

SUBSURFACE INVESTIGATION

STATE JOB NO.	BR1610	
FEDERAL AID PROJECT N	OSTPB-0016(62)	
BURLINGTO	N NORTHERN SANTA FE RAILWAY	(BONO) (S)
COUNTY ROAD NO.	27	
IN	CRAIGHEAD	COUNTY
LETTING OF	SEPTEMBER 21, 2016	

The information contained herein was obtained by the Department for design and estimating purposes only. It is being furnished with the express understanding that said information does not constitute a part of the Proposal or Contract and represents only the best knowledge of the Department as to the location, character and depth of the materials encountered. The information is only included and made available so that bidders may have access to subsurface information obtained by the Department and is not intended to be a substitute for personal investigation, interpretation and judgment of the bidder. The bidder should be cognizant of the possibility that conditions affecting the cost and/or quantities of work to be performed may differ from those indicated herein.

November 17, 2014

TO:

Mr. Rick Ellis, Bridge Engineer

SUBJECT: Job No. BR1610

Burlington Northern Santa Fe Railway (Bono) (S)

County Road 27 (CCR 352)

Craighead County

Transmitted herewith is a brief summary of the geology and site conditions, summary of percent material passing #200 sieve and Atterberg Limits test results (for liquefaction susceptibility analysis), along with the logs of the rotary wash borings conducted in the vicinity of the bridges and approaches of the above referenced job. The samples obtained by the Standard Penetration tests were brought to the laboratory and visually classified by experienced lab personnel to verify the field identification.

It is anticipated that bridge ends will be founded on piling and interior bents will be founded on pile supported footings. It is recommended that the west bridge embankment be internally reinforced with geogrid. Geogrid placement and specification recommendations are detailed in the attached draft Special Provision, along with Figure 1 and Figure 2.

The embankment analysis was based on a 26 foot embankment height with 3H:1V bridge end slopes. Seismic analysis included a coefficient of horizontal acceleration of 0.498 as provided by Bridge Design. FHWA publication NHI-10-025 Volume II indicates that a value of one-half the horizontal coefficient may be utilized in the design of reinforced embankments. Therefore, a value of 0.249 was utilized in this design. This configuration provides for a satisfactory Factor of Safety for seismic and static conditions.

If you have any questions concerning these recommendations, please contact the Geotechnical Section.

Michael C. Benson

Materials Engineer

MCB:rpt

Attachment

State Construction Engineer – Master File Copy CC:

> District 10 Engineer Roadway Design

G. C. File

SPECIAL PROVISION BR1610

GEOSYNTHETIC INTERNAL REINFORCED EMBANKMENT CONSTRUCTION

Description: This item shall consist of furnishing and installing a geosynthetic internal reinforcement for embankment construction in accordance with the plans and specifications. The geosynthetic internal reinforcement shall be placed as described herein, from Station 112+00 to the West Bridge End Slope.

Materials: Geogrid shall be manufactured as a single layer regular network of integrally-connected longitudinal and transverse polymer tensile elements with a geometry that permits significant mechanical interlock with the backfill material. The geogrid structure shall remain dimensionally stable under construction stresses and have a high resistance to damage during construction, to ultraviolet degradation and to all forms of chemical and biological degradation encountered in the soil being reinforced.

The geogrid shall also conform in all respects to the following physical requirements:

Provide a geogrid with a minimum tensile strength, T_{allow} specified in the plans and this Special Provision.

Where:

$$T_{allow} = T_{ult} / RF$$

And $RF = FS_{ID} \times FS_{CR} \times FS_{D}$

Determine T_{ult} (Ultimate Tensile Strength) according to ASTM D 6637 Method B (note, that the same test shall be used for definition of the geogrid creep reduction factor) and ASTM D 4759.

Determine FS_{ID}, FS_{CR}, and FS_D according to the following:

FS_{ID} Determine the Partial Factor of Safety for Installation Damage from the results of full scale construction damage tests conducted according to ASTM D 5818. If possible, conduct the tests using project-specific backfill and construction placement techniques. Use a default value of 3.0 if no installation damage testing has been conducted. The minimum value for FS_{ID} is 1.1.

FS_{CR} Determine the Partial Factor of Safety for Creep Deformation according to ASTM D 5262. Collect test data for a minimum duration of 10,000 hours for both standard and elevated temperatures. Extrapolate the test results to a 75-year design life as provided in Appendix B of FHWA Publication No. FHWA-NHI-10-025, "Design and Construction of Mechanically

SPECIAL PROVISION BR1610

GEOSYNTHETIC INTERNAL REINFORCED EMBANKMENT CONSTRUCTION

Stabilized Earth Walls and Reinforced Soil Slopes –Volume II". If testing has not been conducted, default values for FS_{CR} are:

Polymer Type	\underline{FS}_{CR}
Polyester	3.0
Polypropylene	5.0
Polyethylene	5.0

FS_D The Durability Reduction Factor is dependent on the susceptibility of the geogrid to attack from chemicals, thermal oxidation, hydrolysis, stress cracking, and microorganisms. The minimum reduction factor for the combined effects of chemical and biological degradation is:

Polymer Type	$\underline{FS}_{\mathtt{D}}$
Polyester	1.20
Polypropylene	1.25
Polyethylene	1.10

Identify, store, and handle geogrids according to ASTM D 4873. Limit geogrid exposure to ultraviolet radiation to less than 10 days.

The Contractor shall furnish to the Engineer a production certification that the geogrid supplied meets the respective criteria set forth in these specifications. The certification shall state the name of the manufacturer, product name, style number, chemical composition of the filaments, ribs, or yarns, and other information to fully describe the geogrid. The Contractor shall supply test data from an independent laboratory to support certified values submitted.

The embankment material placed within the limits of this Special Provision shall consist of a clay material with a minimum plasticity index (PI) of 10 and a maximum plasticity index (PI) of 40. Non-plasticity and/or low plasticity (less than 10) granular material (sand, silt or clayey gravel) will not be acceptable. The Contractor shall perform quality control and acceptance sampling and testing of the compacted embankment material for density and moisture content in accordance with Subsection 210.02 and 210.10, at the frequencies established in Section 210. The Contractor shall perform quality control and acceptance sampling and testing of the compacted embankment material for plasticity index in accordance with Section 306, except that the size of the standard lots will be 3000 cubic yards. There will be no direct payment made for fulfilling these material requirements but compensation shall be considered included in the price bid for Compacted Embankment (Special).

SPECIAL PROVISION BR1610

GEOSYNTHETIC INTERNAL REINFORCED EMBANKMENT CONSTRUCTION

Construction Methods: The geogrid reinforcement shall be placed to the lines and dimensions shown in the plans or as directed by the Engineer. During clearing and grubbing in the embankment area, all organic and deleterious materials, and soft or loose compressible soils shall be excavated and removed from the fill area. Prior to fill placement, the exposed foundation soils shall be proof-rolled to detect any unstable locations, which shall subsequently be compacted or excavated and replaced with compacted fill.

Correct orientation (roll direction) of the geogrids shall be verified by the Engineer. All geogrids shall be placed/unrolled per manufacturer's recommendations. The contractor shall provide the Engineer detailed installation recommendations from the manufacturer. All geogrid shall be placed to lay flat, pulled tight and pinned or weighted down to hold its position until the subsequent soil layer can be placed.

In the roadway embankment reinforcement zone, geogrid shall be placed in continuous longitudinal strips perpendicular to the face of the embankment slope. The curved transition from side slope to bridge end slope shall be constructed of rectangular pieces of grid. Grid shall be overlapped so that the entire embankment is covered. The roadway reinforcement zone shall contain a minimum of four layers of geogrid placed on two foot intervals. The top layer shall be placed two feet from finished subgrade. Geogrid in the upper reinforcement zone shall have a $T_{\text{allow}} = 4000 \text{ Lb/ft}$.

The slope reinforcement zone shall consist of the embankment slope area below the full width roadway reinforcement zone. Geogrid in these slopes shall be placed in continuous longitudinal strips perpendicular to the face of the embankment. Each strip shall be a minimum of twenty five feet long. The highest layer shall be placed a maximum of two foot below the upper reinforcement zone. The slope reinforcement shall be placed on two foot intervals to where the toe of the slope intercepts the existing ground after clearing and grubbing is complete. The curved transition from side slope to bridge end slope shall be constructed of rectangular pieces of grid. Grid shall be overlapped so that the entire embankment is covered. Geogrid in the slope reinforcement zone shall have a $T_{\rm allow} = 1000 \, {\rm Lb/ft}$.

Overlaps of geogrid between rolls shall be located no less than 30 feet from the finished slope surface. Geogrid shall be overlapped a minimum of 5 feet. The number of overlaps shall be limited to one per strip of geogrid. Mechanical bar connections shall be placed per manufacturer's recommendations if required.

SPECIAL PROVISION BR1610

GEOSYNTHETIC INTERNAL REINFORCED EMBANKMENT CONSTRUCTION

Adjacent strips of geogrid do not need to be overlapped. The embankment fill between layers of geogrid reinforcement shall be prepared in accordance with Section 210, Excavation and Embankment of the Standard Specifications for Highway Construction, Edition of 2014. Reinforcement can be placed directly on the prepared embankment. No special surface treatment will be required. If a sheep's-foot roller is utilized, the imprints are acceptable surface for geogrid reinforcement placement.

Tracked construction equipment shall not be operated directly upon the geogrid. A minimum fill thickness of 6 inches is required prior to operation of tracked vehicles over the geogrid. Turning of tracked vehicles shall be kept to a minimum to prevent tracks from displacing the fill and damaging the geogrid.

Rubber-tired equipment may pass over geogrid reinforcement at slow speeds of less than 10 mph. Sudden breaking and sharp turning shall be avoided.

Method of Measurement: All embankment material including the geogrid reinforcement will be measured in accordance with Section 210 Excavation and Embankment of the Standard Specifications for Highway Construction, Edition of 2014 for Compacted Embankment.

Basis of Payment: Placement and compaction of embankment material and furnishing and installing geogrid reinforcement shall be paid for under the item "Compacted Embankment (Special)", which price shall be full compensation for all costs involved in furnishing all material; for proof rolling ground surfaces or subgrade; for constructing the embankments in accordance with Section 210 and this Special Provision; for quality control and acceptance sampling and testing; and for all labor, tools, equipment, and incidentals necessary to complete the work.

Payment will be made under:

Pay Item

Pay Unit

Compacted Embankment (Special)

Cubic Yard

Figure 1 - Reinforced Slope Design

Side Slope to End Slope Geogrid Transition

Geogrid Overlap

Figure \mathcal{N} Geogrid Special Details

GEOLOGY AND SITE CONDITIONS Job No. BR1610

Burlington Northern Santa Fe Railway (Bono) (S) Craighead County County Road 27 (CCR 352)

Site Conditions

The proposed structure is an overpass for the Burlington Northern Santa Fe Railway on a new alignment. The new alignment crosses a moderately to heavily wooded area connecting Gainesville Road (CCR 352) to Jacksonport Road (CCR 353). A residence is located to the north of the east end of the proposed overpass. Overhead power lines parallel the west side of CCR 353 at the proposed intersection of CCR 352 and CCR 353.

Site Geology

The overpass alignment is located on the mapped deposits of Quaternary silt and sand deposits (map symbol Qss). The silt and sand deposits include lenses of gravel. The silt and sand deposits are underlain by sands and clays of the Paleogene Wilcox Group. The borings encountered Wilcox deposits at depths varying from 25 to 45 feet below ground level.

Subsurface Conditions:

Based on the results of the borings, the subsurface stratigraphy may be generalized as follows:

0 to 45 Feet:

Varies from dry to wet, stiff to very hard, brown and gray clay to clay with sand to medium dense to very dense, brown sandy silt to sand with gravel and cobbles. Some samples from this zone contain organic matter.

45 to 101.5 Feet:

Varies from moist to wet, very stiff to very hard, brown and gray silty clay to clay with sand to medium dense to very dense, brown to gray silt to clayey sand.

Lab Test Summary

Project: BR1610

Station	Location	Depth (ft)	Plastic Limit	Liquid Limit	Plasticity Index	% Passing No. 200
114+76	24' RT	4.4	18	34	16	100
114+76	24' RT	9.4	21	30	9	99
114+76	24' RT	15.0	22	28	6	99
114+76	24' RT	20.0	22	28	6	99
114+76	24' RT	25.0	16	36	20	92
114+76	24' RT	30.0	NP			14
114+76	24' RT	35.0	NP			19
114+76	24' RT	40.0	NP			81
114+76	24' RT	45.0	15	22	7	88
114+76	24' RT	50.0	NP			73
114+76	24' RT	55.0	NP			62
114+76	24' RT	60.0	NP			70
114+76	24' RT	65.0	NP			25
114+76	24' RT	70.0	14	19	5	95
114+76	24' RT	75.0	NP			19
114+76	24' RT	80.0	NP			12
114+76	24' RT	85.0	NP			30
114+76	24' RT	90.0	NP			83
114+76	24' RT	95.0	NP			12
114+76	24' RT	100.0	NP			19

LEGEND

TERMS DESCRIBING CONSISTENCY OR CONDITION

GRANU	LAR SOIL		CLAY	CLA	Y-SHALE	S	HALE
'N' Value	Density	'N' Value	Consistency	'N' Value	Consistency	'N' Value	Consistency
0-4 5-10 11-30 31-50 Over 50	Very Loose Loose Medium Dense Dense Very Dense	0-1 2-4 5-8 9-15 16-30 31-60 Over 60	Very Soft Soft Medium Stiff Stiff Very Stiff Hard Very Hard	0-1 2-4 5-8 9-15 16-30 31-60 0ver 60	Very Soft Soft Medium Stiff Stiff Very Stiff Hard Very Hard	More than Penetratio	n s: Medium Haro 2'
						in 60 Blow	

- 1. Ground water elevations indicated on boring logs represent ground water elevations at date or time shown on boring log. Absence of water surface implies that no ground water data is available but does not necessarily mean that ground water will not be encountered at locations or within the vertical reaches of these borings.
- 2. Borings represent subsurface conditions at their respective locations for their respective depths. Variations in conditions between or adjacent to boring locations may be encountered.
- 3. Terms used for describing soils according to their texture or grain size distribution are in accordance with the Unified Soil Classification System.

Standard Penetration Test – Driving a 2.0" O.D., 1-3/8" I.D. sampler a distance of 1.0 foot into undisturbed soil with a 140 pound hammer free falling a distance of 30 inches. It is customary to drive the spoon 6.0 inches to seat into undisturbed soil, then perform the test. The number of hammer blows for seating the spoon and performing the test are recorded for each 6 inches of penetration on the drill log. The field "N" Value (N_t) can be obtained by

adding the bottom two numbers for example: $\frac{6}{8-9} \Rightarrow 8+9=17 blows/ft$. The "N" Value corrected to 60% efficiency (N₆₀) can be obtained by multiplying N_f by the hammer correction factor published on the boring log.

			HWY. & TRANS. DEPARTMENT		BORIN PAGE	G No		F 3					
-		_	BR1610 Craighead County		DATE:				er 2'	2-23,	201	3	-
JOB N JOB N			BR1610 Craighead County Burlington Northern Santa Fe Railway (Bono)		TYPE O	F DR				z-23, Rotai			
JOBIN	AWIE.		County Road No. 27		THEO	1 DI	IDDIIAC	,,	_		.,		
STAT	ION:		114+76		EQUIPN	IENT	:	Cl	ME 8	850 v	v/ Cl	MЕ	
LOCA		:	24' Right of Center Line of Construction					Au	itom	atic l	Ham	mer	
LOGG	ED B		Donnie Thornton		HAMM	ER C	ORREC	TION	FAC	TOR:		1.23	
COM	PLET	TOI	N DEPTH: 100.3										
D	s	S											
E	Y	Α							Ţ	S		%	%
P T	М	M P	DESCRIPTION OF MATERIAL	SOIL				用	Y.U.	ŏ		S	R
Ь'n	В	Ľ		GROUI	1 \	ST		VEIC	ER (F BI	Ż	C R	Q D
l	0 L	E			PLASTIC LIMIT	% MOIST.	LIQUID	DRY WEIGHT	LBS PER CU.FT.	NO. OF BLOWS	PER 6-IN.	K	
FT.		S	SURFACE ELEVATION: 336.1		II.	%	12 13	m		ž	PE		
	//		G										
	//												
	//												
5				CL	18		34				3		
				- CL	_					5	-6		
	//												
	//		Moist, Stiff, Reddish Brown Clay										
L _	1												
10	1	abla		CL	21		30				2		
	//	\triangle		- OL	_					4	-5		
	1												
	//			·									
15													
	M	X		CL-M	_ 22		28				3		
	M	\vdash	BALLA BANKING CAIFE Daddink Drown Cilty Clay		-								
	M		Moist, Medium Stiff, Reddish Brown Silty Clay with some Organic Matter										
	HH		Will some organic matter	-									
20													
	T)	X		CL-M	_ 22		28				2 -3		
										-	-		
	M	1	Moist, Medium Stiff, Brown Silty Clay										
	M	1		#:									
25	M				- 40						2		
	1	X		CL	16		36				3 -6		
	1	\leftarrow			-					7			
	1	1	Moist, Stiff, Brown Clay										
	//			-									
30	//									.			
	8	X		SM	NP						25 -33		
			Wet, Very Dense, Brown Silty Sand with Gravel		-					"	55		
	80		,,,,,,										
	4			-									
35													
REM	IARK	S:	Hollow stem augers were utilized to a depth of 9.4'.										

			HWY. & TRANS. DEPARTMENT		BORIN							
			DIVISION - GEOTECHNICAL SEC. BR1610 Craighead County		PAGE	2		F 3	or 22	2-23, 201	3	\dashv
JOB N			BR1610 Craighead County Burlington Northern Santa Fe Railway (Bono)		DATE: TYPE O	E DR				Rotary W		
JOB N.	AIVIE.		County Road No. 27		THEO	DIC	ILLIIVO	•	•	total) "		- 1
STATI	ON:		114+76		EQUIPM	1ENT	:			350 w/ C		
LOCA'	TION	:	24' Right of Center Line of Construction					Au	toma	atic Ham		
LOGG	ED B	Y: [Oonnie Thornton		HAMMI	ER CO	DRREC	TION	FAC	TOR:	1.23	\neg
COM	PLET	ION	N DEPTH: 100.3		-	_	-				_	\blacksquare
D	s	s										
E	Υ	A M						٦	FT	WS	%	%
T	M	P	DESCRIPTION OF MATERIAL	SOIL GROUI	,	-32		IGH	CO	. ITO.	SC	R Q
н	В	Ŀ		GROOM	1 \(\text{\tin}\xi}\\ \text{\tin}\}\\ \text{\texi}\text{\text{\text{\text{\texi}\text{\text{\texi}\text{\text{\text{\text{\text{\text{\text{\texi}\text{\texit{\text{\ti	LSIC		WE	PER	JF E	R	Ď
FT.	L	E S	SURFACE ELEVATION: 336.1		PLASTIC LIMIT	% MOIST.	LIQUID	DRY WEIGHT	LBS PER CU.FT.	NO. OF BLOWS PER 6-IN.		
0.00			SORFACE ELEVATION. 330.1	014	NP		1111	-		8		
		\triangle	NAVA NA E - Deve - Deve - Cita Cond	SM						12-16		
			Wet, Medium Dense, Brown Silty Sand									
				-								
40												
		X		ML	NP					10 15-21		
			Wet Dance Brown Cilt with Cond									
= =			Wet, Dense, Brown Silt with Sand									
 45												
45				CL-MI	15		22			10		
		\triangle		CL-IVII						12-18		
_ =			Moist, Very Stiff, Brown and Gray Clay with Silt									
			Seams and Organic Matter	841								
50										12		
		X		ML	NP					13 16-25		
			Moist, Dense, Gray Silt with Sand									
55					NP					18		
		\triangle	1	ML		-				20-60 (5")		
			Wet, Very Dense, Gray Sandy Silt							(,		
			, , , , , , , , , , , , , , , , , , , ,	-		ľ						
60					1							
		X		ML	NP					9 18-40		
			Wet, Very Dense, Brown and Gray Sandy Silt		-							
			with Trace of Organic Matter								1	
				-			1					
65		<u> </u>		-	⊢ _{NP}					44		
<u> </u>				SM						60 (2")		
			 Wet, Very Dense, Gray Silty Sand							(2)		
			1101, 101, 201100, 010, 0111, 0111	-								
70												
	ARK	S:	Hollow stem augers were utilized to a depth of 9.4'.									

			HWY. & TRANS. DEPARTMENT		BORIN								
		_	DIVISION - GEOTECHNICAL SEC.		PAGE	3		F 3	- 20	- 22	2012		_
JOB N			BR1610 Craighead County		DATE:					2-23,			
JOB N.	AME:		Burlington Northern Santa Fe Railway (Bono)		TYPE O	F DR	ILLING	ì:	r	Rotar	y wa	ISII	
			County Road No. 27		EOLIID.	ers in		CI	ATE S	350 w	./ C'N	Æ	
STATI			114+76		EQUIPM	IENT	:			atic I			- 1
LOCA'			24' Right of Center Line of Construction Onnie Thornton		HAMMI	7D CC	ים ממר					1.23	
					пами	IN CC	JAKEC	11011	IAC	TOK.		1125	\neg
	PLEI		N DEPTH: 100.3		_								
D E	S	S A							_0				
-	Y	м	DESCRIPTION OF MATERIAL	COLL				Ħ).FT	M.S		% S	% R
T	M B	Р	DESCRIPTION OF WATERIAL	SOIL GROUF		L3		IGE	Z	BLC	أزما	C	Q
H	0	니			1 \	SIC	E L	WE	PER	0F.1	41 - 9	R	D
FT.	Ĺ	E S	CUREAGE ELEVATIONS 226.1		PLASTIC LIMIT	% MOIST.	LIQUID	DRY WEIGHT	LBS PER CU.FT	NO. OF BLOWS	PER 6-IN.		
F1,	אווא	3	SURFACE ELEVATION: 336.1		144	0/	19			7	_		
	\mathcal{M}	X		CL-ML	. '		13			6-			
	M)		Marie V. Oliff Owner and Drawer Silty Clay										
	\mathcal{M}		Moist, Very Stiff, Gray and Brown Silty Clay	-									
	T/												
75	$\sqrt{\lambda}$	> <	_ Wet, Very Dense, Gray Silty Sand		NP					6	0		
	80		Wet, Very Dense, Gray Sand with Gravel	SM	1					(3	i")		
	5: 80 :0 111111		vvet, very berise, Gray Sand with Graver										
			2										
L -													
80		_			NP					6	0		
			Wet, Very Dense, Gray Sand with Silt	SW-SI	4 ' ' '					(2	2")		
			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										
85					NP					6	0		
		\simeq		SM	INP					(ĕ	3")		
			Wet, Very Dense, Reddish Brown to Gray Silty		1								
			Sand										
			Gana	-									
90										١,	7		
		\times		ML	NP						37 30		
										\ (Z	60 4")		
			Moist, Very Dense, Gray Silt with Sand				1						
				-									
95										١,			
		-		SW-SI	MP					(2	30 2")		
											·		
			Wet, Very Dense, Brown and Gray to Gray Sand										
<u> </u>			with Silt	-									
100													
100		\times	Wet, Very Dense, Gray Silty Sand	SM	NP	\vdash	_			1 6	30 4")		
-	1		Boring Terminated	-									
	1												
	1												
105	1						1						
		<u>.</u>	Hollow stem augers were utilized to a depth of 9.4'.	-		-				-			
I IVEIN	17 V/	Ο.	Tionor Stori dagoto word dimeda to a doptir of or t										

			HWY. & TRANS. DEPARTMENT DIVISION - GEOTECHNICAL SEC.		BORIN PAGE			F 3					\Box		
JOB N			BR1610 Craighead County		DATE:				er 28	3-29,	2013	3			
JOB N	AME:		Burlington Northern Santa Fe Railway (Bono)		TYPE OF DRILLING:						Rotary Wash				
OT A TI	OM		County Road No. 27 115+98		EOLUDA	ATPNIT	٠.	C	ALE 8	350 w	,/ CN	AUE.	- 1		
LOCA			Center Line of Construction		EQUIPN	1EN I	:			atic F			- 1		
			Paul Christenberry		HAMM	ER C	ORREC	TION	FAC	ΓOR:		1.23	\Box		
COM	PLET	IOI	N DEPTH: 101.5								_		_		
D E P T	S Y M B	SAMP.	DESCRIPTION OF MATERIAL	SOIL GROUI	, _D	T.		SIGHT	LBS PER CU.FT.	NO. OF BLOWS	ý	% S C	% R Q		
H	0 L	LE			PLASTIC LIMIT	% MOIST.	LIQUID	DRY WEIGHT	3S PEI	0. OF	PER 6-IN.	R	D		
FT,	NIIN	S	SURFACE ELEVATION: 317.6			%	33		=	Ž	PI				
5		X	Moist, Stiff, Brown Silty Clay							4 5-	5				
		X	Moist, Very Stiff, Reddish Brown to Brown Clay with some Gravel							8-1	I1				
15	860 80 80 80 80 80 80 80 80 80 80 80 80 80	X	Wet, Medium Dense, Light Brown Sand, Gravel and Cobbles							7 10-	11				
		X	Wet, Medium Dense, Light Gray Sandy Silt							7 12-	16				
		X	Moist, Very Hard, Gray Clay with Sand							38- (5	62 ")				
35		X	Wet, Very Dense, Brown and Gray Silty, Clayey Sand							28-					
	ARK	S: I	Hollow stem augers were utilized to a depth of 9.6'.		J.										

			HWY. & TRANS. DEPARTMENT DIVISION - GEOTECHNICAL SEC.		BORIN PAGE			F 3					
JOB N			BR1610 Craighead County		DATE:	-			er 28	3-29,	2013	3	\neg
JOB N	IAME:		Burlington Northern Santa Fe Railway (Bono)		ТҮРЕ О	F DR	ILLING	i:	F	Rotar	y Wa	ash	- 1
STAT	ION:		County Road No. 27 115+98		EQUIPN	IFNT	٠.	CN	ME 8	350 w	/ CN	ИE	
	TION:		Center Line of Construction		LQUIII	IL: 11				atic F			
			Paul Christenberry		HAMM	ER C	ORREC	TION	FAC	TOR:	_	1.23	_
	PLET		N DEPTH: 101.5				ı —				_		\dashv
D E P T H	SYMBOL	SABPLE	DESCRIPTION OF MATERIAL	SOIL GROUI	PLASTIC LIMIT	% MOIST.	LIQUID LIMIT	RY WEIGHT	LBS PER CU.FT.	NO. OF BLOWS	PER 6-IN.	% S C R	% R Q D
FT.	X X .	S	SURFACE ELEVATION: 317.6		<u> </u>	%	12 13	۵	7		$\overline{}$		-
40		X	Moist, Hard, Brown and Gray Sandy Clay							7 22-3	30		
 45		X	Moist, Very Dense, Gray Sand with Silt							28-	44		
50		X	Moist, Very Hard, Gray and Brown Clay with Sand Seams							23-			
55		X	Moist, Hard, Gray Clay with Sand							16-2			
 		X								10-			
60			Moist, Very Hard, Gray Clay with Light Gray Sand							1((.01) 1")		
65		>	Moist, Very Dense, Light Gray Sand with Clay							60 (5.8	0 5")		
REM	IARK	S: I	Hollow stem augers were utilized to a depth of 9.6'.										

			HWY. & TRANS. DEPARTMENT DIVISION - GEOTECHNICAL SEC.		BORIN PAGE	G N		F 3				
JOB N			BR1610 Craighead County		DATE:				er 28	3-29, 20	3	
	IO. IAME:		Burlington Northern Santa Fe Railway (Bono)	l.	TYPE O	E DB				Rotary W		
JOBIN	AMIVIE.		County Road No. 27		IIILO	ı Dı	ILLII1	,.	•	total) i	wor.	- 1
GT AT	TON.		115+98		EQUIDA	/CNIT	٠.	CI	ALE S	350 w/ C	ME	- 1
STAT					EQUIPN	1EN I	:			atic Han		- 1
LOCA			Center Line of Construction			- n - a	00000					
			Paul Christenberry		HAMM	ER C	ORREC	TION	FAC	IUR:	1.23	-
COM	PLET	-	N DEPTH: 101.5		_	_	г	т —		Ü.		
D E P T H	S Y M B O	SAMPL	DESCRIPTION OF MATERIAL	SOIL GROUI	1 🖺	% MOIST.	e i	DRY WEIGHT	LBS PER CU.FT.	NO. OF BLOWS PER 6-IN.	% S C R	% R Q D
	L	E	0.155.05 51 51 4 510 1 0 4 5 0		PLAST LIMIT	Ĭ	LIQUID	¥	BS	0. (ER	1	
FTs	SUIN	S	SURFACE ELEVATION: 317.6			%	122	D.	<u> </u>		-	
 75		X	Moist, Hard, Light Gray Sandy, Silty Clay with Trace of Lignite							10 17-43		
 80		X	Moist, Very Dense, Light Gray Sandy Silt							22-60 (3")		
 85		×	Moist, Very Dense, Light Gray Silty Sand							52 48 (3")		
		×	Moist, Very Hard, Light Gray Clay with Sand							30 42 (2")		
95		X	Wet, Very Dense, Light Gray Silty Sand							15 26-51		
		X	Moist, Hard, Reddish Brown and Light Gray Sandy Clay							4 14-21		
	14	X	Moist, Very Stiff, Dark Gray Clay with Trace of							7 11-15		
	77		Lignite		-		1			11-10		
105			Boring Terminated	*								
	IARK	 S:	I Hollow stem augers were utilized to a depth of 9.6'.			-		_				
	•		- v									

	S HWY. & TRANS. DEPARTMENT S DIVISION - GEOTECHNICAL SEC.		BORIN PAGE			Б 3					
OB NO. OB NAME:	BR1610 Craighead County Burlington Northern Santa Fe Railway (Bono) County Road No. 27 118+20		PAGE DATE: TYPE O	F DR	ILLINC	Octo	I	20, 2 Rotar 750 v	y Wa		
OCATION: OGGED BY:	Center Line of Construction Stanley Bates		HAMMI	ER CO	ORREC			atic I TOR:		mer 1.23	
	ON DEPTH: 100.2		_				_		_		_
D S A A P M B L ST.	DESCRIPTION OF MATERIAL	SOIL GROUP	PLASTIC LIMIT	% MOIST.	LIQUID LIMIT	DRY WEIGHT	LBS PER CU.FT.	NO. OF BLOWS	PER 6-IN.	% S C R	% R Q D
1. N. N.	SURFACE ELEVATION: 341.7	_		%	33	<u>a</u>	1	Z	<u> </u>		
5	Dry, Hard, Brown Clay with Sand and some Organic Matter							24-	35		
10	Dry, Hard, Brown Clay with Sand							1 19-			
	Moist, Very Dense, Brown Sandy Silt							35-			
	Moist, Dense, Brown Sandy Silt							15-			
	Moist, Medium Dense, Brown Sandy Silt							5-			
	Moist, Medium Dense, Brown Silt							5-			

ARKANSAS HWY. & TRANS. DEPARTMENT MATERIALS DIVISION - GEOTECHNICAL SEC.				BORING NO. 3 PAGE 2 OF 3										
JOB NO. BR1610 Craighead County					DATE: October 20, 2014									
JOB NAM	ue.	Burlington Northern Santa Fe Railway (Bono)		TYPE OF DRILLING: Rotary Wash										
-				TIFEC	T DI	ILLIIV	J.	1	Cotary W	asii	- 1			
County Road No. 27 STATION: 118+20					EQUIPMENT: CME 750 w/ CME									
STATION														
LOCATIO		Center Line of Construction		Automatic Hammer										
		Stanley Bates	HAMMER CORRECTION FACTOR: 1.23											
COMPLI	_	N DEPTH: 100.2			_	r					_			
D S Y M B O	MPL	DESCRIPTION OF MATERIAL	SOIL GROUI	1 🖂	% MOIST.	LIQUID	WEIGHT	LBS PER CU.FT.	NO. OF BLOWS PER 6-IN.	% S C R	% R Q D			
FT.	s	SURFACE ELEVATION: 341.7		PLAST LIMIT	M %		RY.	BS	10. ER					
·	N	SON ACE ELEVATION. 341.7			9/		Ω		11		-			
40		Moist, Very Hard, Brown Silty Clay with Trace of Gravel							27-37					
 45		Moist, Medium Dense, Gray Silt with Trace of Gravel							9-11					
50		Moist, Very Dense, Gray Silt with Sand							10 60 (2")					
55		Moist, Very Dense, Gray Silty Sand							36 36 (2")					
65		Moist, Very Dense, Gray Silt							12 24-60					
70		Moist, Hard, Brown and Gray Silty Clay							9 19-40					
REMARKS: Hollow stem augers were utilized to a depth of 9.5'.														

					BORING NO. 3									
MATERIALS DIVISION - GEOTECHNICAL SEC.					PAGE 3 OF 3									
	JOB NO. BR1610 Craighead County				DATE: October 20, 2014									
I JOR M	DB NAME: Burlington Northern Santa Fe Railway (Bono)				TYPE OF DRILLING: Rotary Wash									
County Road No. 27 STATION: 118+20					EQUIPMENT: CME 750 w/ CME									
	LOCATION: Center Line of Construction				Automatic Hammer									
LOGGED BY: Stanley Bates					HAMMER CORRECTION FACTOR: 1.23									
COMPLETION DEPTH: 100.2														
D	_	s												
E	S Y	A							н	S		%	%	
P T	M	M P	DESCRIPTION OF MATERIAL	SOIL				開	UF	0₩		S	R	
👸	В			GROUI)]	ST.		Œ	LBS PER CUFT	NO. OF BLOWS	zi l	C R	Q D	
	O L	E			PLASTIC LIMIT	"WOIST	<u>5</u> \	X	S PI	0.	PER 6-IN.		<i>-</i>	
FT.		S	SURFACE ELEVATION: 341.7		LI P.	%	LIQUID LIMIT	NZ.	LB	-	_			
	\mathcal{M}	\times								17 29-				
	M	\leftarrow	Moist, Very Hard, Light Brown and Gray Silty							29-	"			
	\mathbb{H}		Clay with some Organic Matter											
	M		Olay Will Como Organio Mario.								- 1			
75	M									ر ا	.			
		\times								60				
										(3)	')			
80		_								60	、 l			
										(3'	'n			
			4											
85			Moist, Very Dense, Gray Silty Sand							60	、 l			
			Woldt, Voly Bolloo, Glay Guly Galla							(4'	'n			
90										60				
										(4'	ή			
L -														
95	Щ									31	. 1			
	111	\times								60-	40			
	111				1					(1'	")			
			Wet, Very Dense, Gray Clayey Sand											
	11/1													
100	777	_	Wet Very Dense Grov Silty Sand							60	, ,			
			Wet, Very Dense, Gray Silty Sand Boring Terminated							(2'				
			25mg rommatou											
105														
REM	ARK	S: I	Hollow stem augers were utilized to a depth of 9.5'.											