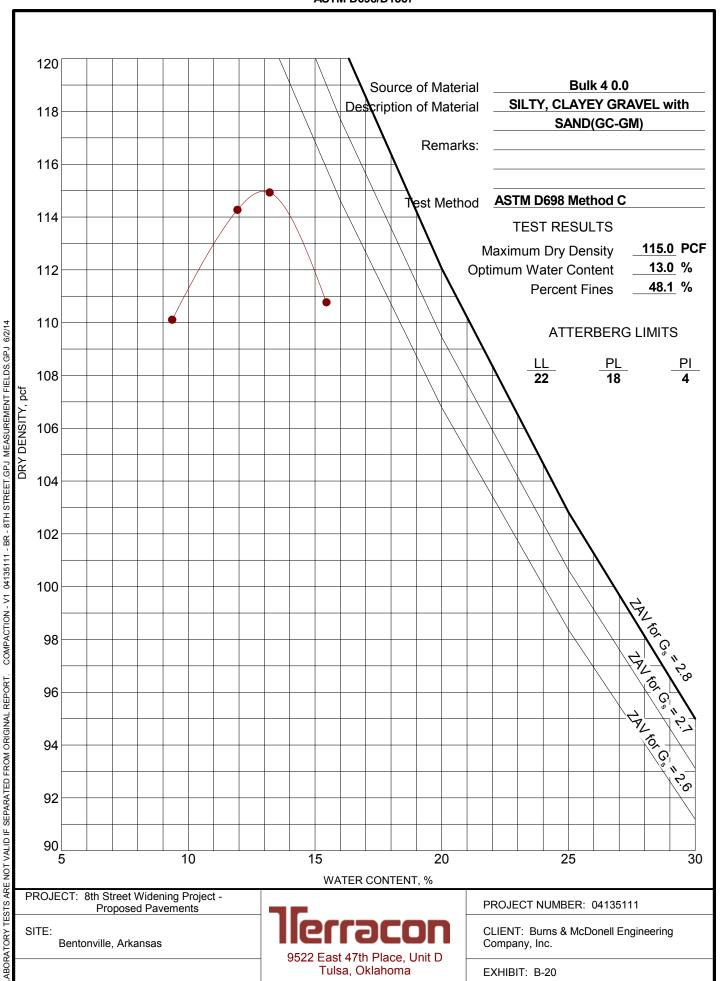












Resilient Modulus Testing - AASHTO T 307-99 English Units

 Soil Map Unit:
 0

 Soil Symbol:
 CL

 Depth (in.)
 6 to 36

 Compaction Method
 Static

 Max. Dry Density (pcf)
 111.3

 Opt. Moisture Content (%)
 16.2

 Inside Mold Diameter (in)
 3.94

Weight of Wet Soil (lb) 6.61 Initial Sample Diameter (in) 3.94 Initial Sample Height (in) 7.87 Initial Sample Area (in²) 12.17 Sample Volume (in³) 95.86 Compacted Moisture Content(%) 16.7 Wet Density (pcf) 119.2 Dry Density (pcf) 102.1

 Report Date:
 27-May-14

 Lab No.:
 Bulk 1_OMC

 Project No.:
 04135111

 Test Date:
 March 22, 2014

Final Sample Height (in)

Final Sample Wet Weight (lb)

Final Moisture Content (%)

Accumulated Strain (%)

Percent Passing No. 10

Percent Passing No. 200

Liquid Limit

Plasticity Index

6.61

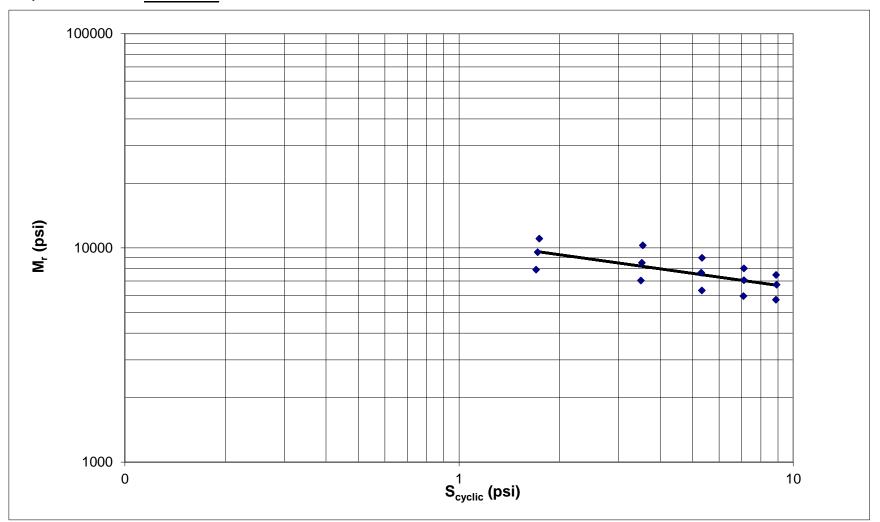
16.7

3

87.0

17

7.9


Chamber	Nominal Maximum	Actual	Actual Applied	Actual Applied	Actual Applied	Actual Applied	Actual Applied	Recov. Def.	Recov. Def. LVDT	Average Recov.		
Confining		Applied Max.	Cyclic	Contact	Max. Axial		Contact	LVDT #1		Def. LVDT		Resilient
Pressure	Stress	Axial Load	Load	Load	Stress	Stress	Stress	Reading	Reading	1 and 2	Resilient Strain	Modulus
(S ₃)	(S _{cyclic})	(P _{max})	(P _{cyclic})		(S _{max})			(H ₁)	(H ₂)	(H _{avg})	(\mathfrak{E}_{r})	(M _r)
1	(O _{cyclic})	(' max/		(P _{contact})	_	(S _{cyclic})	(S _{contact})	_	_	(' 'avg/		
psi	psi	lb	lb	lb	psi	psi	psi	in	in	in	in/in	psi
6.00	2.00	24.5	21.2	3.4	2.02	1.74	0.276	0.0013	0.0012	0.0012	0.000158	11,038
6.00	4.00	48.9	43.2	5.7	4.01	3.55	0.468	0.0028	0.0026	0.0027	0.000345	10,269
6.00	6.00	73.3	65.0	8.3	6.02	5.34	0.684	0.0050	0.0043	0.0047	0.000595	8,974
6.00	8.00	97.6	86.7	10.9	8.02	7.12	0.897	0.0074	0.0066	0.0070	0.000889	8,013
6.01	10.00	121.8	108.2	13.6	10.01	8.89	1.115	0.0097	0.0090	0.0094	0.001190	7,473
4.01	2.00	24.5	20.9	3.5	2.01	1.72	0.291	0.0014	0.0014	0.0014	0.000181	9,530
4.01	4.00	49.0	42.9	6.1	4.02	3.53	0.499	0.0034	0.0031	0.0033	0.000414	8,511
4.01	6.00	73.2	64.6	8.6	6.01	5.30	0.710	0.0058	0.0052	0.0055	0.000693	7,654
4.01	8.00	97.6	86.7	10.9	8.02	7.12	0.893	0.0082	0.0077	0.0079	0.001009	7,057
4.01	10.00	121.9	108.5	13.4	10.02	8.91	1.102	0.0106	0.0102	0.0104	0.001325	6,729
2.00	2.00	24.2	20.7	3.5	1.99	1.70	0.291	0.0017	0.0017	0.0017	0.000215	7,913
2.00	4.00	48.6	42.6	6.0	3.99	3.50	0.491	0.0040	0.0039	0.0039	0.000498	7,033
2.00	6.00	73.3	64.9	8.4	6.02	5.33	0.694	0.0069	0.0064	0.0066	0.000843	6,326
2.00	8.00	97.3	86.4	10.9	7.99	7.10	0.897	0.0095	0.0093	0.0094	0.001192	5,951
2.00	10.00	121.5	108.0	13.5	9.98	8.88	1.106	0.0123	0.0121	0.0122	0.001551	5,722

Date Reported: Terracon Lab No. 5/27/2014 Bulk 1_OMC 0.00

Project No.

04135111

 $Mr = K1 \times S_{cylic}^{k2}$

S3 (psi)	K 1	K2	R ²
6	13164.8	-0.245	0.93
4	10885.8	-0.216	0.99
2	8881.2	-0.201	0.99
All	10810.6	-0.219	0.47

Date Reported: Terracon Lab No. Project No. 5/27/2014 Bulk 1_OMC 04135111 0

Resilient Modulus Testing - AASHTO T 307-99 English Units

 Soil Map Unit:
 0

 Soil Symbol:
 CL

 Depth (in.)
 6 to 36

 Compaction Method
 Static

 Max. Dry Density (pcf)
 111.3

 Opt. Moisture Content (%)
 16.2

 Inside Mold Diameter (in)
 3.94

Weight of Wet Soil (lb) 6.72 Initial Sample Diameter (in) 3.94 Initial Sample Height (in) 7.88 Initial Sample Area (in²) 12.17 Sample Volume (in³) 95.96 Compacted Moisture Content(%) 18.7 Wet Density (pcf) 121.0 Dry Density (pcf) 102.0
 Report Date:
 27-May-14

 Lab No.:
 Bulk 1_OMC+2

 Project No.:
 04135111

Test Date: March 22, 2014

Final Sample Height (in)

Plasticity Index

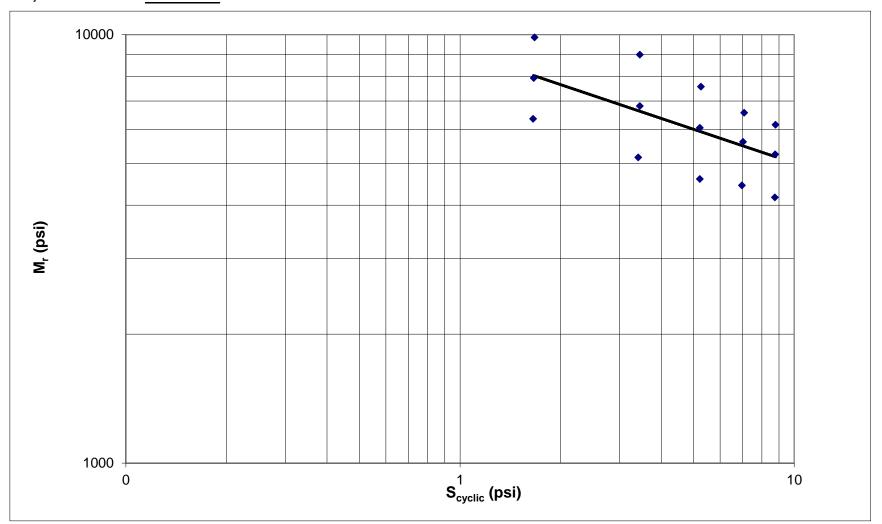
Final Sample Wet Weight (lb) 6.72
Final Moisture Content (%) 18.7
Accumulated Strain (%) 0.81

Percent Passing No. 10 3

Percent Passing No. 200 87.0
Liquid Limit 33

7.8

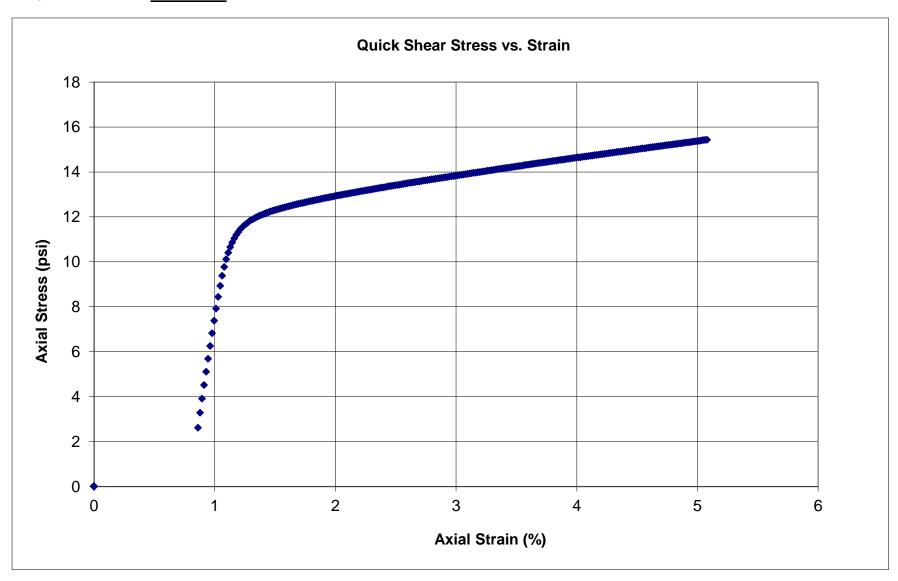
17


	Nominal		Actual	Actual	Actual	Actual	Actual		Recov.	Average		
Chamber	Maximum	Actual	Applied	Applied	Applied	Applied	Applied	Recov. Def.	Def. LVDT	Recov.		
Confining	Axial	Applied Max.	Cyclic	Contact	Max. Axial	Cyclic	Contact	LVDT #1	#2	Def. LVDT		Resilient
Pressure	Stress	Axial Load	Load	Load	Stress	Stress	Stress	Reading	Reading	1 and 2	Resilient Strain	Modulus
(S_3)	(S _{cyclic})	(P _{max})	(P _{cyclic})	(P _{contact})	(S_{max})	(S _{cyclic})	$(S_{contact})$	(H ₁)	(H ₂)	(H_{avg})	(\mathfrak{S}_{r})	(M_r)
psi	psi	lb	lb	lb	psi	psi	psi	in	in	in	in/in	psi
6.00	2.00	24.5	20.3	4.1	2.01	1.67	0.339	0.0014	0.0012	0.0013	0.000170	9,856
6.01	4.00	48.7	42.0	6.7	4.00	3.45	0.551	0.0033	0.0027	0.0030	0.000384	8,979
6.00	6.00	72.9	64.0	8.9	5.99	5.26	0.734	0.0059	0.0051	0.0055	0.000696	7,559
6.00	8.00	97.5	86.2	11.2	8.01	7.09	0.924	0.0092	0.0078	0.0085	0.001079	6,569
6.00	10.00	121.5	107.0	14.5	9.98	8.79	1.188	0.0114	0.0111	0.0112	0.001427	6,164
4.01	2.00	24.1	20.2	3.9	1.98	1.66	0.319	0.0018	0.0015	0.0017	0.000210	7,923
4.00	4.00	48.6	42.0	6.5	3.99	3.45	0.537	0.0042	0.0038	0.0040	0.000507	6,814
4.00	6.00	72.7	63.5	9.2	5.97	5.22	0.752	0.0069	0.0067	0.0068	0.000861	6,063
4.00	8.00	97.1	85.6	11.5	7.98	7.03	0.948	0.0100	0.0097	0.0099	0.001251	5,621
4.00	10.00	120.9	106.8	14.1	9.94	8.77	1.162	0.0132	0.0131	0.0132	0.001670	5,253
2.00	2.00	23.8	20.1	3.7	1.96	1.66	0.304	0.0022	0.0019	0.0021	0.000260	6,360
2.00	4.00	48.2	41.6	6.7	3.96	3.42	0.547	0.0053	0.0052	0.0052	0.000661	5,169
2.00	6.00	72.4	63.5	8.9	5.95	5.22	0.730	0.0090	0.0089	0.0089	0.001134	4,601
2.00	8.00	96.5	84.9	11.6	7.93	6.97	0.953	0.0124	0.0123	0.0124	0.001568	4,446
2.00	10.00	120.7	106.5	14.2	9.92	8.75	1.163	0.0166	0.0165	0.0165	0.002099	4,170

Date Reported: Terracon Lab No. 5/27/2014 Bulk 1_OMC+2 0.00

Project No.

04135111


 $Mr = K1 \times S_{cylic}^{k2}$

S3 (psi)	K1	K2	R ²		
6	12007.6	-0.294	0.94		
4	9084.2	-0.247	0.99		
2	7128.0	-0.251	0.99		
All	9165.2	-0.262	0.40		

Date Reported: Terracon Lab No. Project No. 5/27/2014 Bulk 1_OMC+2 04135111

0

Resilient Modulus Testing - AASHTO T 307-99 English Units

 Soil Map Unit:
 0

 Soil Symbol:
 CL

 Depth (in.)
 6 to 36

 Compaction Method
 Static

 Max. Dry Density (pcf)
 111.9

 Opt. Moisture Content (%)
 14.5

 Inside Mold Diameter (in)
 3.94

Weight of Wet Soil (lb) 6.55 Initial Sample Diameter (in) 3.94 Initial Sample Height (in) 7.87 Initial Sample Area (in²) 12.17 Sample Volume (in³) 95.86 Compacted Moisture Content(%) 15.0 Wet Density (pcf) 118.0 Dry Density (pcf) 102.6
 Report Date:
 27-May-14

 Lab No.:
 Bulk 2_OMC

 Project No.:
 04135111

 Test Date:
 March 22, 2014

Final Sample Height (in)

Final Sample Wet Weight (lb) 6.55

Final Moisture Content (%) 15.0

Accumulated Strain (%) 0.20

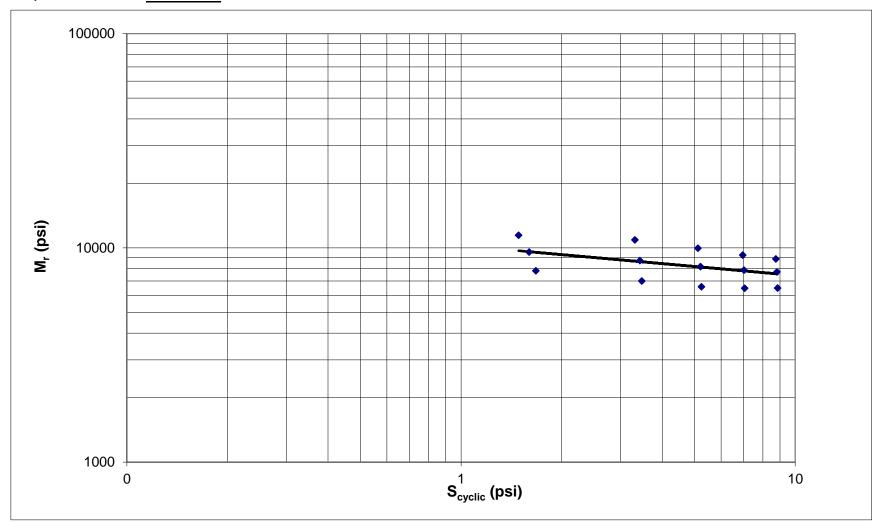
Percent Passing No. 10 4

Percent Passing No. 200 88.0

Liquid Limit 29

Plasticity Index 10

7.9


	Nominal		Actual	Actual	Actual	Actual	Actual		Recov.	Average		
Chamber	Maximum	Actual	Applied	Applied	Applied	Applied	Applied	Recov. Def.	Def. LVDT	Recov.		
Confining	Axial	Applied Max.	Cyclic	Contact	Max. Axial	Cyclic	Contact	LVDT #1	#2	Def. LVDT		Resilient
Pressure	Stress	Axial Load	Load	Load	Stress	Stress	Stress	Reading	Reading	1 and 2	Resilient Strain	Modulus
(S ₃)	(S _{cyclic})	(P _{max})	(P _{cyclic})	(P _{contact})	(S_{max})	(S _{cyclic})	(S _{contact})	(H₁)	(H_2)	(H_{avg})	(\mathfrak{S}_{r})	(M_r)
psi	psi	lb	lb	lb	psi	psi	psi	in	in	in	in/in	psi
6.00	2.00	23.1	18.1	5.0	1.90	1.49	0.412	0.0010	0.0010	0.0010	0.000130	11,448
5.99	4.00	47.5	40.4	7.2	3.90	3.31	0.589	0.0024	0.0024	0.0024	0.000304	10,893
6.00	6.00	72.4	62.3	10.1	5.94	5.12	0.827	0.0041	0.0040	0.0040	0.000514	9,952
6.00	8.00	97.1	84.8	12.3	7.98	6.96	1.014	0.0058	0.0061	0.0059	0.000753	9,247
6.00	10.00	121.4	106.6	14.8	9.97	8.75	1.214	0.0076	0.0080	0.0078	0.000986	8,875
4.01	2.00	23.9	19.5	4.5	1.97	1.60	0.367	0.0013	0.0013	0.0013	0.000167	9,561
4.00	4.00	48.6	41.7	6.9	3.99	3.43	0.567	0.0030	0.0032	0.0031	0.000393	8,717
4.01	6.00	73.0	63.4	9.6	6.00	5.21	0.785	0.0051	0.0050	0.0050	0.000638	8,167
4.01	8.00	97.5	85.6	11.9	8.01	7.03	0.980	0.0070	0.0071	0.0070	0.000893	7,872
4.00	10.00	121.6	107.4	14.2	9.99	8.82	1.167	0.0088	0.0092	0.0090	0.001142	7,721
2.00	2.00	24.3	20.4	3.9	1.99	1.67	0.319	0.0017	0.0017	0.0017	0.000214	7,807
2.00	4.00	48.7	42.3	6.4	4.00	3.48	0.523	0.0038	0.0040	0.0039	0.000496	7,001
2.00	6.00	72.9	63.9	9.1	5.99	5.24	0.743	0.0063	0.0062	0.0063	0.000797	6,577
2.00	8.00	97.5	86.0	11.5	8.01	7.06	0.947	0.0084	0.0088	0.0086	0.001090	6,479
2.00	10.00	121.7	107.8	13.9	9.99	8.86	1.139	0.0105	0.0110	0.0107	0.001365	6,488

Date Reported: Terracon Lab No. 5/27/2014 Bulk 2_OMC 0.00

Project No.

04135111

 $Mr = K1 \times S_{cylic}^{k2}$

S3 (psi)	K1	K2	R ²
6	12462.4	-0.148	0.93
4	10160.9	-0.129	1.00
2	8182.7	-0.117	0.94
All	10242.2	-0.139	0.23

Date Reported: Terracon Lab No. Project No. 5/27/2014 Bulk 2_OMC 04135111

0

Resilient Modulus Testing - AASHTO T 307-99 English Units

 Soil Map Unit:
 0

 Soil Symbol:
 CL

 Depth (in.)
 6 to 36

 Compaction Method
 Static

 Max. Dry Density (pcf)
 111.9

 Opt. Moisture Content (%)
 14.5

 Inside Mold Diameter (in)
 3.94

Weight of Wet Soil (lb) 6.67 Initial Sample Diameter (in) 3.94 Initial Sample Height (in) 7.87 Initial Sample Area (in²) 12.17 Sample Volume (in³) 95.87 Compacted Moisture Content(%) 16.9 Wet Density (pcf) 120.2 Dry Density (pcf) 102.8

 Report Date:
 27-May-14

 Lab No.:
 Bulk 2_OMC+2%

 Project No.:
 04135111

 Test Date:
 March 22, 2014

Final Sample Height (in)

Final Sample Wet Weight (lb)

Final Moisture Content (%)

Accumulated Strain (%)

Percent Passing No. 10

Percent Passing No. 200

Liquid Limit

Plasticity Index

6.67

17.0

4

4

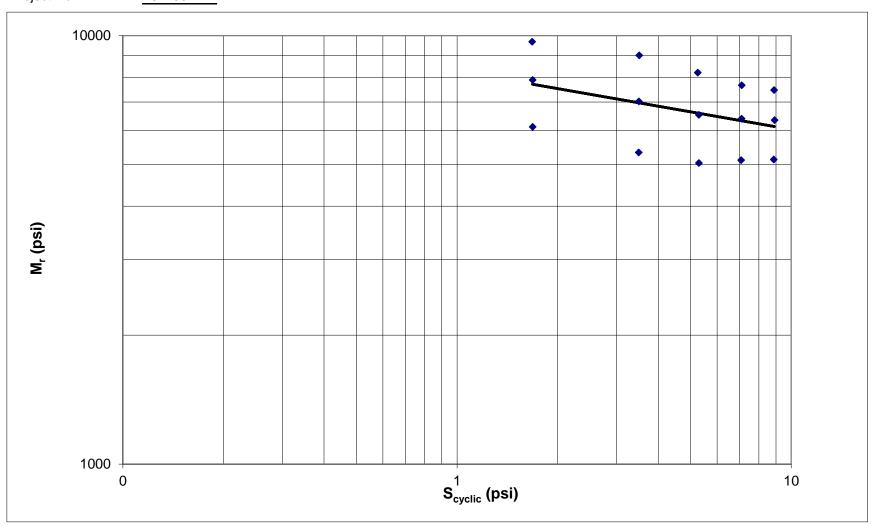
Percent Passing No. 10

4

Percent Passing No. 200

81.0

7.8


	Nominal		Actual	Actual	Actual	Actual	Actual		Recov.	Average		
Chamber	Maximum	Actual	Applied	Applied	Applied	Applied	Applied	Recov. Def.	Def. LVDT	Recov.		
Confining	Axial	Applied Max.	Cyclic	Contact	Max. Axial	Cyclic	Contact	LVDT #1	#2	Def. LVDT		Resilient
Pressure	Stress	Axial Load	Load	Load	Stress	Stress	Stress	Reading	Reading	1 and 2	Resilient Strain	Modulus
(S ₃)	(S _{cyclic})	(P _{max})	(P _{cyclic})	(P _{contact})	(S_{max})	(S _{cyclic})	(S _{contact})	(H ₁)	(H ₂)	(H _{avg})	(\mathfrak{S}_{r})	(M_r)
psi	psi	lb	lb	lb	psi	psi	psi	in	in	in	in/in	psi
5.99	2.00	24.4	20.4	4.0	2.01	1.68	0.328	0.0014	0.0013	0.0014	0.000173	9,681
5.99	4.00	49.1	42.8	6.3	4.03	3.51	0.518	0.0031	0.0030	0.0031	0.000390	8,999
6.00	6.00	73.5	64.0	9.5	6.04	5.25	0.781	0.0052	0.0049	0.0050	0.000641	8,199
6.01	8.00	97.9	86.6	11.4	8.04	7.11	0.932	0.0077	0.0069	0.0073	0.000928	7,658
6.01	10.00	122.1	108.2	13.9	10.03	8.88	1.142	0.0098	0.0089	0.0094	0.001191	7,462
4.00	2.00	24.4	20.5	3.9	2.00	1.68	0.317	0.0018	0.0016	0.0017	0.000214	7,882
4.01	4.00	48.9	42.6	6.3	4.01	3.50	0.515	0.0041	0.0038	0.0039	0.000498	7,024
4.01	6.00	73.4	64.5	8.9	6.03	5.30	0.732	0.0069	0.0059	0.0064	0.000810	6,534
4.01	8.00	97.8	86.5	11.2	8.03	7.11	0.923	0.0092	0.0083	0.0087	0.001110	6,399
4.01	10.00	122.3	108.6	13.7	10.04	8.91	1.124	0.0116	0.0105	0.0111	0.001404	6,348
1.99	2.00	24.2	20.5	3.7	1.99	1.68	0.303	0.0023	0.0021	0.0022	0.000275	6,126
2.00	4.00	48.7	42.6	6.1	4.00	3.50	0.504	0.0055	0.0049	0.0052	0.000656	5,335
2.00	6.00	73.0	64.5	8.5	6.00	5.29	0.702	0.0088	0.0077	0.0083	0.001050	5,043
2.00	8.00	97.5	86.2	11.3	8.01	7.08	0.924	0.0115	0.0103	0.0109	0.001383	5,122
2.00	10.00	121.8	108.0	13.7	10.00	8.87	1.126	0.0143	0.0129	0.0136	0.001726	5,140

Date Reported: Terracon Lab No. 5/27/2014 Bulk 2_OMC+2% 0.00

Project No.

04135111

 $Mr = K1 \times S_{cylic}^{k2}$

S3 (psi)	K 1	K2	R ²
6	10716.5	-0.164	0.97
4	8371.3	-0.136	0.97
2	6305.6	-0.110	0.82
All	8271.3	-0.136	0.16

Date Reported: Terracon Lab No. Project No. 5/27/2014 Bulk 2_OMC+2% 04135111 0

Resilient Modulus Testing - AASHTO T 307-99 English Units

 Soil Map Unit:
 0

 Soil Symbol:
 CL

 Depth (in.)
 6 to 36

 Compaction Method
 Static

 Max. Dry Density (pcf)
 101.3

 Opt. Moisture Content (%)
 20.4

 Inside Mold Diameter (in)
 3.94

Weight of Wet Soil (lb) 6.24 Initial Sample Diameter (in) 3.94 Initial Sample Height (in) 7.90 Initial Sample Area (in²) 12.17 Sample Volume (in³) 96.16 Compacted Moisture Content(%) 20.9 Wet Density (pcf) 112.1 Dry Density (pcf) 92.7

 Report Date:
 27-May-14

 Lab No.:
 Bulk 3_OMC

 Project No.:
 04135111

 Test Date:
 March 24, 2014

Final Sample Height (in)

Final Sample Wet Weight (lb)

 Final Moisture Content (%)
 20.7

 Accumulated Strain (%)
 0.26

 Percent Passing No. 10
 8

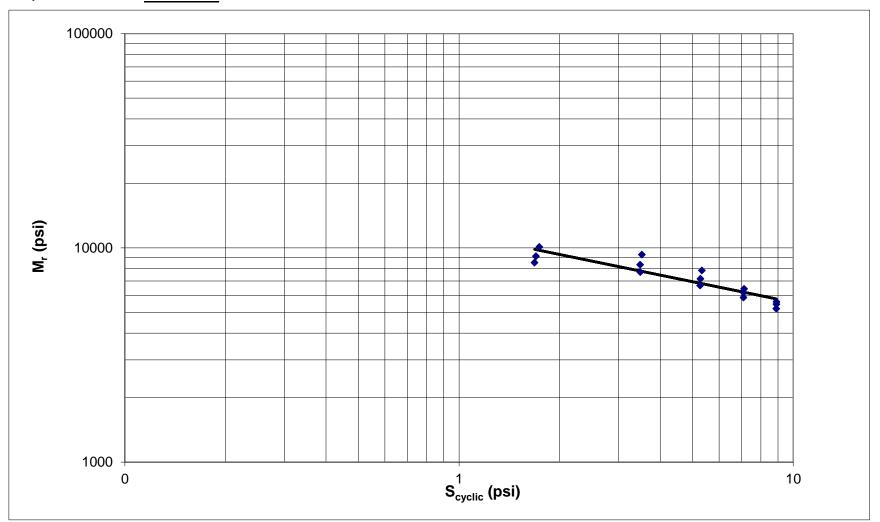
 Percent Passing No. 200
 86.0

 Liquid Limit
 41

 Plasticity Index
 25

7.9

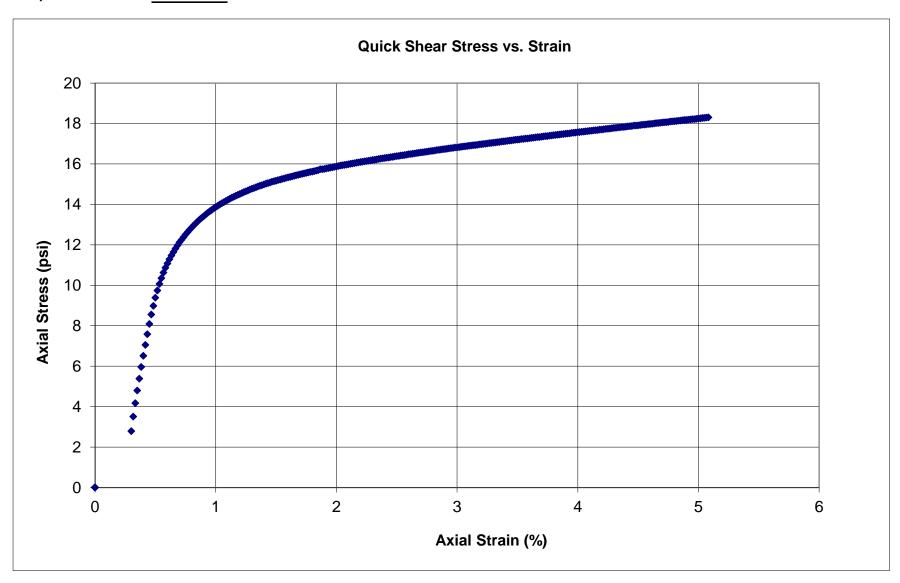
6.24


Chamber	Nominal Maximum	A otuol	Actual	Actual Applied	Actual	Actual	Actual	Bosov Dof	Recov. Def. LVDT	Average		
			Applied		Applied	Applied	Applied			Recov.		Decilions
Confining		Applied Max.	Cyclic	Contact	Max. Axial	,	Contact	LVDT #1		Def. LVDT		Resilient
Pressure	Stress	Axial Load	Load	Load	Stress	Stress	Stress	Reading	Reading	1 and 2	Resilient Strain	Modulus
(S ₃)	(S_{cyclic})	(P _{max})	(P _{cyclic})	(P _{contact})	(S _{max})	(S _{cyclic})	(S _{contact})	(H₁)	(H_2)	(H _{avg})	(\mathfrak{E}_{r})	(M_r)
psi	psi	lb	lb	lb	psi	psi	psi	in	in	in	in/in	psi
6.01	2.00	24.0	21.2	2.8	1.97	1.74	0.232	0.0015	0.0012	0.0014	0.000172	10,095
6.00	4.00	48.2	42.9	5.3	3.96	3.53	0.437	0.0032	0.0027	0.0030	0.000379	9,291
6.01	6.00	72.8	64.9	8.0	5.98	5.33	0.654	0.0055	0.0052	0.0054	0.000680	7,837
6.00	8.00	97.4	86.8	10.6	8.00	7.13	0.869	0.0094	0.0081	0.0088	0.001108	6,437
6.01	10.00	121.8	108.4	13.4	10.01	8.90	1.102	0.0133	0.0118	0.0126	0.001591	5,596
4.02	2.00	24.0	20.7	3.3	1.97	1.70	0.269	0.0016	0.0013	0.0015	0.000186	9,144
4.00	4.00	48.2	42.4	5.8	3.96	3.48	0.479	0.0037	0.0029	0.0033	0.000417	8,345
4.00	6.00	72.9	64.2	8.7	5.99	5.28	0.715	0.0064	0.0052	0.0058	0.000736	7,169
4.01	8.00	97.4	86.5	10.9	8.00	7.10	0.895	0.0098	0.0083	0.0091	0.001148	6,188
4.00	10.00	121.6	108.4	13.2	9.99	8.91	1.085	0.0137	0.0121	0.0129	0.001632	5,455
2.00	2.00	23.7	20.5	3.2	1.95	1.68	0.264	0.0017	0.0014	0.0016	0.000197	8,533
2.02	4.00	48.3	42.4	5.9	3.97	3.48	0.484	0.0040	0.0032	0.0036	0.000452	7,707
2.02	6.00	72.7	64.1	8.6	5.97	5.26	0.710	0.0069	0.0056	0.0062	0.000790	6,666
2.02	8.00	97.2	86.4	10.7	7.98	7.10	0.883	0.0102	0.0089	0.0096	0.001211	5,864
1.99	10.00	121.4	108.3	13.1	9.97	8.90	1.075	0.0142	0.0128	0.0135	0.001711	5,201

Date Reported: Terracon Lab No. 5/27/2014 Bulk 3_OMC 0.00

Terracon Lab N Project No.

04135111



 $Mr = K1 \times S_{cylic}^{k2}$

S3 (psi)	K 1	K2	R ²
6	13284.4	-0.360	0.89
4	11399.7	-0.309	0.92
2	10430.3	-0.293	0.93
All	11620.9	-0.319	0.83

Date Reported: Terracon Lab No. Project No. 5/27/2014 Bulk 3_OMC 04135111

Resilient Modulus Testing - AASHTO T 307-99 English Units

 Soil Map Unit:
 0

 Soil Symbol:
 CL

 Depth (in.)
 6 to 36

 Compaction Method
 Static

 Max. Dry Density (pcf)
 101.3

 Opt. Moisture Content (%)
 20.4

 Inside Mold Diameter (in)
 3.94

Weight of Wet Soil (lb) 6.34 Initial Sample Diameter (in) 3.94 Initial Sample Height (in) 7.87 Initial Sample Area (in²) 12.17 Sample Volume (in³) 95.86 Compacted Moisture Content(%) 22.9 Wet Density (pcf) 114.2 Dry Density (pcf) 92.9

 Report Date:
 27-May-14

 Lab No.:
 Bulk 3_OMC+2%

 Project No.:
 04135111

 Test Date:
 March 24, 2014

Final Sample Height (in)

Final Sample Wet Weight (lb)

 Final Moisture Content (%)
 22.7

 Accumulated Strain (%)
 0.75

 Percent Passing No. 10
 8

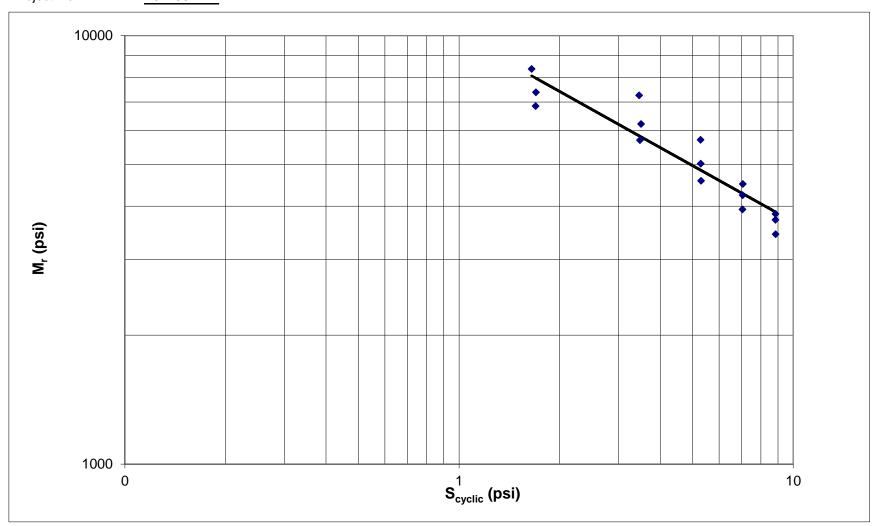
 Percent Passing No. 200
 86.0

 Liquid Limit
 41

 Plasticity Index
 25

7.8

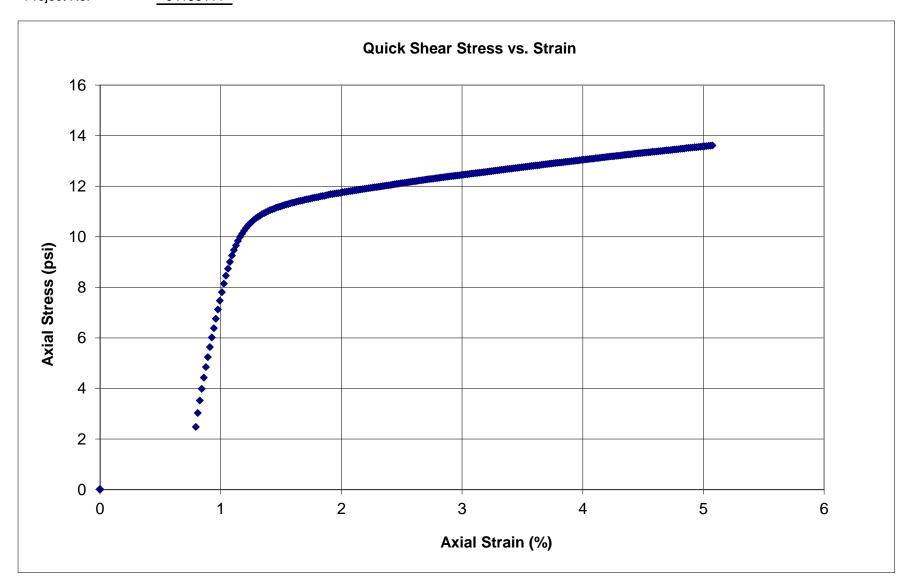
6.34


Oh a sa h a s	Nominal	A -4I	Actual	Actual	Actual	Actual	Actual	Dansu Daf	Recov.	Average		
Chamber	Maximum	Actual	Applied	Applied	Applied	Applied	Applied	Recov. Def.				Desilient
Confining	Axial	Applied Max.	Cyclic		Max. Axial	,	Contact	LVDT #1		Def. LVDT		Resilient
Pressure	Stress	Axial Load	Load	Load	Stress	Stress	Stress	Reading	Reading	1 and 2	Resilient Strain	
(S ₃)	(S _{cyclic})	(P _{max})	(P _{cyclic})	(P _{contact})	(S _{max})	(S_{cyclic})	(S _{contact})	(H₁)	(H_2)	(H_{avg})	(€ _r)	(M_r)
psi	psi	lb	lb	lb	psi	psi	psi	in	in	in	in/in	psi
6.00	2.00	24.2	20.1	4.1	1.99	1.65	0.337	0.0016	0.0015	0.0016	0.000197	8,360
6.00	4.00	48.7	42.1	6.5	4.00	3.46	0.537	0.0039	0.0036	0.0038	0.000477	7,255
6.01	6.00	73.4	64.3	9.1	6.02	5.28	0.745	0.0076	0.0070	0.0073	0.000924	5,713
6.00	8.00	97.7	86.1	11.6	8.02	7.07	0.951	0.0130	0.0117	0.0124	0.001569	4,505
6.00	10.00	121.8	107.8	14.0	10.00	8.85	1.148	0.0189	0.0175	0.0182	0.002307	3,835
4.03	2.00	24.7	20.7	4.0	2.02	1.70	0.327	0.0020	0.0016	0.0018	0.000230	7,377
4.02	4.00	49.1	42.7	6.4	4.03	3.51	0.525	0.0049	0.0039	0.0044	0.000563	6,222
4.01	6.00	73.3	64.4	8.9	6.02	5.29	0.732	0.0089	0.0077	0.0083	0.001052	5,026
4.02	8.00	97.5	86.0	11.5	8.00	7.06	0.946	0.0142	0.0120	0.0131	0.001664	4,241
4.00	10.00	121.7	107.8	13.9	9.99	8.85	1.143	0.0196	0.0179	0.0188	0.002381	3,715
2.00	2.00	24.5	20.6	3.8	2.01	1.69	0.315	0.0021	0.0018	0.0019	0.000248	6,846
1.99	4.00	48.8	42.4	6.4	4.01	3.48	0.527	0.0053	0.0043	0.0048	0.000610	5,702
1.99	6.00	73.4	64.6	8.8	6.02	5.30	0.722	0.0099	0.0083	0.0091	0.001157	4,582
1.99	8.00	97.1	85.9	11.3	7.97	7.05	0.925	0.0152	0.0131	0.0141	0.001794	3,928
2.01	10.00	121.7	107.9	13.8	9.99	8.86	1.132	0.0212	0.0194	0.0203	0.002578	3,438

Date Reported: Terracon Lab No. 5/27/2014 Bulk 3_OMC+2% 0.00

Project No.

04135111



 $Mr = K1 \times S_{cylic}^{k2}$

S3 (psi)	K 1	K2	R ²		
6	11498.6	-0.466	0.92		
4	9716.6	-0.418	0.96		
2	8953.4	-0.418	0.97		
All	10017.4	-0.435	0.87		

Date Reported: Terracon Lab No. Project No. 5/27/2014 Bulk 3_OMC+2% 04135111

Resilient Modulus Testing - AASHTO T 307-99 English Units

 Soil Map Unit:
 0

 Soil Symbol:
 A-4 / GC-GM

 Depth (in.)
 0

 Compaction Method
 Static

 Max. Dry Density (pcf)
 115.0

 Opt. Moisture Content (%)
 13.0

 Inside Mold Diameter (in)
 3.94

Weight of Wet Soil (lb) 6.85 Initial Sample Diameter (in) 3.94 Initial Sample Height (in) 7.87 Initial Sample Area (in²) 12.17 Sample Volume (in³) 95.86 Compacted Moisture Content(%) 12.5 123.4 Wet Density (pcf) Dry Density (pcf) 109.7
 Report Date:
 27-May-14

 Lab No.:
 Bulk 4_OMC

 Project No.:
 04135111

 Test Date:
 April 1, 2014

Final Sample Height (in)

Final Sample Wet Weight (lb) 6.84

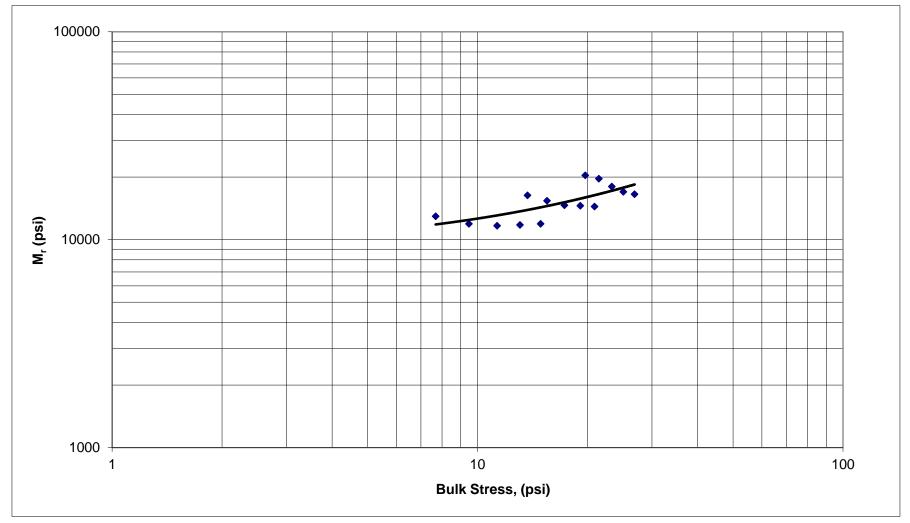
Final Moisture Content (%) 12.5

Accumulated Strain (%) 0.17

Percent Passing No. 10 0

Percent Passing No. 200 0.0

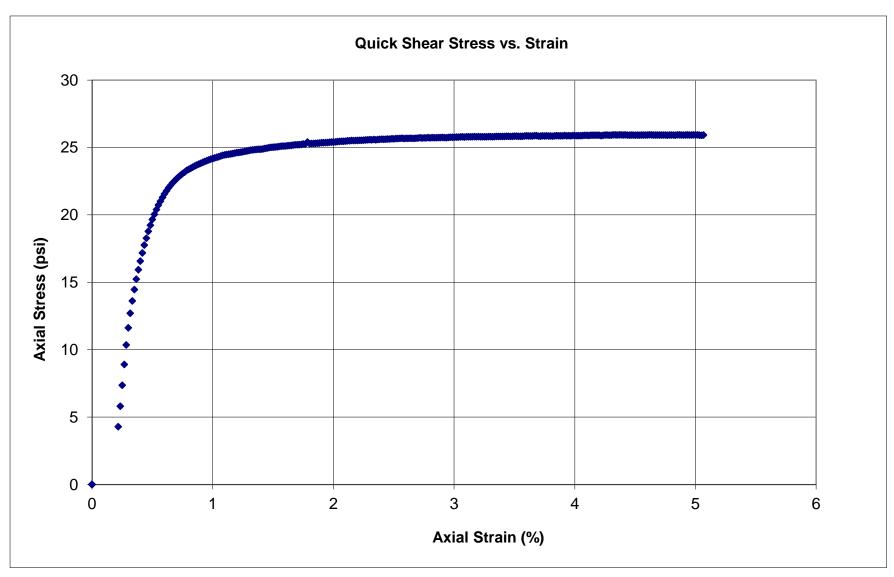
Liquid Limit 22


Plasticity Index 4

7.9

	Nominal		Actual	Actual	Actual	Actual	Actual		Recov.	Average		
Chamber	Maximum		Applied	Applied	Applied	Applied	Applied		Def. LVDT	Recov.		
Confining	Axial	Applied Max.	Cyclic	Contact	Max. Axial	Cyclic	Contact	LVDT #1	#2	Def. LVDT		Resilient
Pressure	Stress	Axial Load	Load	Load	Stress	Stress	Stress	Reading	Reading	1 and 2	Resilient Strain	Modulus
(S ₃)	(S _{cyclic})	(P _{max})	(P _{cyclic})	(P _{contact})	(S _{max})	(S _{cyclic})	(S _{contact})	(H ₁)	(H ₂)	(H _{avg})	(€ _r)	(M_r)
psi	psi	lb	lb	lb	psi	psi	psi	in	in	in	in/in	psi
6.00	2.00	24.2	20.8	3.4	1.99	1.71	0.281	0.0007	0.0006	0.0007	0.000084	20,369
5.99	4.00	48.5	42.8	5.7	3.99	3.52	0.472	0.0014	0.0014	0.0014	0.000179	19,618
6.00	6.00	73.0	64.6	8.4	5.99	5.31	0.687	0.0025	0.0022	0.0023	0.000295	17,993
6.00	8.00	97.4	86.1	11.3	8.00	7.07	0.925	0.0034	0.0031	0.0033	0.000417	16,971
6.00	10.00	121.8	108.2	13.6	10.01	8.89	1.114	0.0044	0.0041	0.0042	0.000538	16,520
4.00	2.00	24.2	20.7	3.5	1.99	1.70	0.291	0.0009	0.0007	0.0008	0.000104	16,337
4.00	4.00	48.5	42.5	6.0	3.98	3.49	0.492	0.0019	0.0017	0.0018	0.000227	15,369
4.00	6.00	73.0	64.5	8.5	6.00	5.30	0.701	0.0031	0.0026	0.0029	0.000362	14,633
4.01	8.00	97.5	86.2	11.2	8.01	7.08	0.924	0.0041	0.0035	0.0038	0.000487	14,547
4.00	10.00	121.7	108.2	13.5	10.00	8.89	1.106	0.0051	0.0046	0.0049	0.000617	14,414
2.01	2.00	24.0	20.3	3.7	1.97	1.67	0.306	0.0011	0.0009	0.0010	0.000129	12,953
2.00	4.00	48.6	42.4	6.2	3.99	3.48	0.506	0.0024	0.0022	0.0023	0.000292	11,920
2.00	6.00	73.0	64.6	8.4	6.00	5.31	0.692	0.0039	0.0033	0.0036	0.000456	11,651
2.00	8.00	97.3	86.2	11.1	7.99	7.08	0.909	0.0051	0.0044	0.0047	0.000603	11,755
2.00	10.00	121.6	108.1	13.5	9.99	8.89	1.108	0.0062	0.0056	0.0059	0.000746	11,905

Date Reported: Terracon Lab No. Project No. 5/27/2014 Bulk 4_OMC 04135111


$$Mr = K1 \times \Theta^{k2}$$

$$[\Theta = S_{cyclic} + 3 (S3)]$$

S3 (psi)	K1	K2	R ²
6	179639.9	-0.728	0.98
4	34888.8	-0.296	0.89
2	16096.9	-0.122	0.56
All	5424.1	0.361	0.50

Date Reported: Terracon Lab No. Project No. 5/27/2014 Bulk 4_OMC 04135111

Resilient Modulus Testing - AASHTO T 307-99 English Units

 Soil Map Unit:
 0

 Soil Symbol:
 A-4 / GC-GM

 Depth (in.)
 0

 Compaction Method
 Static

 Max. Dry Density (pcf)
 115.0

 Opt. Moisture Content (%)
 13.0

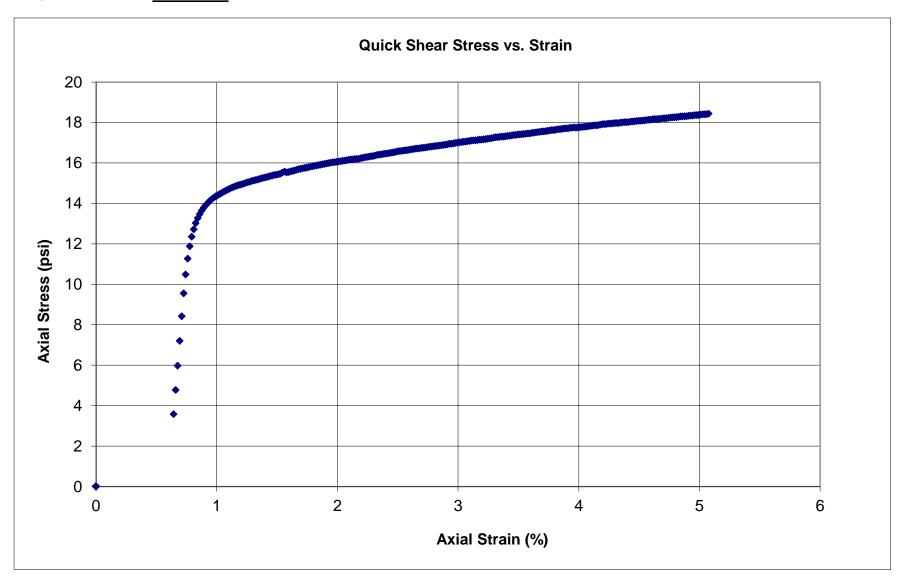
 Inside Mold Diameter (in)
 3.94

Weight of Wet Soil (lb) 6.97 Initial Sample Diameter (in) 3.94 Initial Sample Height (in) 7.87 Initial Sample Area (in²) 12.17 Sample Volume (in³) 95.86 Compacted Moisture Content(%) 14.5 Wet Density (pcf) 125.6 Dry Density (pcf) 109.7

 Report Date:
 27-May-14

 Lab No.:
 Bulk 4_OMC+2%

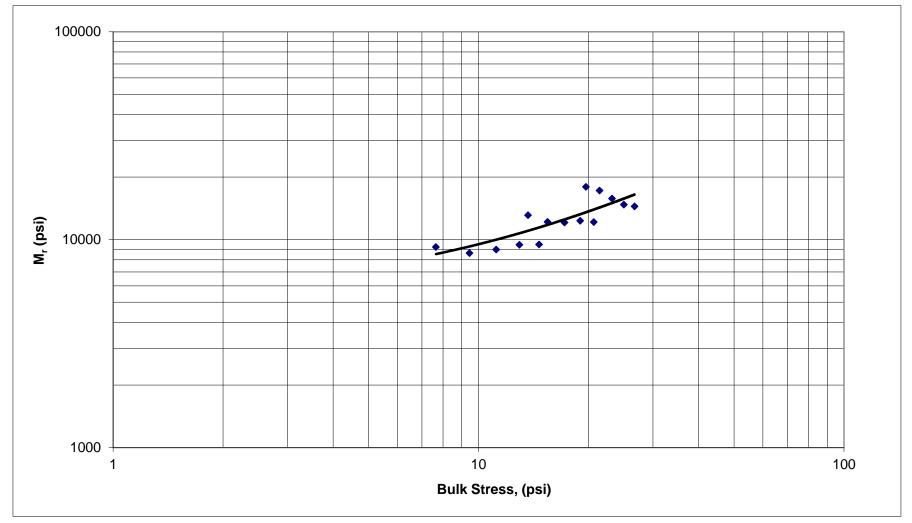
 Project No.:
 04135111


 Test Date:
 April 1, 2014

Final Sample Height (in) 7.8 Final Sample Wet Weight (lb) 6.96 Final Moisture Content (%) 14.5 Accumulated Strain (%) 0.60 Percent Passing No. 10 0 Percent Passing No. 200 0.0 Liquid Limit 22 Plasticity Index 4

Chambar	Nominal	A atual	Actual	Actual	Actual	Actual	Actual	Daggy Dof	Recov.	Average		
Chamber	Maximum	Actual	Applied	Applied	Applied	Applied	Applied	Recov. Def.				Daailiaat
Confining	Axial	Applied Max.	Cyclic		Max. Axial	,	Contact	LVDT #1		Def. LVDT		Resilient
Pressure	Stress	Axial Load	Load	Load	Stress	Stress	Stress	Reading	Reading	1 and 2	Resilient Strain	Modulus
(S_3)	(S _{cyclic})	(P _{max})	(P _{cyclic})	(P _{contact})	(S_{max})	(S _{cyclic})	(S _{contact})	(H₁)	(H_2)	(H _{avg})	(\mathfrak{E}_{r})	(M_r)
psi	psi	lb	lb	lb	psi	psi	psi	in	in	in	in/in	psi
6.01	2.00	23.6	20.0	3.6	1.94	1.64	0.299	0.0007	0.0007	0.0007	0.000091	17,943
6.01	4.00	47.5	41.4	6.1	3.90	3.40	0.498	0.0016	0.0015	0.0016	0.000197	17,232
6.00	6.00	71.9	63.2	8.7	5.91	5.19	0.715	0.0027	0.0025	0.0026	0.000330	15,754
6.00	8.00	96.4	85.1	11.4	7.92	6.99	0.934	0.0038	0.0037	0.0037	0.000474	14,745
6.00	10.00	120.3	106.3	14.0	9.88	8.73	1.151	0.0048	0.0048	0.0048	0.000605	14,438
4.00	2.00	23.8	20.3	3.4	1.95	1.67	0.283	0.0010	0.0010	0.0010	0.000127	13,096
4.01	4.00	47.7	41.7	6.0	3.92	3.43	0.492	0.0022	0.0022	0.0022	0.000282	12,173
4.00	6.00	71.9	63.3	8.6	5.91	5.20	0.705	0.0034	0.0033	0.0034	0.000431	12,071
4.01	8.00	96.1	84.9	11.2	7.89	6.97	0.924	0.0045	0.0044	0.0045	0.000566	12,312
4.00	10.00	119.6	105.6	14.0	9.82	8.67	1.153	0.0056	0.0056	0.0056	0.000713	12,155
2.00	2.00	23.8	20.1	3.7	1.95	1.65	0.301	0.0014	0.0015	0.0014	0.000180	9,208
2.00	4.00	47.9	42.0	5.9	3.93	3.45	0.485	0.0031	0.0032	0.0032	0.000401	8,610
2.00	6.00	71.9	63.0	8.9	5.91	5.18	0.732	0.0046	0.0045	0.0046	0.000578	8,956
2.00	8.00	95.7	84.5	11.2	7.86	6.94	0.921	0.0058	0.0057	0.0058	0.000735	9,437
2.00	10.00	119.2	105.2	14.0	9.79	8.64	1.151	0.0072	0.0072	0.0072	0.000912	9,474

Date Reported: Terracon Lab No. Project No. 5/27/2014 Bulk 4_OMC+2% 04135111



Date Reported: Terracon Lab No. 5/27/2014

Bulk 4_OMC+2%

Project No.

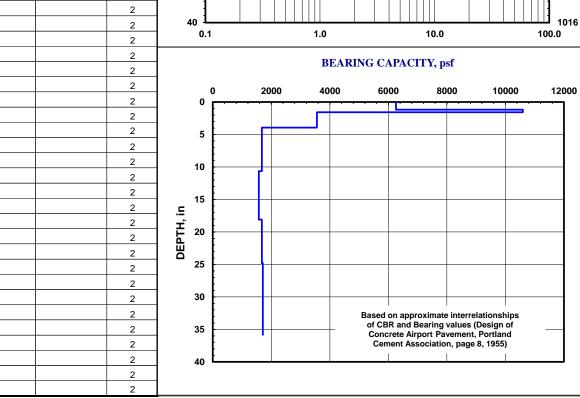
04135111

$$Mr = K1 \times \Theta^{k2}$$

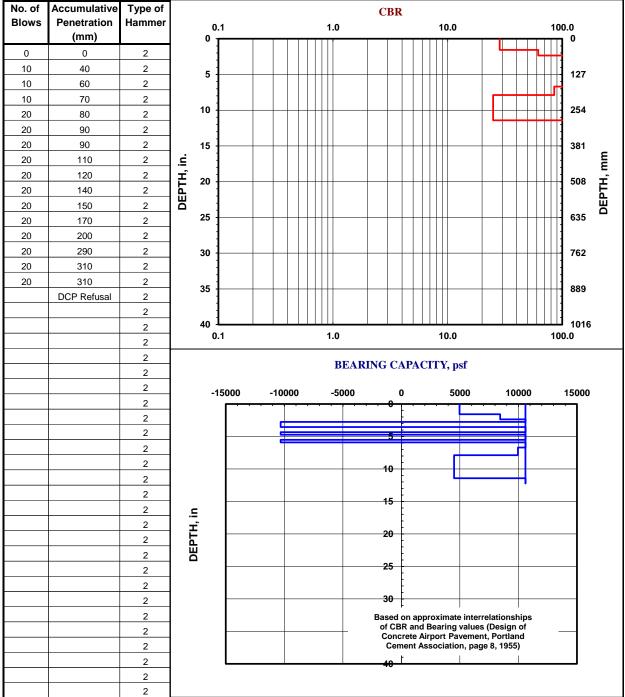
$$[\Theta = S_{cyclic} + 3 (S3)]$$

S3 (psi)	K1	K2	R ²
6	180051.2	-0.772	0.97
4	18431.2	-0.141	0.48
2	7516.4	0.082	0.28
All	2650.1	0.547	0.67

APPENDIX C DYNAMIC CONE PENETRATION TEST RESULTS

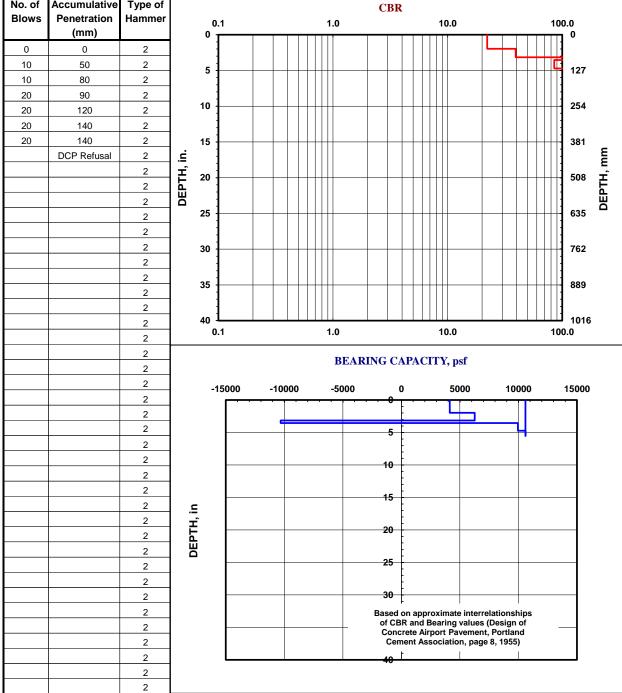

DCP TEST DATA File Name: Project: 22-Feb-14 Date: Location: Soil Type(s): See boring log BR-001 Hammer -Soil Type • 10.1 lbs. \bigcirc CH ○ 17.6 lbs. Ō CL O Both hammers used All other soils Accumulative No. of Type of **CBR Blows** Penetration Hammer 100.0 0.1 1.0 10.0 (mm) DEPTH, mm DEPTH, in. 0.1 1.0 10.0 100.0 **BEARING CAPACITY, psf** Based on approximate interrelationships of CBR and Bearing values (Design of Concrete Airport Pavement, Portland Cement Association, page 8, 1955)

DCP TEST DATA File Name: Project: Date: 22-Feb-14 Location: Soil Type(s): See boring log **BR-002** Hammer -Soil Type • 10.1 lbs. \bigcirc CH ○ 17.6 lbs. Ō CL \bigcirc Both hammers used All other soils Accumulative No. of Type of **CBR** Blows Penetration Hammer 100.0 0.1 1.0 10.0 (mm) DEPTH, mm DEPTH, in. 0.1 1.0 10.0 100.0 **BEARING CAPACITY, psf**

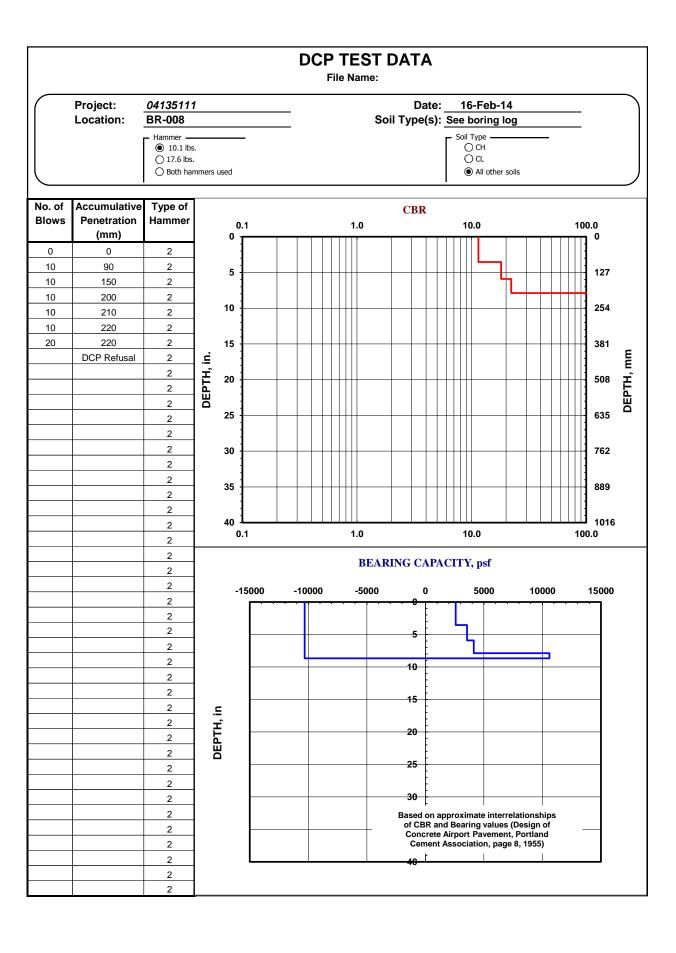

Based on approximate interrelationships of CBR and Bearing values (Design of Concrete Airport Pavement, Portland

Cement Association, page 8, 1955)

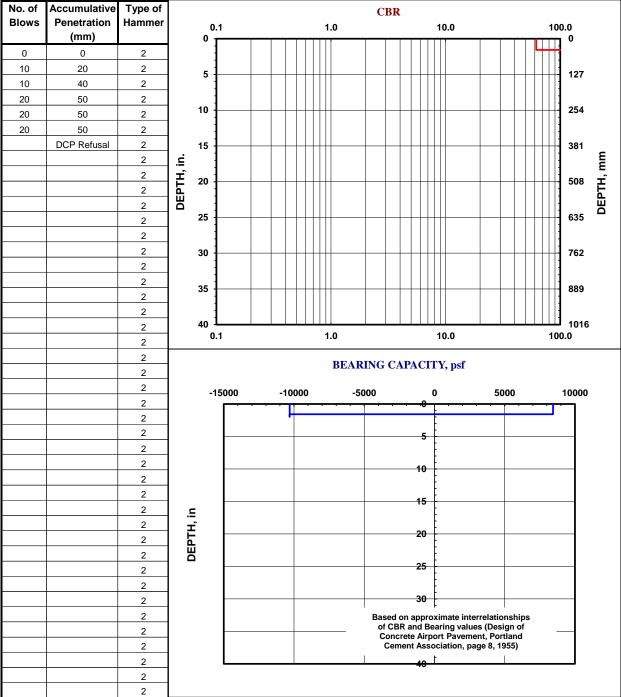
DCP TEST DATA File Name: Project: Date: 2-Feb-14 Location: BR-003 Soil Type(s): See boring log Hammer -Soil Type • 10.1 lbs. \bigcirc CH ○ 17.6 lbs. Ō CL O Both hammers used All other soils Accumulative No. of Type of **CBR Blows** Penetration Hammer 100.0 0.1 1.0 10.0 (mm) DEPTH, mm DEPTH, in. 0.1 1.0 10.0 100.0

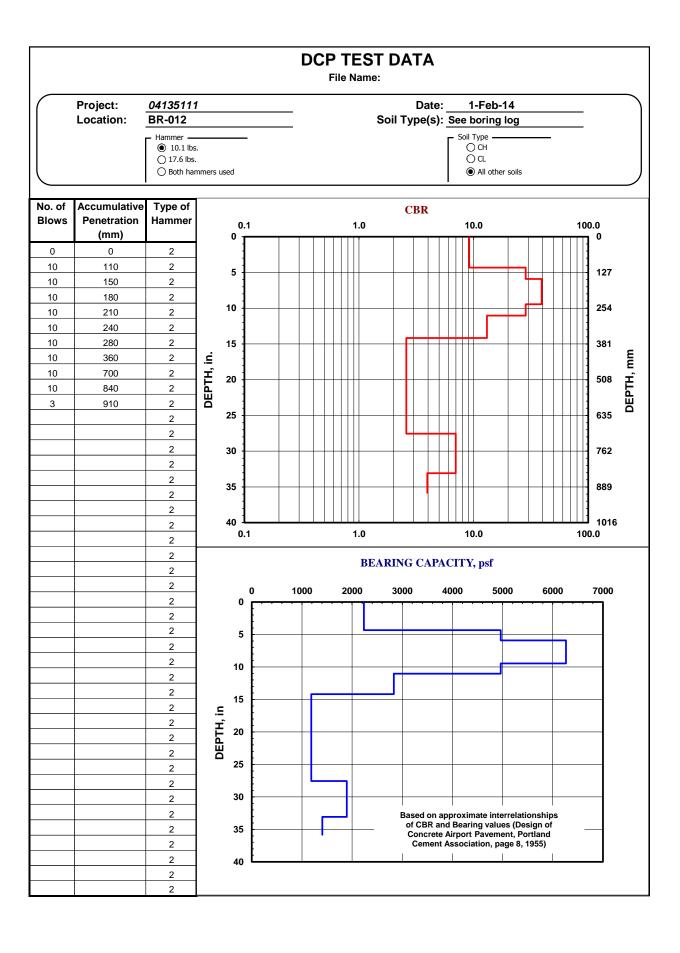


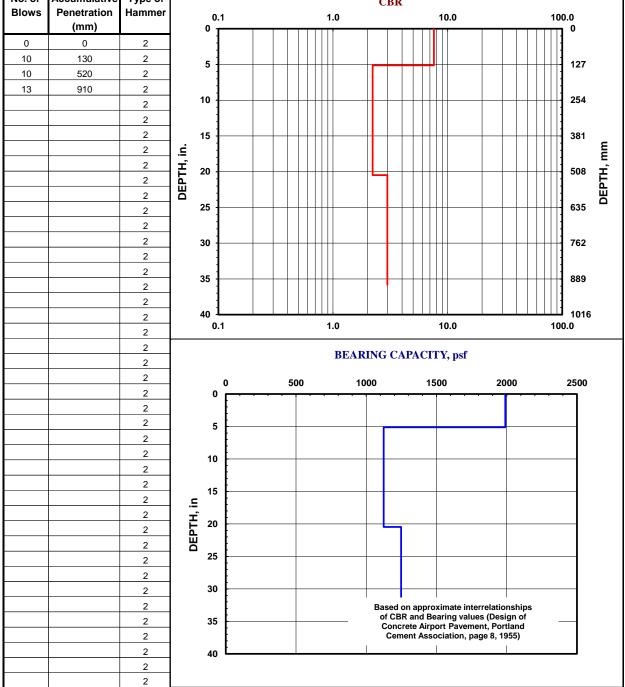
DCP TEST DATA File Name: Project: 04135111 1-Feb-14 Date: Location: Soil Type(s): See boring log **BR-004** Hammer -Soil Type • 10.1 lbs. \bigcirc CH ○ 17.6 lbs. Ō CL \bigcirc Both hammers used All other soils No. of Accumulative Type of **CBR Blows** Penetration Hammer 100.0 0.1 1.0 10.0



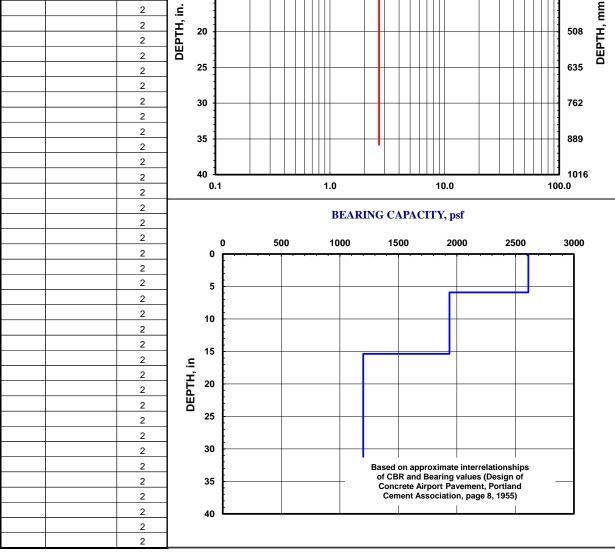
DCP TEST DATA File Name: Project: Date: 2-Feb-14 Location: BR-005 Soil Type(s): See boring log Hammer -Soil Type ○ CH • 10.1 lbs. ○ 17.6 lbs. O Both hammers used All other soils Accumulative No. of Type of CBR **Blows** Penetration Hammer 10.0 100.0 0.1 1.0 (mm) DEPTH, mm DEPTH, in. 0.1 1.0 10.0 100.0 **BEARING CAPACITY, psf** DEPTH, in Based on approximate interrelationships of CBR and Bearing values (Design of Concrete Airport Pavement, Portland Cement Association, page 8, 1955)

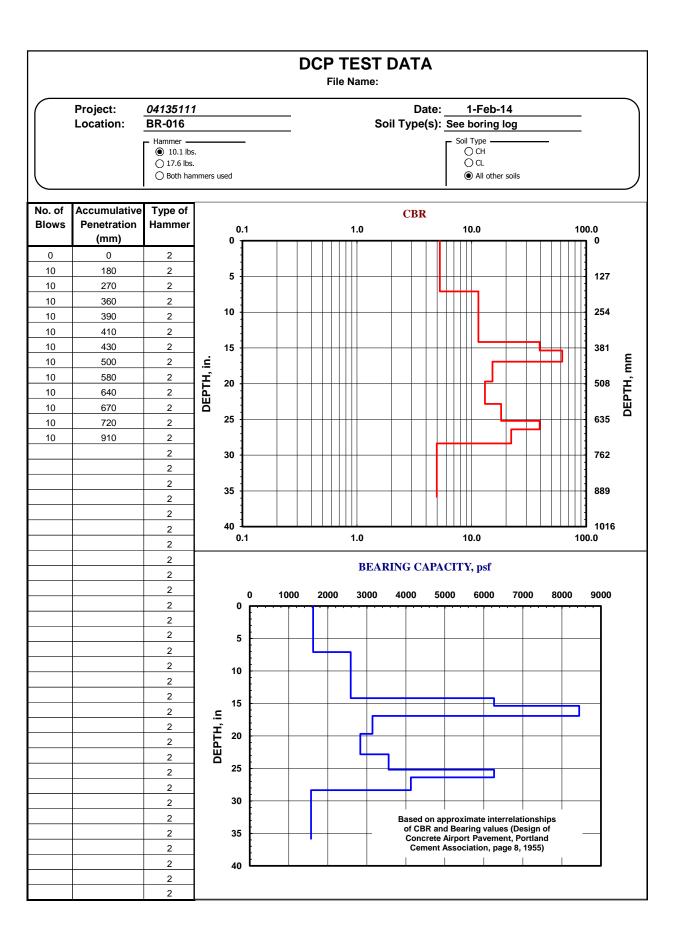

DCP TEST DATA File Name: Project: 04135111 Date: 16-Feb-14 Location: BR-006 Soil Type(s): See boring log Hammer -Soil Type • 10.1 lbs. \bigcirc CH ○ 17.6 lbs. Ō CL O Both hammers used All other soils Accumulative No. of Type of **CBR Blows** Penetration Hammer 10.0 100.0 0.1 1.0 (mm) 0 0 0 0 2

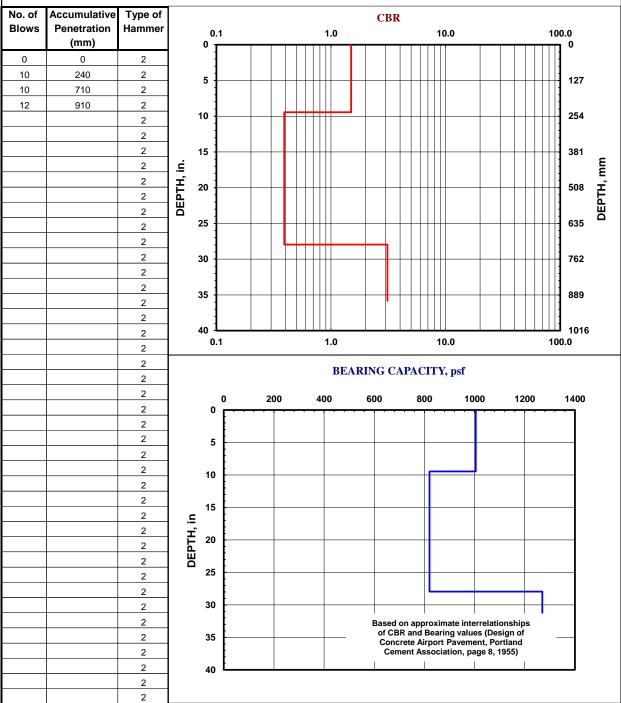

DCP TEST DATA File Name: Project: Date: 15-Feb-14 Location: Soil Type(s): See boring log **BR-007** Hammer -Soil Type • 10.1 lbs. \bigcirc CH ○ 17.6 lbs. Ō CL O Both hammers used All other soils Accumulative No. of Type of **CBR Blows** Penetration Hammer 100.0 0.1 1.0 10.0 (mm) DEPTH, mm DEPTH, in. 0.1 1.0 10.0 100.0 BEARING CAPACITY, psf Based on approximate interrelationships of CBR and Bearing values (Design of Concrete Airport Pavement, Portland Cement Association, page 8, 1955)


DCP TEST DATA File Name: Project: 04135111 Date: 16-Feb-14 Location: BR-009 Soil Type(s): See boring log Hammer -Soil Type ○ CH • 10.1 lbs. ○ 17.6 lbs. O Both hammers used All other soils

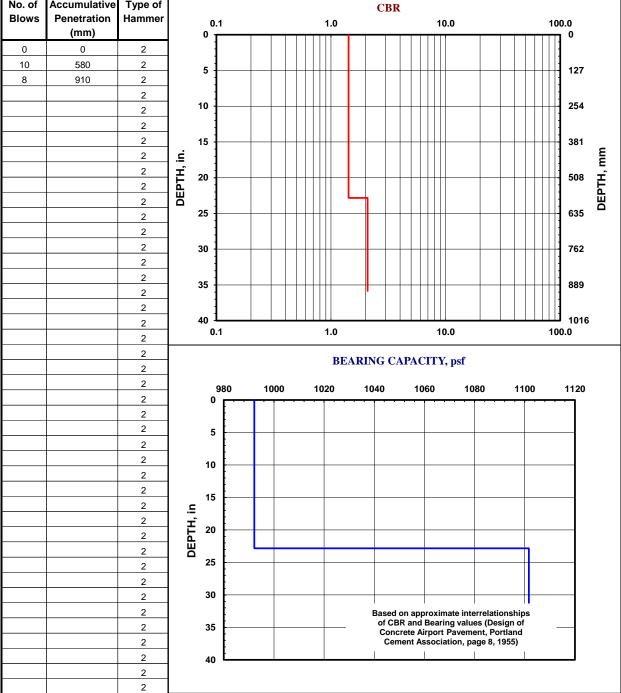
DCP TEST DATA File Name: Project: Date: 22-Feb-14 Location: BR-010 Soil Type(s): See boring log Hammer -Soil Type • 10.1 lbs. \bigcirc CH ○ 17.6 lbs. Ō CL O Both hammers used All other soils Accumulative No. of Type of **CBR Blows** Penetration Hammer 10.0 100.0 0.1 1.0 (mm) DCP Refusal DEPTH, mm DEPTH, in. 0.1 1.0 10.0 100.0 **BEARING CAPACITY, psf** -15000 -10000 -5000 Based on approximate interrelationships of CBR and Bearing values (Design of Concrete Airport Pavement, Portland Cement Association, page 8, 1955)

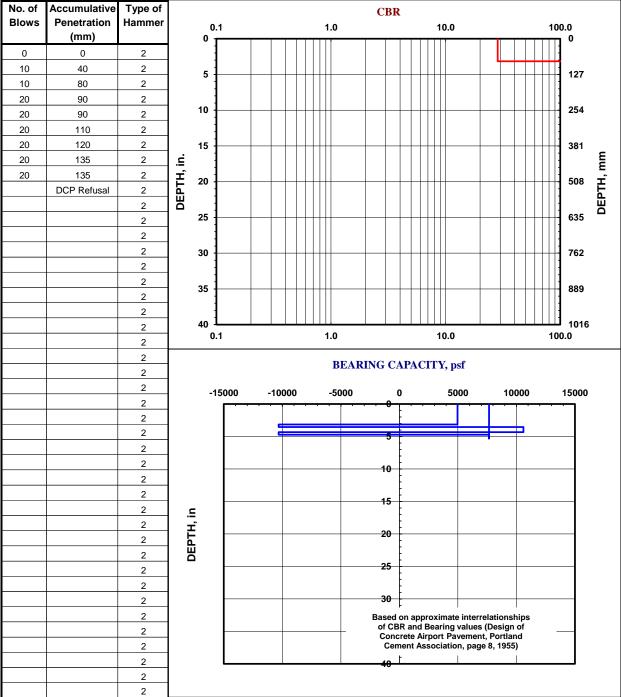


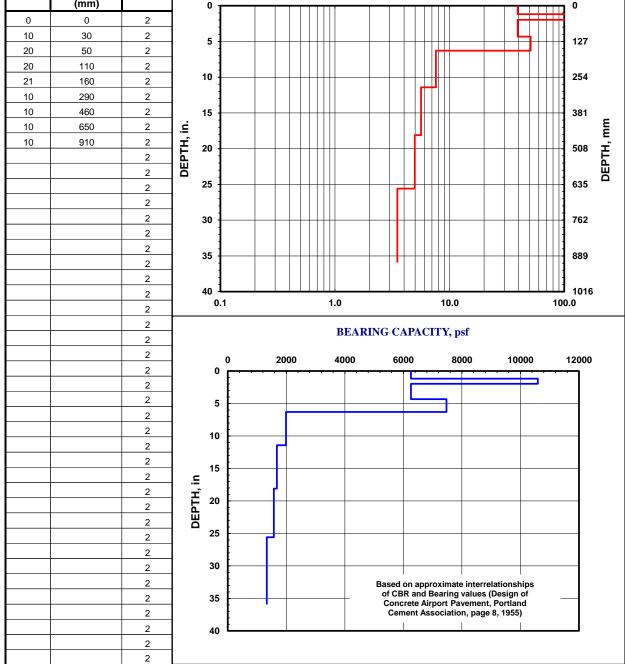

DCP TEST DATA File Name: Project: 04135111 Date: 15-Feb-14 Location: BR-013 Soil Type(s): See boring log Hammer -Soil Type ○ CH • 10.1 lbs. ○ 17.6 lbs. O Both hammers used All other soils Accumulative No. of Type of CBR **Blows** Penetration Hammer 10.0 100.0 0.1 1.0 (mm) 0 0

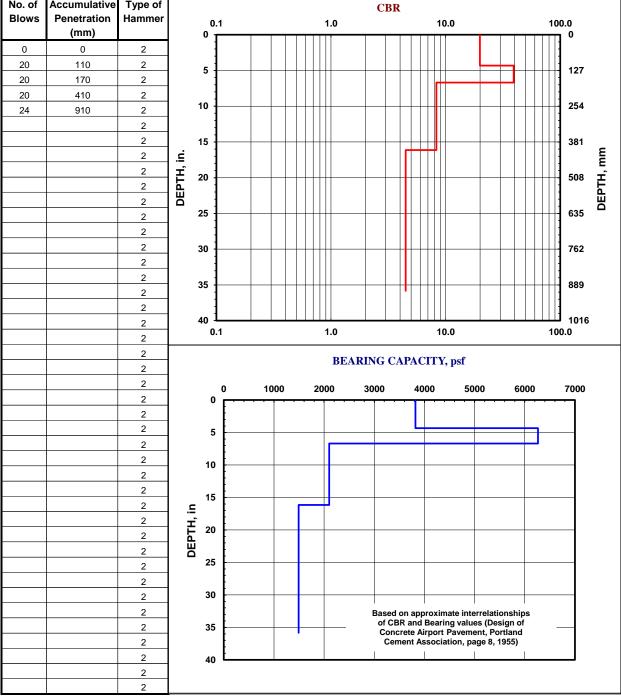

DCP TEST DATA File Name: Project: 1-Feb-14 Date: Location: Soil Type(s): See boring log **BR-014** Hammer -Soil Type • 10.1 lbs. \bigcirc CH ○ 17.6 lbs. Ō CL O Both hammers used All other soils No. of Accumulative Type of **CBR Blows** Penetration Hammer 100.0 0.1 1.0 10.0 (mm) DEPTH, mm DEPTH, in. 100.0 0.1 1.0 10.0 **BEARING CAPACITY, psf** -200000 -150000 -100000 -50000 Based on approximate interrelationships of CBR and Bearing values (Design of Concrete Airport Pavement, Portland Cement Association, page 8, 1955)

DCP TEST DATA File Name: Project: 04135111 Date: 15-Feb-14 Location: BR-015 Soil Type(s): High plasticity Clay Hammer -Soil Type • • 10.1 lbs. CH ○ 17.6 lbs. $\bigcirc \, {\rm CL}$ O Both hammers used O All other soils Accumulative No. of Type of **CBR Blows** Penetration Hammer 10.0 100.0 0.1 1.0 (mm) 0 0 0 0 2 2 10 150 5 127 2 10 390 910 8 2 10 254 2 2 2 15 381 DEPTH, mm 2 DEPTH, in. 2 20 508 2 2 25 635 2 2

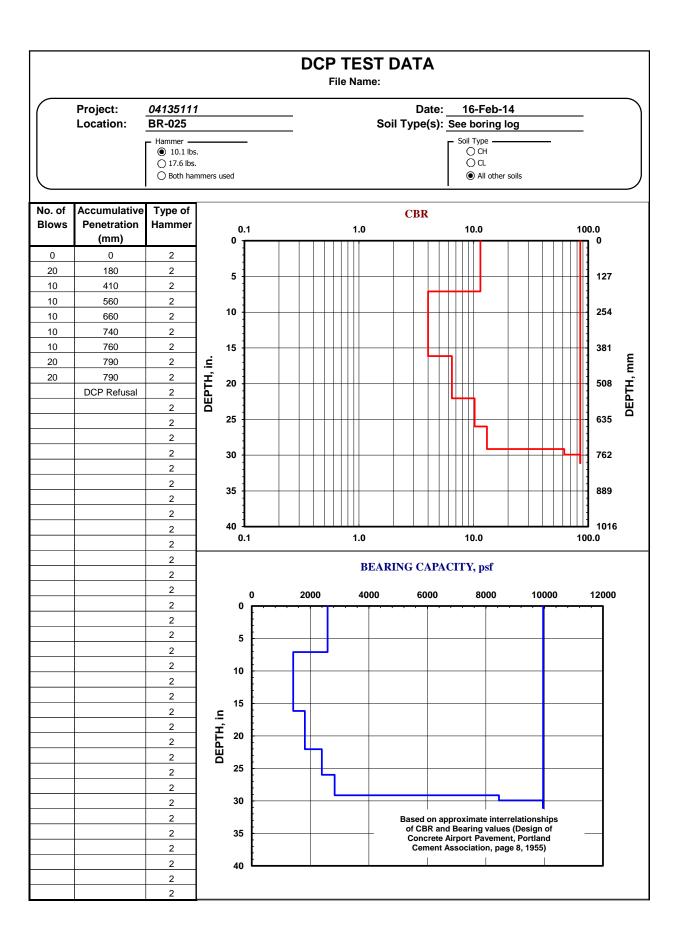


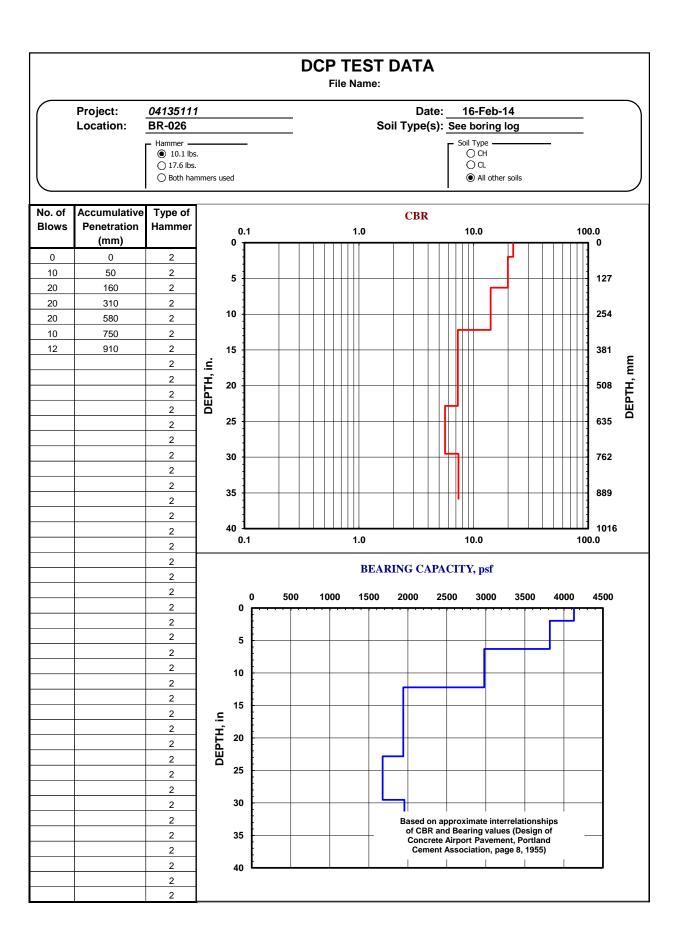

DCP TEST DATA File Name: Project: 04135111 Date: 15-Feb-14 Location: BR-017 Soil Type(s): Low plasticity Clay with CBR<10 Soil Type • Hammer -• 10.1 lbs. \bigcirc CH ○ 17.6 lbs. CL O Both hammers used $\ensuremath{\bigcirc}$ All other soils


DCP TEST DATA File Name: Project: 04135111 Date: 17-Feb-14 Location: BR-018 Soil Type(s): See boring log Hammer -Soil Type ○ CH • 10.1 lbs. ○ 17.6 lbs. O Both hammers used All other soils Accumulative No. of Type of CBR **Blows** Penetration Hammer 10.0 100.0 0.1 1.0 (mm) 0 0

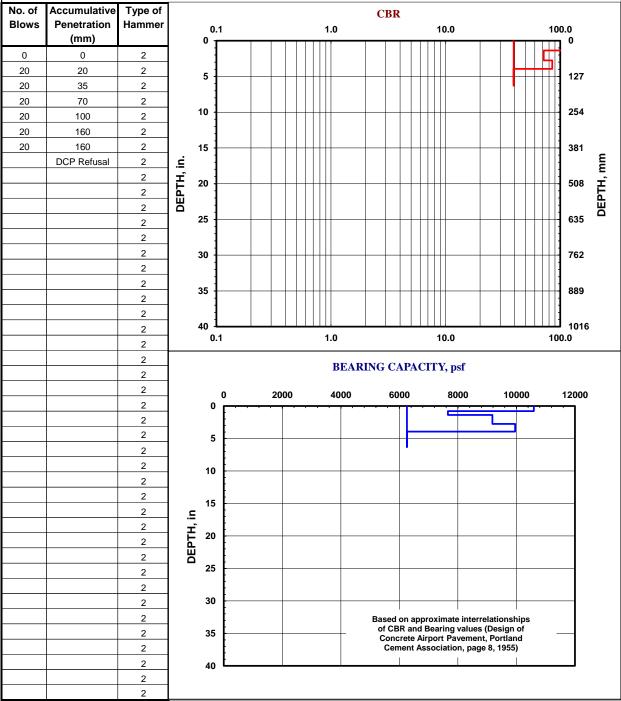

DCP TEST DATA File Name: Project: 04135111 Date: 16-Feb-14 Location: Soil Type(s): See boring log BR-019 Hammer -Soil Type • 10.1 lbs. \bigcirc CH ○ 17.6 lbs. Ō CL O Both hammers used All other soils Accumulative No. of Type of **CBR Blows** Penetration Hammer 10.0 100.0 0.1 1.0

DCP TEST DATA File Name: Project: 04135111 Date: 16-Feb-14 Location: BR-020 Soil Type(s): See boring log Hammer -Soil Type • 10.1 lbs. \bigcirc CH ○ 17.6 lbs. Ō CL O Both hammers used All other soils Accumulative No. of Type of **CBR Blows** Penetration Hammer 100.0 0.1 1.0 10.0 (mm) 0 0 0 0 2 2 10 30 5 127 2 20 50 110 20 2 10 254 21 160 2 10 290 2 2 10 460 15 381

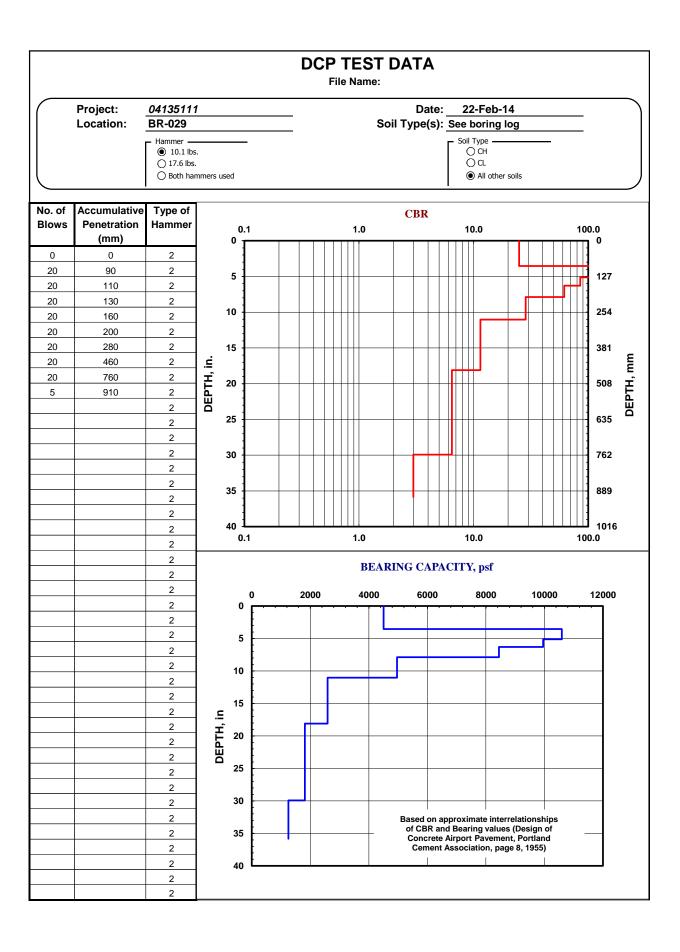

DCP TEST DATA File Name: Project: 04135111 Date: 16-Feb-14 Location: BR-021 Soil Type(s): See boring log Hammer -Soil Type • 10.1 lbs. \bigcirc CH ○ 17.6 lbs. Ō CL O Both hammers used All other soils Accumulative No. of Type of **CBR Blows** Penetration Hammer 100.0 0.1 1.0 10.0



DCP TEST DATA File Name: Project: Date: 16-Feb-14 Location: Soil Type(s): See boring log **BR-022** Hammer -Soil Type • 10.1 lbs. \bigcirc CH ○ 17.6 lbs. Ō CL O Both hammers used All other soils Accumulative No. of Type of **CBR Blows** Penetration Hammer 100.0 0.1 1.0 10.0 (mm) DEPTH, mm DEPTH, in. 0.1 1.0 10.0 100.0 **BEARING CAPACITY, psf** -15000 -10000 -5000 Based on approximate interrelationships of CBR and Bearing values (Design of Concrete Airport Pavement, Portland Cement Association, page 8, 1955)

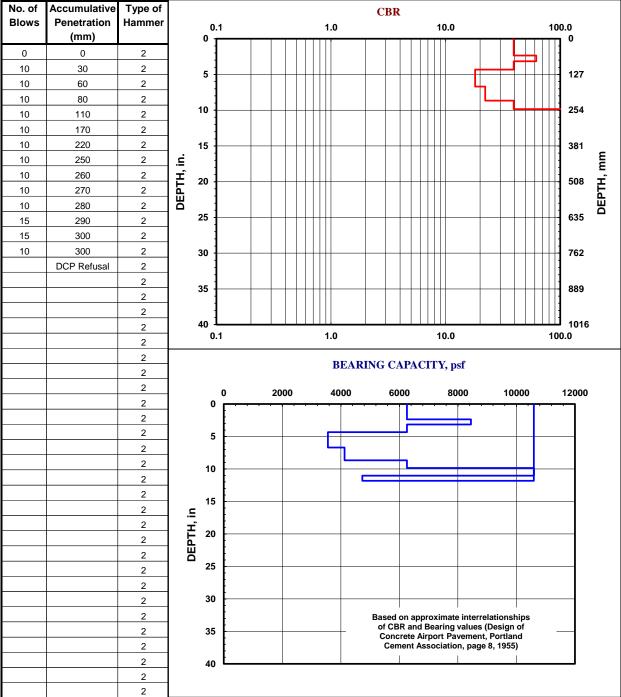

DCP TEST DATA File Name: Project: Date: 16-Feb-14 Location: BR-023 Soil Type(s): See boring log Hammer -Soil Type ○ CH • 10.1 lbs. ○ 17.6 lbs. O Both hammers used All other soils No. of Accumulative Type of **CBR Blows** Penetration Hammer 10.0 100.0 0.1 1.0 (mm) DEPTH, mm DEPTH, in. 0.1 1.0 10.0 100.0 **BEARING CAPACITY, psf** DEPTH, in Based on approximate interrelationships of CBR and Bearing values (Design of Concrete Airport Pavement, Portland Cement Association, page 8, 1955)

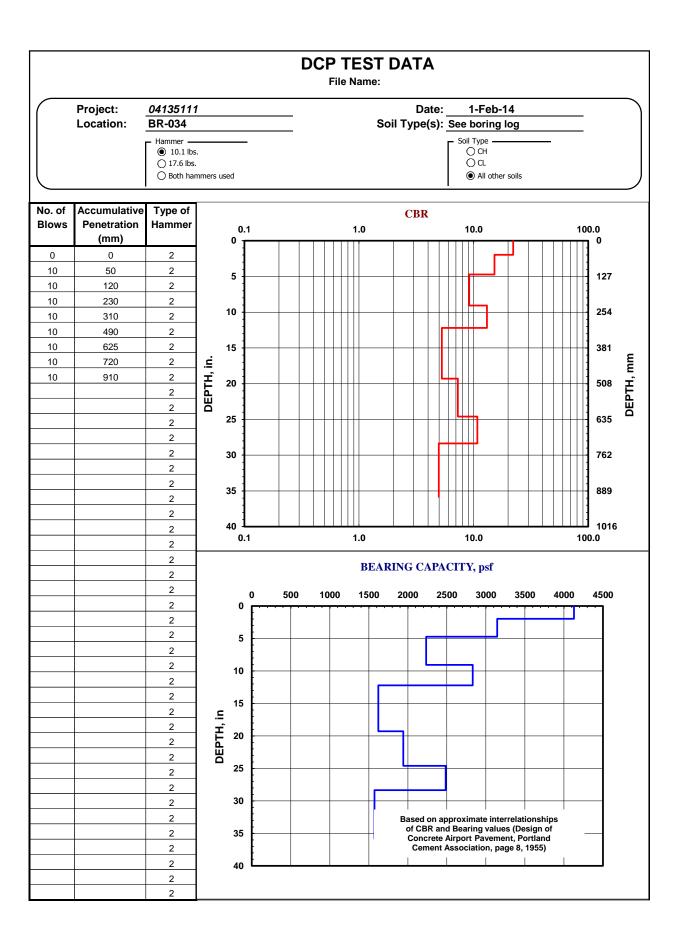
DCP TEST DATA File Name: Project: 1-Feb-14 Date: Location: BR-024 Soil Type(s): See boring log Hammer -Soil Type • 10.1 lbs. \bigcirc CH ○ 17.6 lbs. Ō CL O Both hammers used All other soils Accumulative No. of Type of **CBR Blows** Penetration Hammer 100.0 0.1 1.0 10.0 (mm) DEPTH, mm DEPTH, in. DCP Refusal 0.1 1.0 10.0 100.0 **BEARING CAPACITY, psf** Based on approximate interrelationships of CBR and Bearing values (Design of Concrete Airport Pavement, Portland Cement Association, page 8, 1955)



DCP TEST DATA File Name: Project: 04135111 Date: 16-Feb-14 Location: BR-027 Soil Type(s): See boring log Hammer -Soil Type • 10.1 lbs. \bigcirc CH ○ 17.6 lbs. Ō CL O Both hammers used All other soils

DCP TEST DATA File Name: Project: Date: 22-Feb-14 Location: BR-028 Soil Type(s): See boring log Hammer -Soil Type • 10.1 lbs. \bigcirc CH ○ 17.6 lbs. Ō CL O Both hammers used All other soils Accumulative No. of Type of **CBR Blows** Penetration Hammer 10.0 100.0 0.1 1.0 (mm) DEPTH, mm DEPTH, in. 0.1 1.0 10.0 100.0 **BEARING CAPACITY, psf** DEPTH, in Based on approximate interrelationships of CBR and Bearing values (Design of Concrete Airport Pavement, Portland


Cement Association, page 8, 1955)


DCP TEST DATA File Name: Project: Date: 22-Feb-14 Location: Soil Type(s): See boring log **BR-030** Hammer -Soil Type • 10.1 lbs. \bigcirc CH ○ 17.6 lbs. Ō CL O Both hammers used All other soils Accumulative No. of Type of **CBR Blows** Penetration Hammer 100.0 0.1 1.0 10.0 (mm) DEPTH, mm DEPTH, in. 0.1 1.0 10.0 100.0 **BEARING CAPACITY, psf** -15000 -5000 -10000 Based on approximate interrelationships of CBR and Bearing values (Design of Concrete Airport Pavement, Portland Cement Association, page 8, 1955)

DCP TEST DATA File Name: Project: Date: 22-Feb-14 Location: BR-031 Soil Type(s): See boring log Hammer -Soil Type ○ CH • 10.1 lbs. ○ 17.6 lbs. O Both hammers used All other soils Accumulative No. of Type of **CBR** Blows Penetration Hammer 10.0 100.0 0.1 1.0 (mm) DEPTH, mm DEPTH, in. 0.1 1.0 10.0 100.0 **BEARING CAPACITY, psf** DEPTH, in Based on approximate interrelationships of CBR and Bearing values (Design of Concrete Airport Pavement, Portland Cement Association, page 8, 1955)

DCP TEST DATA File Name: Project: 04135111 22-Feb-14 Date: Location: Soil Type(s): See boring log BR-032 Hammer -Soil Type • 10.1 lbs. \bigcirc CH ○ 17.6 lbs. Ō CL O Both hammers used All other soils No. of Accumulative Type of **CBR**

DCP TEST DATA File Name: Project: Date: 22-Feb-14 Location: Soil Type(s): See boring log BR-033 Hammer -Soil Type • 10.1 lbs. \bigcirc CH ○ 17.6 lbs. Ō CL O Both hammers used All other soils Accumulative No. of Type of **CBR** Blows Penetration Hammer 10.0 100.0 0.1 1.0 (mm) DEPTH, mm DEPTH, in. 0.1 1.0 10.0 100.0 **BEARING CAPACITY, psf** Based on approximate interrelationships of CBR and Bearing values (Design of Concrete Airport Pavement, Portland Cement Association, page 8, 1955)

DCP TEST DATA File Name: Project: Date: 22-Feb-14 Location: Soil Type(s): See boring log BR-035 Hammer -Soil Type • 10.1 lbs. \bigcirc CH ○ 17.6 lbs. Ō CL \bigcirc Both hammers used All other soils Accumulative No. of Type of **CBR Blows** Penetration Hammer 10.0 100.0 0.1 1.0 (mm) DEPTH, mm DEPTH, in. 0.1 1.0 10.0 100.0 **BEARING CAPACITY, psf** Based on approximate interrelationships of CBR and Bearing values (Design of Concrete Airport Pavement, Portland Cement Association, page 8, 1955)

DCP TEST DATA File Name: Project: Date: 1-Feb-14 Location: BR-036 Soil Type(s): See boring log Hammer -Soil Type • 10.1 lbs. \bigcirc CH ○ 17.6 lbs. Ō CL O Both hammers used All other soils Accumulative No. of Type of **CBR** Blows Penetration Hammer 100.0 0.1 1.0 10.0 (mm) DEPTH, mm DEPTH, in. 0.1 1.0 10.0 100.0 **BEARING CAPACITY, psf** Based on approximate interrelationships of CBR and Bearing values (Design of Concrete Airport Pavement, Portland Cement Association, page 8, 1955)

APPENDIX D SUPPORTING DOCUMENTS

GENERAL NOTES

DESCRIPTION OF SYMBOLS AND ABBREVIATIONS

			✓ Ψ Water level:	Water Initially Encountered		(HP)	Hand Penetrometer
	Auger	Split Spoon			Water Level After a Specified Period of Time		(T)
NG.	Ohalba Taha			Water Level After a Specified Period of Time	ESTS	(b/f)	Standard Penetration Test (blows per foot)
SAMPLIN	Shelby Tube Macro Core	 ₩	Water levels indicated on the soil boring logs are the levels measured in the		(PID)	Photo-Ionization Detector	
	Ring Sampler	Rock Core	WATE	borehole at the times indicated. Groundwater level variations will occur over time. In low permeability soils, accurate determination of groundwater levels is not possible with short term	FIEL	(OVA)	Organic Vapor Analyzer
	Grab Sample	No Recovery		water level observations.			

DESCRIPTIVE SOIL CLASSIFICATION

Soil classification is based on the Unified Soil Classification System. Coarse Grained Soils have more than 50% of their dry weight retained on a #200 sieve; their principal descriptors are: boulders, cobbles, gravel or sand. Fine Grained Soils have less than 50% of their dry weight retained on a #200 sieve; they are principally described as clays if they are plastic, and silts if they are slightly plastic or non-plastic. Major constituents may be added as modifiers and minor constituents may be added according to the relative proportions based on grain size. In addition to gradation, coarse-grained soils are defined on the basis of their in-place relative density and fine-grained soils on the basis of their consistency.

LOCATION AND ELEVATION NOTES

Unless otherwise noted, Latitude and Longitude are approximately determined using a hand-held GPS device. The accuracy of such devices is variable. Surface elevation data annotated with +/- indicates that no actual topographical survey was conducted to confirm the surface elevation. Instead, the surface elevation was approximately determined from topographic maps of the area.

	(More than Density determin	NSITY OF COARSE-GRAI n 50% retained on No. 200 led by Standard Penetration des gravels, sands and sil	sieve.) on Resistance	CONSISTENCY OF FINE-GRAINED SOILS (50% or more passing the No. 200 sieve.) Consistency determined by laboratory shear strength testing, field visual-manual procedures or standard penetration resistance				
RMS	Descriptive Term (Density)	Standard Penetration or N-Value Blows/Ft.	Ring Sampler Blows/Ft.	Descriptive Term (Consistency)	Unconfined Compressive Strength, Qu, psf	Standard Penetration or N-Value Blows/Ft.	Ring Sampler Blows/Ft.	
STRENGTH TE	Very Loose	0 - 3	0 - 6	Very Soft	less than 500	0 - 1	< 3	
	Loose	4 - 9	7 - 18	Soft	500 to 1,000	2 - 4	3 - 4	
	Medium Dense	10 - 29	19 - 58	Medium-Stiff	1,000 to 2,000	4 - 8	5 - 9	
	Dense	30 - 50	59 - 98	Stiff	2,000 to 4,000	8 - 15	10 - 18	
	Very Dense	> 50	<u>≥</u> 99	Very Stiff	4,000 to 8,000	15 - 30	19 - 42	
				Hard	> 8,000	> 30	> 42	

RELATIVE PROPORTIONS OF SAND AND GRAVEL

<u>Descriptive Term(s)</u>	Percent of	<u>Major Component</u>	Particle Size
of other constituents	Dry Weight	<u>of Sample</u>	
Trace With Modifier	< 15 15 - 29 > 30	Boulders Cobbles Gravel Sand Silt or Clay	Over 12 in. (300 mm) 12 in. to 3 in. (300mm to 75mm) 3 in. to #4 sieve (75mm to 4.75 mm) #4 to #200 sieve (4.75mm to 0.075mm Passing #200 sieve (0.075mm)

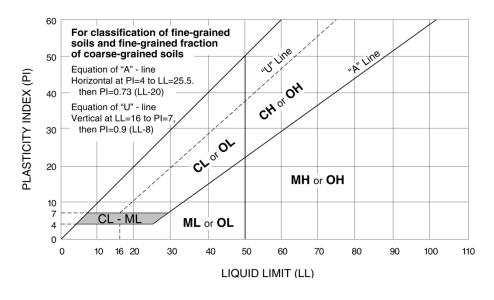
GRAIN SIZE TERMINOLOGY

PLASTICITY DESCRIPTION

RELATIVE PROPORTIONS OF FINES

Descriptive Term(s) of other constituents	Percent of Dry Weight	<u>Term</u>	Plasticity Index	
or other constituents	Dry Weight	Non-plastic	0	
Trace	< 5	Low	1 - 10	
With	5 - 12	Medium	11 - 30	
Modifier	> 12	High	> 30	

UNIFIED SOIL CLASSIFICATION SYSTEM


					Soil Classification		
Criteria for Assigning Group Symbols and Group Names Using Laboratory Tests ^A					Group Name ^B		
	Gravels: More than 50% of coarse fraction retained on No. 4 sieve	Clean Gravels: $Cu \ge 4$ and $1 \le Cc \le 3^E$		GW	Well-graded gravel F		
		Less than 5% fines ^C	Cu < 4 and/or 1 > Cc > 3 ^E	GP	Poorly graded gravel F		
		Gravels with Fines:	Fines classify as ML or MH	GM	Silty gravel F,G, H		
Coarse Grained Soils: More than 50% retained		More than 12% fines ^C	Fines classify as CL or CH	GC	Clayey gravel F,G,H		
on No. 200 sieve	Sands: 50% or more of coarse fraction passes No. 4 sieve	Clean Sands:	Cu ≥ 6 and 1 ≤ Cc ≤ 3 ^E	SW	Well-graded sand I		
511.101.200.01010		Less than 5% fines D	Cu < 6 and/or 1 > Cc > 3 ^E	SP	Poorly graded sand I		
		Sands with Fines:	Fines classify as ML or MH	SM	Silty sand G,H,I		
		More than 12% fines D	Fines Classify as CL or CH	SC	Clayey sand G,H,I		
	Silts and Clays: Liquid limit less than 50	Inorganic:	PI > 7 and plots on or above "A" line J	CL	Lean clay K,L,M		
		inorganic.	PI < 4 or plots below "A" line J	ML	Silt K,L,M		
		Organic:	Liquid limit - oven dried < 0.75	OL	Organic clay K,L,M,N		
Fine-Grained Soils: 50% or more passes the		Organic.	Liquid limit - not dried		Organic silt K,L,M,O		
No. 200 sieve	Silts and Clays: Liquid limit 50 or more	Inorganic:	PI plots on or above "A" line	CH	Fat clay K,L,M		
		inorganic.	PI plots below "A" line		Elastic Silt K,L,M		
		Organic:	Liquid limit - oven dried < 0.75	ОН	Organic clay K,L,M,P		
		Organic.	Liquid limit - not dried		Organic silt K,L,M,Q		
Highly organic soils:	Highly organic soils: Primarily organic matter, dark in color, and organic odor			PT	Peat		

- ^A Based on the material passing the 3-in. (75-mm) sieve
- ^B If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.
- ^C Gravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with silt, GW-GC well-graded gravel with clay, GP-GM poorly graded gravel with silt, GP-GC poorly graded gravel with clay.
- D Sands with 5 to 12% fines require dual symbols: SW-SM well-graded sand with silt, SW-SC well-graded sand with clay, SP-SM poorly graded sand with silt, SP-SC poorly graded sand with clay

^E
$$Cu = D_{60}/D_{10}$$
 $Cc = \frac{(D_{30})^2}{D_{10} \times D_{60}}$

- $^{\text{F}}\,$ If soil contains \geq 15% sand, add "with sand" to group name.
- ^G If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

- ^H If fines are organic, add "with organic fines" to group name.
- If soil contains ≥ 15% gravel, add "with gravel" to group name.
- If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay.
- K If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel," whichever is predominant.
- L If soil contains ≥ 30% plus No. 200 predominantly sand, add "sandy" to group name.
- M If soil contains ≥ 30% plus No. 200, predominantly gravel, add "gravelly" to group name.
- N PI \geq 4 and plots on or above "A" line.
- $^{\rm O}$ PI < 4 or plots below "A" line.
- P PI plots on or above "A" line.
- Q PI plots below "A" line.

GENERAL NOTES

Sedimentary Rock Classification

DESCRIPTIVE ROCK CLASSIFICATION:

Sedimentary rocks are composed of cemented clay, silt and sand sized particles. The most common minerals are clay, quartz and calcite. Rock composed primarily of calcite is called limestone; rock of sand size grains is called sandstone, and rock of clay and silt size grains is called mudstone or claystone, siltstone, or shale. Modifiers such as shaly, sandy, dolomitic, calcareous, carbonaceous, etc. are used to describe various constituents. Examples: sandy

shale; calcareous sandstone.

LIMESTONE Light to dark colored, crystalline to fine-grained texture, composed of CaCo₃, reacts readily

with HCI.

Light to dark colored, crystalline to fine-grained texture, composed of CaMg(CO₃)₂, harder DOLOMITE

than limestone, reacts with HCl when powdered.

Light to dark colored, very fine-grained texture, composed of micro-crystalline quartz (SiO₂), CHERT

brittle, breaks into angular fragments, will scratch glass.

Very fine-grained texture, composed of consolidated silt or clay, bedded in thin layers. The SHALE

unlaminated equivalent is frequently referred to as siltstone, claystone or mudstone.

SANDSTONE Usually light colored, coarse to fine texture, composed of cemented sand size grains of quartz.

feldspar, etc. Cement usually is silica but may be such minerals as calcite, iron-oxide, or some

other carbonate.

CONGLOMERATE Rounded rock fragments of variable mineralogy varying in size from near sand to boulder size

but usually pebble to cobble size (1/2 inch to 6 inches). Cemented together with various cementing agents. Breccia is similar but composed of angular, fractured rock particles cemented

together.

PHYSICAL PROPERTIES:

DEGREE OF WEATHERING

Sliaht Slight decomposition of parent

material on joints. May be color

change.

Moderate Some decomposition and color

change throughout.

High Rock highly decomposed, may be ex-

tremely broken.

BEDDING AND JOINT CHARACTERISTICS Bed Thickness

Joint Spacing **Dimensions** Very Thick Very Wide >10' Thick Wide 3' - 10' Medium Moderately Close 1' -3' Thin Close 2" -1′ .4" -Very Thin Very Close 2" .1" -Laminated

Bedding Plane A plane dividing sedimentary rocks of

the same or different lithology.

HARDNESS AND DEGREE OF CEMENTATION Joint Fracture in rock, generally more or

less vertical or transverse to bedding, Limestone and Dolomite: along which no appreciable move-Difficult to scratch with knife

ment has occurred.

Moderately Can be scratched easily with knife. Seam Generally applies to bedding plane Hard cannot be scratched with fingernail.

with an unspecified degree of

weathering.

Shale, Siltstone and Claystone

Hard Can be scratched easily with knife.

cannot be scratched with fingernail.

Can be scratched with fingernail.

Moderately

Hard

Soft

Hard Can be scratched with fingernail.

Soft Can be easily dented but not molded

with fingers.

Well Capable of scratching a knife blade.

Cemented

Cemented Can be scratched with knife.

Poorly Can be broken apart easily with

Cemented fingers.

Sandstone and Conglomerate

SOLUTION AND VOID CONDITIONS

Solid Contains no voids.

Vuggy (Pitted) Rock having small solution pits or

cavities up to 1/2 inch diameter, fre-

quently with a mineral lining.

Containing numerous voids, pores, or Porous

other openings, which may or may

not interconnect.

Cavernous Containing cavities or caverns, some-

times quite large.

