ARKANSAS DEPARTMENT OF TRANSPORTATION

SUBSURFACE INVESTIGATION

STATE JOB NO.		061509		
FEDERAL AID PROJE	ECT NO	CMF-9065(24)		
	HWY. 367	′ – HWY. 89 (CABOT) (S)		
STATE HIGHWAY	321	SECTION	1	
IN		LONOKE		COUNTY

The information contained herein was obtained by the Department for design and estimating purposes only. It is being furnished with the express understanding that said information does not constitute a part of the Proposal or Contract and represents only the best knowledge of the Department as to the location, character and depth of the materials encountered. The information is only included and made available so that bidders may have access to subsurface information obtained by the Department and is not intended to be a substitute for personal investigation, interpretation and judgment of the bidder. The bidder should be cognizant of the possibility that conditions affecting the cost and/or quantities of work to be performed may differ from those indicated herein.

ARKANSAS DEPARTMENT OF TRANSPORTATION

ARDOT.gov | IDriveArkansas.com | Scott E. Bennett, P.E., Director

MATERIALS DIVISION

11301 West Baseline Road | P.O. Box 2261 | Little Rock, AR 72203-2261 | Phone: 501.569.2185 | Fax: 501.569.2368

April 30, 2019

TO: Mr. Rick Ellis, Bridge Engineer

SUBJECT: Job No. 061509 Hwy. 367 – Hwy. 89 (Cabot) (S) Lonoke County Route 321, Section 1

Transmitted herewith is a brief summary of the geology and site conditions, D50 analysis test results, summary of percent material passing #200 sieve and Atterberg Limits test results (for liquefaction susceptibility analysis), rock mass rating summary (RMR), unconfined compressive strength test results, and the logs of the borings conducted for the structures and approaches of the above referenced project. The samples obtained by the Standard Penetration Tests were brought to the laboratory and visually classified by experienced lab personnel. The rock cores are available for inspection at the Materials Division.

This project contains three structures on Highway 321, west of Highway 67 in Cabot. The bridges included in this project are: White Oak Branch, Bayou Two Prairie, and Drain Two & UPRR.

White Oak Branch

The proposed plan for the White Oak Branch Bridge is to widen the existing by adding a new bridge section on each side. Based on plans provided by Bridge Design and the depth at which bedrock was encountered it is anticipated that all end bents will be founded on pilings. Preboring may be necessary in order to achieve minimum pile penetration requirements. No borings were obtained at the intermediate bents of the proposed bridges due to steep slopes, high water levels, and access limitations. However, utilizing the data obtained from the end bent borings and correlating the depths at which bedrock was encountered, it is anticipated that competent rock will be slightly deeper than 15 feet below ground level. Based on this information all interior bents could be founded on piling or drilled shafts. Piling should be tipped into competent Shale and preboring may be necessary in order to achieve minimum penetration requirements. Drilled shafts should be founded in competent slightly weathered to unweathered Shale and should be designed based on the values provided in Table 1.

Nominal Tip	Factored Tip	Nominal Side	Factored Side
Resistance (ksf)	Resistance (ksf)	Resistance (ksf)	Resistance (ksf)
196	98	22.9	12.6

Embankment analysis included global stability with seismic design consideration. The proposed embankment geometry provides for a satisfactory Factor of Safety for seismic and static conditions.

Bayou Two Prairie

The proposed Bayou Two Bridge is to be constructed adjacent to the existing, on the south side. Two of the four requested borings were inaccessible due to steep slopes. The two borings that were not obtained were located at: 260+91.50 21.75 Ft. Right of C.L. Construction and 261+16.50 21.75 Ft. Right of C.L. Construction. The two borings that were obtained had to be offset due to conflicts with utilities and steep slopes. The obtained borings are anticipated to represent uniform site conditions and should be adequate to design the proposed pile foundations.

Embankment analysis included global stability with seismic design consideration. The proposed embankment geometry provides for a satisfactory Factor of Safety for seismic and static conditions.

Drain Two & UPRR

The proposed Drain Two & UPRR Bridge is to be constructed adjacent to the existing, on the south side. The obtained borings are anticipated to represent uniform site conditions and should be adequate to design the proposed pile supported footings. Based on plans provided by Bridge Design and the findings from this subsurface investigation, it is anticipated that end bents will be founded on piling and all interior bents will be founded on pile supported footings. The existing east bridge end embankment has settled, exposing the bottom of the pile cap and piles. This area should be repaired during the construction project.

This project is located in a seismic zone with a mild horizontal acceleration of 0.241. Due to the presence of a very soft clay layer in the borings for the east bridge end embankment, reinforcement will be required to satisfy seismic conditions. The soft clay layer is likely responsible for settlement of the existing embankment as discussed above and in the Geology section of this report. The east bridge end embankment shall be strengthened by excavating existing material down to an approximate elevation of 255.5 Ft. A layer of Type 10 separation fabric should be placed followed by a 4 feet thick layer of stone backfill. The remaining embankment material shall be internally reinforced with geogrid. Temporary shoring will be required for this work. Geogrid

placement and specification recommendations are detailed in the attached draft Special Provision: Geosynthetic Internal Reinforced Embankment Construction, along with Figures 1 and 2.

Embankment analysis was based on an embankment height of 25 feet with 3H:1V bridge end slopes. Seismic analysis included a coefficient of horizontal acceleration of 0.241 as provided by Bridge Design. FHWA publication NHI-10-025 Volume II indicates that a value of one-half the horizontal coefficient may be utilized in the design of reinforced embankments. Therefore, a value of 0.1205 was utilized in this design. This configuration provides for a satisfactory Factor of Safety for seismic and static conditions.

The proposed embankment geometry for the west bridge end embankment provides for a satisfactory Factor of Safety for seismic and static conditions.

If you have any questions concerning these recommendations, please contact the Geotechnical Section.

Michael C. Benson Materials Engineer

MCB:rpt:mlg

cc: State Construction Engineer - Master File Copy District 6 Engineer G.C. File

ARKANSAS STATE HIGHWAY AND TRANSPORTATION DEPARTMENT

SPECIAL PROVISION

JOB NO. 061509

GEOSYNTHETIC INTERNAL REINFORCED EMBANKMENT CONSTRUCTION

DESCRIPTION: This item shall consist of furnishing and installing a geosynthetic internal reinforcement for embankment construction in accordance with the plans and specifications. The geosynthetic internal reinforcement shall be placed as described herein, from the Drain Two & UPRR East Bridge End Slope to Station 275+54.

MATERIALS: Geogrid shall be manufactured as a single layer regular network of integrally connected longitudinal and transverse polymer tensile elements with a geometry that permits significant mechanical interlock with the backfill material. The geogrid structure shall remain dimensionally stable under construction stresses and have high resistance to damage during construction, to ultraviolet degradation, and to all forms of chemical and biological degradation encountered in the soil being reinforced. Geogrid must be evaluated by NTPEP with test results included in the Datamine database.

The geogrid shall also conform in all respects to the following physical requirements:

Provide a geogrid with a minimum tensile strength, T_{allow} as specified in the plans and this Special Provision.

Where: $T_{allow} = T_{ult}/RF$

And $RF = FS_{ID} \times FS_{CR} \times FS_D$

Determine T_{ult} (Ultimate Tensile Strength) according to ASTM D 6637 Method B (note, that the same test shall be used for definition of the geogrid creep reduction factor) and ASTM D 4759.

Determine FS_{ID}, FS_{CR}, and FS_D according to the following:

- FS_{ID} Determine the Partial Factor of Safety for Installation Damage from the results of full-scale construction damage tests conducted according to ASTM D 5818. If possible, conduct tests using project-specific backfill and construction placement techniques. Use a default value of 3.0 if no installation damage testing has been conducted. The minimum value for FS_{ID} is 1.1.
- FS_{CR} Determine the Partial Factor of Safety for Creep Deformation according to ASTM D 5262. Collect test data for a minimum duration of 10,000 hours for both standard and elevated temperatures. Extrapolate the test results to a 75-year design life as provided in Appendix B of FHWA Publication No. FHWA-NHI-10-025, "Design and Construction of Mechanically Stabilized Walls and Reinforced

ARKANSAS STATE HIGHWAY AND TRANSPORTATION DEPARTMENT

SPECIAL PROVISION

JOB NO. 061509

GEOSYNTHETIC INTERNAL REINFORCED EMBANKMENT CONSTRUCTION

Soil Slopes – Volume II". If testing has not been conducted, default values for FS_{CR} are:

Polymer Type	<u>FS_{CR}</u>
Polyester	3.00
Polypropylene	5.00
Polyethylene	5.00

FS_D The Durability Reduction Factor is dependent on the susceptibility of the geogrid to attack from chemicals, thermal oxidation, hydrolysis, stress cracking, and microorganisms. The minimum reduction factor for the combined effects of chemical and biological degradations is:

Polymer Type	FS_D
Polyester	1.20
Polypropylene	1.25
Polyethylene	1.10

Identify, store and handle geogrids according to ASTM D 4873. Limit geogrid exposure to ultraviolet radiation to less than 10 days.

The Contractor shall furnish to the Engineer a production certification that the geogrid supplied meets the respective criteria set forth in these specifications. The certification shall state the name of the manufacturer, product name, style number, chemical composition of the filaments, ribs, or yarns and other information to fully describe the geogrid. The Contractor shall supply test data from and independent laboratory to support certified values submitted.

The embankment material placed within the limits of this Special Provision shall not have greater than 35% passing the #200 sieve AND a Liquid Limit greater than 40. The Contractor shall perform quality control and acceptance sampling and testing of the compacted embankment material for density and moisture content in accordance with Subsection 210.02 and 210.10, at the frequencies established in Section 210. The Contractor shall perform quality control and acceptance acceptance sampling and testing of the compacted embankment material for gradation and liquid limit in accordance with Section 306, except that the size of the standard lots will be 3000 cubic yards. There will be no direct payment made for fulfilling these material requirements but compensation shall be considered included in the price bid for Compacted Embankment (Special).

CONSTRUCTION METHODS: The geogrid reinforcement shall be placed to the lines and dimensions shown in the plans or as directed by the Engineer. During clearing and grubbing in

ARKANSAS STATE HIGHWAY AND TRANSPORTATION DEPARTMENT

SPECIAL PROVISION

JOB NO. 061509

GEOSYNTHETIC INTERNAL REINFORCED EMBANKMENT CONSTRUCTION

the embankment area, all organic and deleterious materials, and soft or loose compressible soils shall be excavated and removed from the fill area. Prior to fill placement, the exposed foundation soils shall be proof-rolled to detect any unstable locations, which shall subsequently be compacted or excavated and replaced with compacted fill as directed by the Engineer.

Correct orientation (roll direction) of the geogrids shall be verified by the Engineer. All geogrids shall be placed/unrolled per the manufacturer's recommendations. The Contractor shall provide the engineer detailed installation recommendations from the manufacturer. All geogrid shall be placed to lay flat, pulled tight and pinned or weighted down to hold its position until the subsequent soil layer can be placed.

The first layer of seismic reinforcement geogrid shall be placed directly on top of the stone backfill. Each subsequent layer of geogrid shall be placed at intervals as shown on the plans and shall continue to within two feet of the top of finished subgrade. There shall be a minimum of 4 layers of seismic reinforcement geogrid with a minimum T_{allow} of 5000 lb./ft. Seismic reinforcement geogrid shall be placed in continuous longitudinal strips perpendicular to the face of the embankment. It shall extend from side slope face to the temporary shoring. The curved transition from side slope to bridge end slope shall be constructed of rectangular pieces of grid and shall be overlapped so that the entire embankment is covered.

The first layer of slope reinforcement geogrid shall be placed two feet above the first layer of seismic reinforcement grid after the embankment material has been placed and prepared in accordance with Section 210, Excavation and Embankment of the Standard Specifications for Highway Construction, edition of 2014. This grid shall be placed in continuous longitudinal strips perpendicular to the face of the embankment slope. Each strip shall be a minimum of twenty-five feet long and have a minimum T_{allow} of 1500 lb./ft. The curved transition from side slope to bridge end slope shall be constructed of rectangular pieces of grid. Grid shall be overlapped so that the entire embankment is covered.

Overlaps of geogrid between rolls shall be located at no less than 30 feet from the finished slope surface. Geogrid shall be overlapped a minimum of 5 feet. The number of overlaps shall be limited to one per strip of geogrid. Mechanical bar connections shall be placed per manufacturer's recommendations if required. Adjacent strips of geogrid need not be overlapped.

The embankment fill between layers of geogrid reinforcement shall be prepared in accordance with Section 210, Excavation and Embankment of the Standard Specifications for Highway Construction, Edition of 2014. Reinforcement can be placed directly on the prepared embankment. No special surface treatment will be required. If a sheep's-foot roller is utilized, the imprints are acceptable surfaces for geogrid reinforcement placement.

.

ARKANSAS STATE HIGHWAY AND TRANSPORTATION DEPARTMENT

SPECIAL PROVISION

JOB NO. 061509

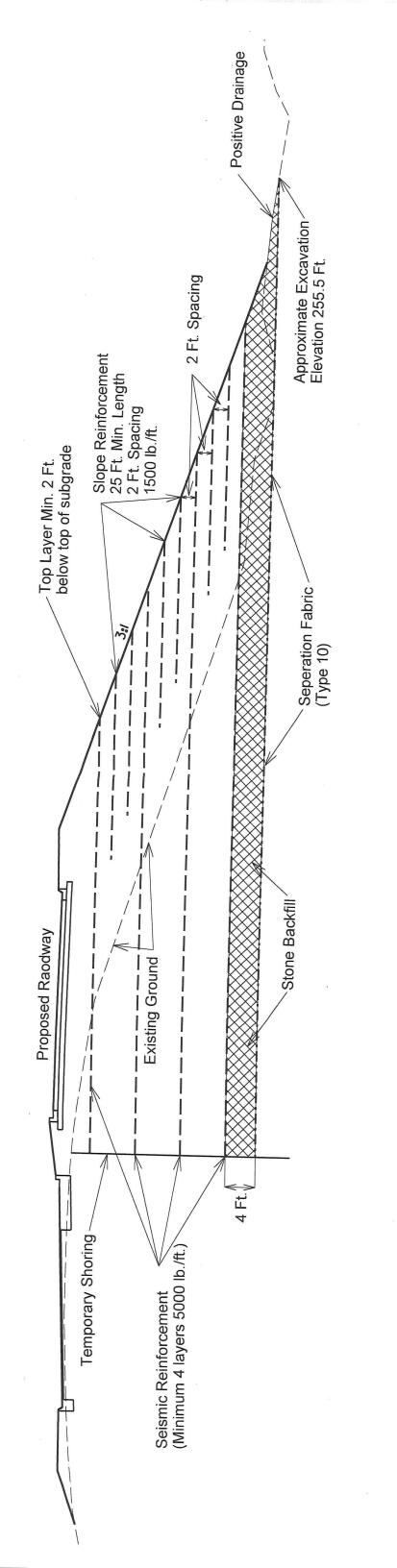
GEOSYNTHETIC INTERNAL REINFORCED EMBANKMENT CONSTRUCTION

Tracked construction equipment shall not be operated directly upon the geogrid. A minimum fill thickness of 6 inches is required prior to operation of tracked vehicles over the geogrid. Turning of tracked vehicles shall be kept to a minimum to prevent tracks from displacing the fill and damaging the geogrid.

Rubber-tired equipment may pass over geogrid reinforcement at slow speeds of less than 10 mph. Sudden breaking and sharp turning shall be avoided.

METHOD OF MEASUREMENT: All embankment material including the geogrid reinforcement will be measured in accordance with Section 210 Excavation and Embankment of the Standard Specifications for Highway Construction, Edition of 2014.

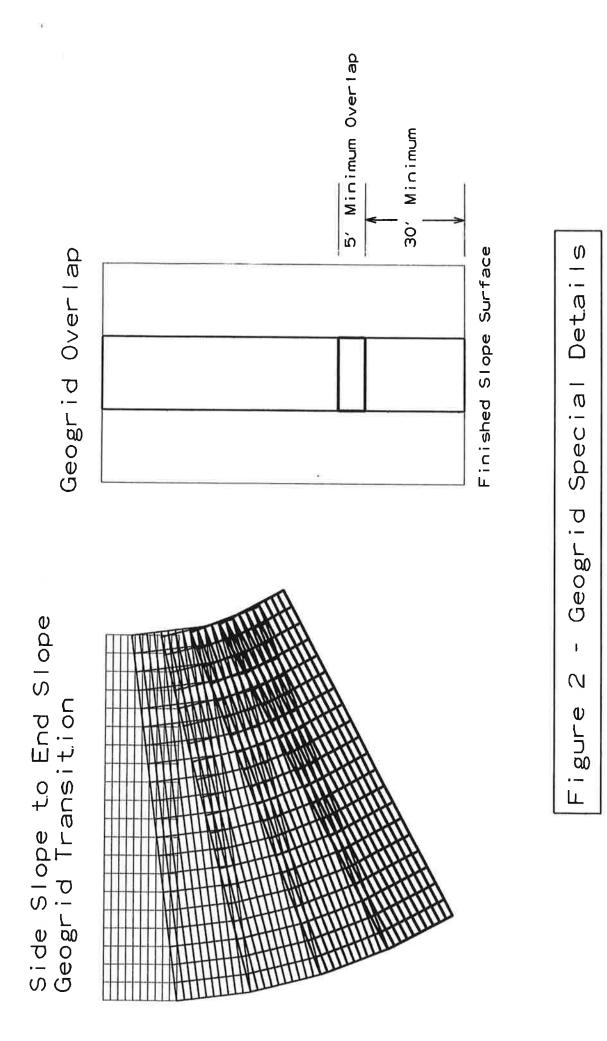
BASIS OF PAYMENT: Placement and compaction of embankment material and installing geogrid reinforcement shall be paid for under the item "Compacted Embankment (Special)", which price shall be full compensation for all costs involved in furnishing all material; for proof rolling ground surfaces or subgrade; for constructing the embankments in accordance with Section 210 and this Special Provision; for quality control and acceptance sampling and testing; and for all labor, tools, equipment, and incidentals necessary to complete the work


Payment will be made under:

Pay Item

Compacted Embankment (Special)

Pay Unit


Cubic Yard

· .

Note: Stone Backfill shall have a 4" to 6" cap of Class 7 as described in Section 207 of the Standard Specifications for Highway Construction, 2014 edition.

GEOLOGY AND SITE CONDITIONS Job No. 061509

<u>Hwy. 367 – Hwy. 89 (Cabot) (S)</u> <u>Lonoke County</u> <u>Route 321 Section 1</u>

Site Conditions

The proposed job contains three bridges. **Bridge 1**, the westernmost bridge, crosses the White Oak Branch of the Bayou Two Prairie, which flows to the south. Bridge 1 is a three span bridge constructed of cast-in-place concrete deck supported by concrete square batter pilings. The guardrail is composed of concrete walls on the bridge and steel leading up to the bridge. Riprap has been placed on the slopes below the bridge abutments. A buried telecommunication line parallels the North side of the roadway and is covered with concrete in the channel. Overhead power lines and a buried gas line parallel the south side of the roadway. The gas line appears to be exposed in the channel. A church and a business with associated parking lots are located on the south and north side of the roadway, down-station of the channel. The area up-station of the channel is moderately to heavily wooded on both sides of the roadway.

Bridge 2 crosses the Bayou Two Prairie and flows to the southeast. The structure is built very similarly to Bridge 1 except, the bents have been placed at a skew to parallel channel flow. Overhead power lines parallel the north side of the bridge. They cross the roadway down-station from the bridge and then parallel the south side of the roadway. Major grid power lines cross the roadway up-station from the bridge. A sewer line and a buried telecommunication line parallel the north side of the roadway. The area around the bridge is moderately to heavily wooded except, along the major grid power line corridor.

Bridge 3 is an 11 span bridge. Railroad tracks run under span 6, an unnamed stream under span 9, and a levee, that parallels the up-station side of the stream, under span 10. The structure is constructed of concrete deck supported by six steel beams and concrete square pilings. The guardrail is composed of concrete walls on the bridge and steel leading up to the bridge. Riprap has been placed on the slopes below the bridge abutments. Overhead power lines, a sewer line, and a buried telecommunication line parallel the north side of the bridge. A buried telecommunication line parallels the downstation side of the railroad tracks. The area around the bridge is moderately to heavily wooded with agricultural fields surrounding the up-station end of the bridge.

Site Geology

The geology of the project alignment changes between Bridge 1 and Bridge 2. Bridge 1 is located on unconsolidated, primarily clayey deposits mapped as Quaternary alluvial deposits (map symbol Qal). The alluvial deposits overlie shale from the middle part of the Atoka Formation.

The Atoka Formation is a sequence of marine, mostly tan to gray silty sandstones and grayish-black shales. Some rare calcareous beds and siliceous shales are known.

This unit has the largest areal extent of any of the Paleozoic formations in the state. It is the surface rock of the Boston Mountains, dominates the exposures in the Arkansas River Valley and the frontal Ouachita Mountains, and is present in the southern part of the Ouachita Mountains. In the Arkansas River Valley and the frontal Ouachita Mountains, the Atoka Formation has been subdivided into upper, middle, and lower lithic members based on regionally mappable shale or sandstone intervals. The unit locally contains discontinuous streaks of coal and coaly shale in the Boston Mountains and Arkansas River Valley. The Atoka may be up to 25,000 feet thick in the Ouachita Mountains. Shale was encountered in borings at depths ranging from 28 to 32 feet below ground level.

Bridge 2 is also located on alluvial deposits; however, the alluvial deposits overlie the Arkadelphia Formation. In general, the Arkadelphia is mostly a dark-gray to black marl or marly clay with some limy, gray sandstone, gray sandy clay, sandy limestone, concretionary limestone, and white to light-brown impure chalk. The Arkadelphia Formation at the job site consists primarily of marly clay with a few beds of limestone up to 1.2 feet thick. The Arkadelphia was encountered in borings at 45.1 and 50 feet below ground level. The Atoka Formation was encountered below the Arkadelphia Formation at 76.6 and 90 feet below ground level and consisted of shale.

Bridge 3 is located over the same geology as Bridge 2. The Arkadelphia was encountered at depths ranging from approximately 45 to 65 feet below ground (elevation range of 212.5 to 221 feet above MSL). The Atoka Formation was not encountered in the first boring (down-station) due to the higher elevation of the boring location. The Atoka was encountered in the second and third borings at depths ranging from approximately 90.7 to 100.0 feet below ground level. The elevation of the top of the Atoka Formation was too low to be encountered in borings up-station from the third boring. There appeared to be some subsidence under the up-station bridge end cap of Bridge 3. A very soft layer occurs at a depth of 25 feet below ground level in the easternmost boring and may be the cause of the subsidence at the bridge end.

Figure 1. Subsidence under the east bridge end cap.

Scour Potential

The banks of the channel at **Bridge 1** (See Figure 1) consists of lean clay with sand (CL) based on the scour sample taken at the site. The bottom of the channel appears to consist of clay. Due to the cohesion of the clay particles, the sediment has diminished capacity for scour. There is no evidence of scour at the Bridge 1 site.

Figure 2. The stream at Bridge 1 looking upstream.

The channel at **Bridge 2** (See Figure 2) is deeper with taller banks. This may be due to the sediment at this site being slightly coarser. The sample tested for scour consisted of silt with sand (ML). There are some small stream bank collapses, but most of the banks are rather well vegetated. Riprap has been place on the stream banks under the bridge to prevent erosion (See Figure 3). No evidence of scour was observed at Bridge 2.

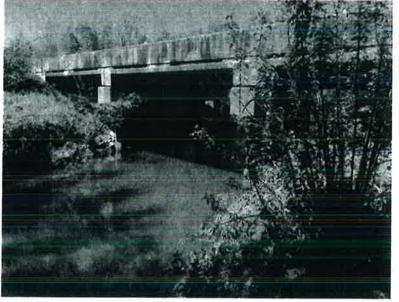


Figure 3. The stream at Bridge 2 looking upstream.

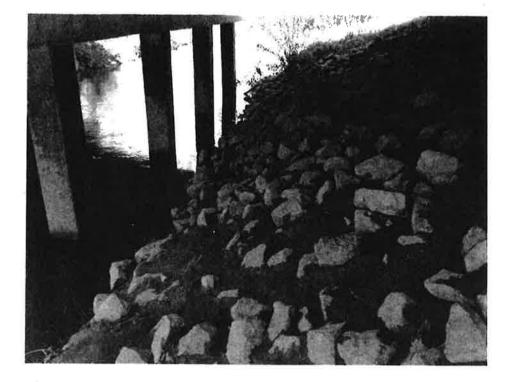


Figure 4. Riprap on stream bank under Bridge 2 looking upstream.

The sediment in the channel at **Bridge 3** (See Figures 4 and 5) is similar to the sediment located at Bridge 1. Based on the scour sample taken at this site, the sediment consists of lean clay (CL). The channel has low banks and the channel is somewhat shallow. Due to the cohesion of the clay particles, the sediment in the channel has a diminished capacity for scour. There is no evidence of scour at the Bridge 3 site.

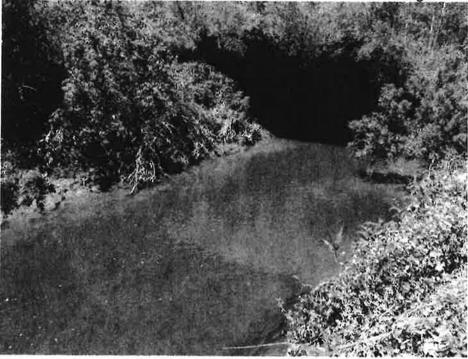


Figure 5. The stream at Bridge 3 looking upstream.

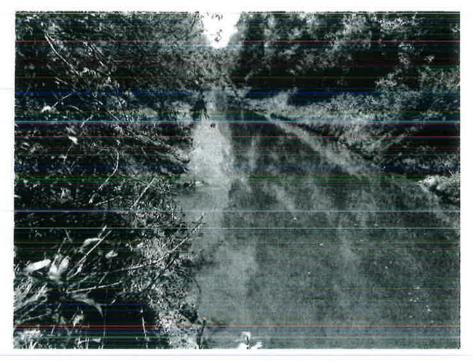


Figure 6. The stream at Bridge 3 looking downstream.

Subsurface Conditions

Based on the results of the borings from Stations 224+28 to 225+64, the subsurface stratigraphy may be generalized as follows:

- 0 to 28 Feet: Consists primarily of moist to wet, soft to hard, brown to gray clay to sandy clay.
- 28 to 35 Feet: Varies from wet, medium stiff to hard, brown to gray sandy clay to sandy clay with gravel to highly weathered, medium hard, dark gray shale.
- 35 to 64.5 Feet: Consists of slightly weathered to unweathered, medium hard, dark gray **shale**.

Based on the results of the borings from Stations 260+74 to 261+65.5, the subsurface stratigraphy may be generalized as follows:

- 0 to 45.1 Feet: Varies from moist to wet, soft to very stiff, brown to gray sandy clay to clay to very loose to medium dense, brown silty sand to sand with clay.
- 45.1 to 50 Feet: Varies from wet, stiff, gray sandy clay to moist, very stiff, dark gray clay with occasional layers of moderately hard, gray limestone.
- 50 to 76.6 Feet: Consists of moist, very stiff to very hard, dark gray clay with occasional layers of moderately hard, gray limestone. One prominent limestone bed occurs in this zone and is approximately one foot thick.

- 76.6 to 90 Feet: Varies from moist, very stiff to very hard, dark gray clay with occasional layers of moderately hard, gray limestone to highly weathered to weathered, medium hard, dark gray shale.
- 90 to 101.1 Feet: Consists of highly weathered to slightly weathered, medium hard, dark gray **shale**.

Based on the results of the borings from Stations 265+52.5 to 274+65.5, the subsurface stratigraphy may be generalized as follows:

- 0 to 45 Feet: Varies from moist to wet, medium stiff to stiff, brown and gray clay and sandy clay to loose to medium dense, gray silty sand to silty sand with gravel.
- 45 to 65 Feet: Varies from moist to wet, medium stiff, brown and gray **sandy clay** to medium dense, gray **silty sand** to moist very stiff to hard, dark gray **clay**.
- 65 to 90.7 Feet: Consists of moist, very stiff to hard, dark gray **clay**. Some zones within this interval contain thin **limestone** layers.

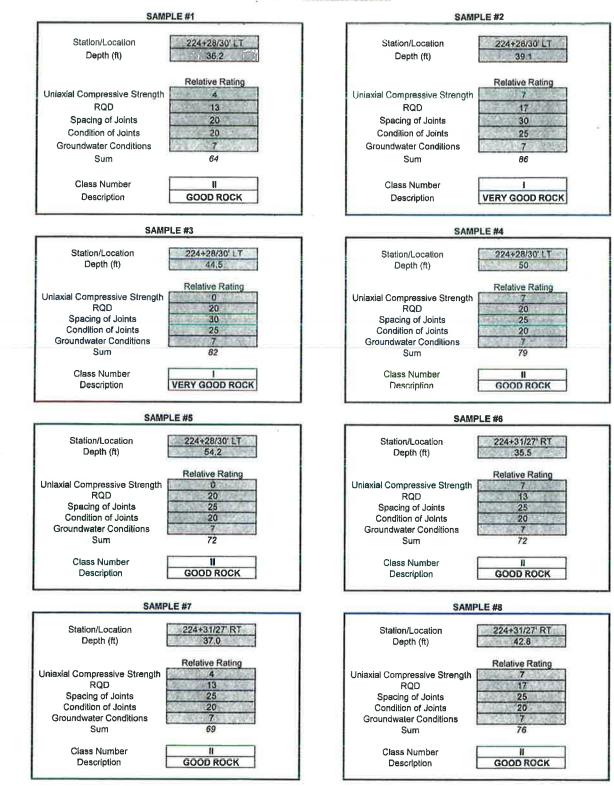
90.7 to 101.5 Feet: Varies from moist, hard, dark gray **clay** to weathered, medium hard, dark gray **shale to** cemented, dark gray **sandstone**.

D₅₀ AGGREGATE ANALYSIS FOR SCOUR CALCULATIONS

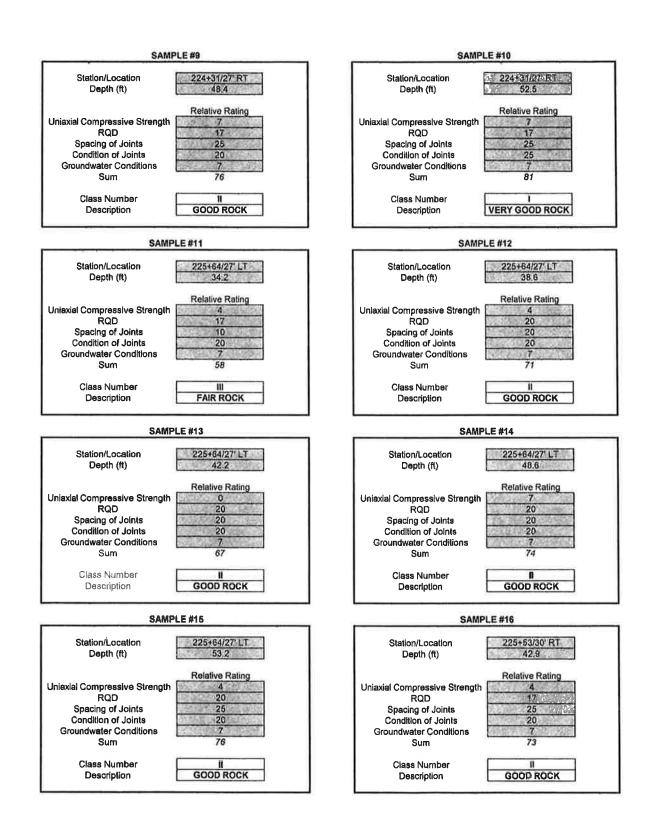
Job No. 061509												
Creek Name	Station	Sample Type	Location	Depth (FT)	Soil Description	Aggregate Size (D50) (IN)						
White Oak Branch of Bayou Two Prairic	225+00	Creek Bank	Construction Centerline	NA	CL Lean Clay With Sand	Less Than 0.0029						
Bayou Two Prairie	261+16.5	Creek Bank	21.75 Ft. Right of Construction Centerline	NA	ML Silt With Sand	Less Than 0.0029						
Unnamed Stream	273+00	Creek Bank	21.75 Ft. Left of Construction Centerline	NA	CL Lean Clay	Less Than 0.0029						

Lab Test Summary

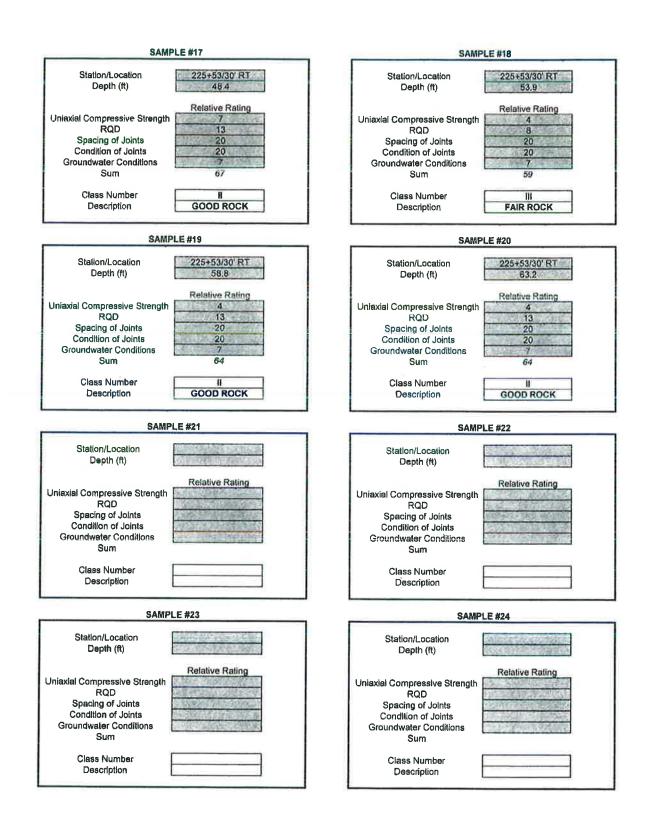
Project Number: Project Name:


a,

061509

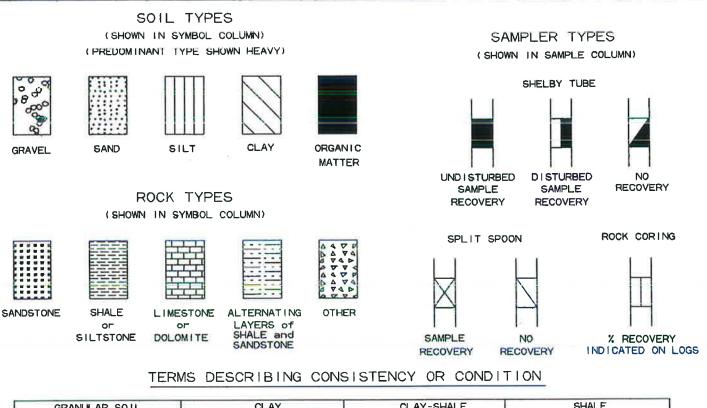

Name: Hwy. 367 - Hwy. 89 (Cabot) (S)

Station	Location	Depth	Plastic	Liquid	Plasticity	% Passing	Unified Soil
	Looddon	(ft.)	Limit	Limit	Limit Index No. 200		Classification
274+65.5	6.25' Rt.	4.9	ND				
274+65.5	6.25' Rt.	9.9	15	49	34	62	CL
274+65.5	6.25' Rt.	15.0	14	51	37	76	СН
274+65.5	6.25' Rt.	20.0	12	38	26	70	CL
274+65.5	6.25' Rt.	25.0	17	33	16	89	CL
274+65.5	6.25' Rt.	30.0	15	38	23	92	CL
274+65.5	6.25' Rt.	35.0	14	48	34	89	CL
274+65.5	6.25' Rt.	40.0	11	32	21	77	CL
274+65.5	6.25' Rt.	45.0	12	31	19	72	CL
274+65.5	6.25' Rt.	50.0			NP	42	SC
274+65.5	6.25' Rt.	55.0			NP	28	SM
274+65.5	6.25' Rt.	60.0	24	75	51	98	СН
274+65.5	6.25' Rt.	65.0	21	65	44	99	СН
274+65.5	6.25' Rt.	70.0	23	71	48	98	СН
274+65.5	6.25' Rt.	75.0	24	70	46	93	СН
274+65.5	6.25' Rt.	80.0	23	67	44	97	СН
274+65.5	6.25' Rt.	85.0	19	54	35	95	СН
274+65.5	6.25' Rt.	90.0	22	69	47	98	СН
274+65.5	6.25' Rt.	95.0	21	55	34	96	СН
274+65.5	6.25' Rt.	100.0	20	50	30	90	СН


ROCK MASS RATING SUMMARY JOB # 080439

1

¥.


Rock Core Unconfined Compression Test Summary

Project Number:	061509
Project Name:	Hwy. 367 - Hwy. 89 (Cabot) (S)
Date Tested:	3/28/2019

Station	Location	Sample No.	Depth (ft.)	Diameter (in)	Height (in)	Total Load (lbs.)	Correction Factor	Stress (psi)	Remarks
224+28	30' Lt.	1	36.2	1.75	3.57	12,040	1.00	5,006	
224+28	30' Lt.	2	39.1	1.75	3.80	20,850	1.00	8,668	
224+28	30' Lt.	3	44.5	1.75	-				Broke in Saw
224+28	30' Lt.	4	50.0	1.75	4.00	19,020	1.00	7,908	
224+28	30' Lt.	5	54.2	1.75					Broke in Saw
224+31	27' Rt.	6	35.5	1.75	3.95	18,340	1.00	7,625	
224+31	27' Rt.	7	37.0	1.75	3.53	17,800	1.00	7,400	
224+31	27' Rt.	8	42.8	1.75	3.45	24,290	1.00	10,098	
224+31	27' Rt.	9	48.4	1.75	3.55	27,760	1.00	11,541	
224+31	27' Rt.	10	52.5	1.75	4.65	24,140	1.00	10,036	
225+64	27' Lt.	11	34.2	1.75	4.05	16,450	1.00	6,839	
225+64	27' Lt.	12	38.6	1.75	4.85	9,960	1.00	4,141	
225+64	27' Lt.	13	42.2	1.75	-				Broke in Saw
225+64	27' Lt.	14	48.6	1.75	4.50	20,240	1.00	8,415	
225+64	27' Lt.	15	53.2	1.75	4.05	16,270	1.00	6,764	
225+53	30' Rt.	16	42.9	1.75	3.95	12,020	1.00	4,997	
225+53	30' Rt.	17	48.4	1.75	4.30	18,820	1.00	7,824	
225+53	30' Rt.	18	53.9	1.75	4.70	8,840	1.00	3,675	
225+53	30' Rt.	19	58.8	1.75	3.90	10,930	1.00	4,544	
225+53	30' Rt.	20	63.2	1.75	3.40	10,630	1.00	4,419	

* Please note any broken samples, fractures or other characteristics of sample in Remarks.

_EGEND

GRANU	LAR SOIL		CLAY	CL/	AY-SHALE	SHALE					
'N' Value	Density	'N' Value	Consistency	'N' Value	Consistency	*Nº Value Consistency					
0-4 5-10	Very Loose Loose	0-1 2-4	Very Soft Soft	0-1 2-4	Very Soft Soft	31-60 Soft					
11-30 31-50	Medium Dense Dense	5-8 9-15	Medium Stiff Stiff	5-8 9-15	Medium Stiff Stiff	Over 60 More than 2'					
0ver 50	Very Dense	16-30 31-60	Very Stiff Hard	16-30 31-60	Very Stiff Hard	Penetration in 60 Blows: Medium Hard					
		Over 60	Very Hard	0ver 60	Very Hard	Less than 2' Penetration					
						in 60 Blows Hard					

- 1. Ground water elevations indicated on boring logs represent ground water elevations at date or time shown on boring log. Absence of water surface implies that no ground water data is available but does not necessarily mean that ground water will not be encountered at locations or within the vertical reaches of these borings.
- 2. Borings represent subsurface conditions at their respective locations for their respective depths. Variations in conditions between or adjacent to boring locations may be encountered.
- 3. Terms used for describing soils according to their texture or grain size distribution are in accordance with the Unified Soil Classification System.

Standard Penetration Test – Driving a 2.0" O.D., 1-3/8" I.D. sampler a distance of 1.0 foot into undisturbed soil with a 140-pound hammer free falling a distance of 30 inches. It is customary to drive the spoon 6.0 inches to seat into undisturbed soil, and then perform the test. The number of hammer blows for seating the spoon and performing the test are recorded for each 6 inches of penetration on the drill log. The field "N" Value (N_f) can be obtained by

adding the bottom two numbers for example: $\frac{6}{8-9} \Rightarrow 8+9 = 17b lows / ft$. The "N" Value corrected to 60%

efficiency (N_{60}) can be obtained by multiplying N_f by the hammer correction factor published on the boring log.

Symbol Description

NET IU STWDULS Symbol Description

Strata symbols cavity clay sandy clay shale with clay seams

shale/siltstone

silt/cemented silt

sandy clay with gravel

silty sand

limestone/dolomite

claystone with frequent limestone layers limestone with frequent claystone layers

silty clay

clayey sand

Notes:

- 1. Exploratory borings were drilled on March 14 and 18, 2018 using a 4-inch diameter continuous flight power auger.
- 2. No free water was encountered at the time of drilling or when re-checked the following day.
- 3. Boring locations were taped from existing features and elevations extrapolated from the final design schematic plan.
- 4. These logs are subject to the limitations, conclusions, and recommendations in this report.
- 5. Results of tests conducted on samples recovered are reported on the logs.

silty sand with gravel

cemented sand/sandstone

Soil Samplers

Split spoon sample recovery

Rock coring

			DEPARTMENT OF TRANSPORTATION DIVISION - GEOTECHNICAL SEC.		BORIN PAGE	G NO		2					
OB N			061509 Lonoke County		DATE:				агу	12, 2	019		
OB N	AME:		Hwy. 367 - Hwy. 89 (Cabot)(S) Route 321 Section 1		TYPE O		LLING		. n	iome	nd C	0.00	
TAT	ION:		224+28		EQUIPN			ugei		ker 2		ore	
	TION:		30' Left of Construction Centerline		LQOIPA	TEIN I			AU	ACI 2	024		
.OGG	ED BY		ustin Dillman / Donnie Thornton		наммі	ER CO	RRECT	TION	FACT	OR		N/A	
COM	PLET	ION	DEPTH: 55.5										
D E P T H	S Y B O	SAMPLE	DESCRIPTION OF MATERIAL	SOIL GROUP	PLASTIC LIMIT	% MOIST.	LIQUID	DRY WEIGHT	LBS PER CU.FT.	NO. OF BLOWS	PER 6-IN.	% T C R	
FT.		S	SURFACE ELEVATION: 265.3		PLA	% N	LIQUII	DR	LBS	0 Z	PER		
5		X	Moist, Stiff, Brown and Gray Clay							5-			
10 15		X	Moist, Very Stiff, Brown Clay							6 7-	.9		
		X	Wet, Soft, Light Brown Clay							2-	2		
<u>20</u> 		X	Wet, Stiff, Brown and Gray Sandy Clay*							5-			
<u>25</u> 	X	Х	Wet, Very Stiff, Brown Sandy Clay with Trace Gravel							8-1			
30			SHALE								Ì		
		×	SHALE - Highly Weathered, Medium Hard, Dark Gray							4 62- (7	27		
 35	ARKS		SHALE - Highly Weathered, Medium Hard, Dark A water stratum was encountered at 23.1' below gr									50	

			DEPARTMENT OF TRANSPORTATION		BORIN								
		_	DIVISION - GEOTECHNICAL SEC.		PAGE	2	OF	_		10.5	0.1.0	_	-
JOB N JOB N			061509 Lonoke County Hwy. 367 - Hwy. 89 (Cabot)(S)		DATE: February 12, 2019								
JOB N	AME:	Route 321 Section 1		TYPE OF DRILLING: Hollow Stem Auger - Diamond Core									
STATI	ON.		224+28		EQUIPM			ugei		cer 2		010	
LOCA			30' Left of Construction Centerline		LQUII	LLINI,			1101	01 2			
			ustin Dillman / Donnie Thornton		HAMMI	ER CO	RRECT	ION I	FACT	OR:]	N/A	
COM	PLET	ION	DEPTH: 55.5										
D	s	s											
Е	S Y	Α							ک	10			
P T	М	М	DESCRIPTION OF MATERIAL	SOIL				Ħ	U.FJ	MC		% T	% R
н	В	P L		GROUP	0	Ľ.		EIG	R CI	BL(z	C	Q
	0	Ē			IT TI	OIS		N.	ΡE	OF		R	D
FT.	L	s	SURFACE ELEVATION: 265.3		PLASTIC LIMIT	% MOIST.	LIQUID	DRY WEIGHT	LBS PER CU.FT	NO. OF BLOWS	PER 6-IN.		
			Gray			0.		<u> </u>		_			
				-									
		ŝ.											
			SHALE - Slightly Weathered, Medium Hard,									94	64
			Dark Gray										
40													
				1	1								
-												100	90
45													
	2021									0			
			SHALE - Unweathered, Medium Hard, Dark								- 1	95	95
			Gray									90	90
50													
											1		
											9	100	98
55													
					_								
			Boring Terminated										
100													
60				1			1						
							1						
65							1						
70				1									
the second s		. *	A water stratum was encountered at 23.1' below g	I around k			-l						
			A water stratum was encountered at 23.1 below g White Oak Branch of the Bayou Two Prairie		SVEI.								
		-										_	

JOB N		_	DIVISION - GEOTECHNICAL SEC. 061509 Lonoke County		PAGE	1	~	_	_	(1.1.0	_	_
JOB N			061509 Lonoke County Hwy. 367 - Hwy. 89 (Cabot)(S)		DATE: FYPE O				uary	6,20)19		
300 14			Route 321 Section 1				tem A		· - D	iamo	nd C	ore	
STAT	ION:		224+31		EQUIPN			ugei		ker 20		.016	
LOCA	TION:		27' Right of Construction Centerline		Quin				1 101				
LOGG	ED BY		ustin Dillman		HAMMI	ER CO	RRECT	TON I	FACT	OR:		N/A	
COM	PLET	ION	DEPTH: 54.7										
D E P T H	S Y M B	SAMPL	DESCRIPTION OF MATERIAL	SOIL GROUP	0	T.		EIGHT	LBS PER. CU.FT.	NO. OF BLOWS	Ч.	% T C	% R C
FT.	O L	E	SURFACE ELEVATION: 265.2		PLASTIC LIMIT	% MOIST.	LIQUID	DRY WEIGHT	LBS PEI	NO. OF	PER 6-IN.	R	D
5			Moist, Stiff, Brown and Gray Clay		H	0.	I	I	I				
10		X	Moist, Very Stiff, Brown and Gray Clay							7 7-1 4 9-1	6		
20		X	Moist, Loose, Light Brown Silt							3	_		
	\sum	X	Moist, Stiff, Brown Sandy Clay							3			
<u>25</u> 		X	Wet, Very Stiff, Brown Sandy Clay with Gravel							5 7-1			
30	X	X	Wet, Hard, Brown Sandy Clay with Gravel							6 18-:			
			SHALE										

			DEPARTMENT OF TRANSPORTATION		BORIN			_					٦
-	_	_	DIVISION - GEOTECHNICAL SEC.		PAGE	2	OF			6 00	10		-
JOB N JOB N			061509 Lonoke County Hwy. 367 - Hwy. 89 (Cabot)(S)		DATE: TYPE OI	וותכו			lary	6,20	19		
JUB N	AMIS		Route 321 Section 1				tem A		- Di	amor	d C	ore	
STATI	ION:		224+31		EQUIPM			ugoi		cer 20			
LOCA			27' Right of Construction Centerline		LQUIII								
A CONTROLLS			ustin Dillman		HAMME	RCO	RRECT	ION F	ACT	OR:	1	N/A	
		_	DEPTH: 54.7										
D		s			1								
E	S Y	A											
Р	M	М	DESCRIPTION OF MATERIAL	SOIL				Ħ	Ē	SWO		% T	% R
I I	B	P		GROUP	0	Ŀ.		EIG.	ت اړ	BLC		C	Q
н	0	L E			LI LI	OIS		A	PEI	OF	1	R	D
FT.	L	S	SURFACE ELEVATION: 265.2		PLASTIC	% MOIST.	LIQUID	DRY WEIGHT	LBS PER CU.FT.	NO. OF BLOWS	PER 6-IN.		
		Ť	SOR ACE ELEVATION: 203.2			0		Ш		2 10 (0')	-	
										(0')		
												84	64
													• •
40													
			SHALE - Unweathered, Medium Hard, Dark									07	74
			Gray									97	74
			13										
45		4											
												96	88
													1
_50													
-0-													
			SHALE - Unweathered, Medium Hard,		1							97	86
			Occasional Fractures, Dark Gray										
55		┢┷┶	Boring Terminated		-	-		-	-			-	-
			borng reminateu										
]												
60													
	1												
	1												
	1												
	1												
	1												
65	1												1
	-												
L -													
													1
70												L	
REM	ARKS	S: \	White Oak Branch of the Bayou Two Prairie										
				_									

IOB N			DIVISION - GEOTECHNICAL SEC. 061509 Lonoke County		PAGE	1				12.04	010		_
	KO. ≹AME:	1	Hwy. 367 - Hwy. 89 (Cabot)(S) Route 321 Section 1		DATE: FYPE O Holle			:		13,2(iamoi		ore	
STAT	ION:		225+64	1	EQUIPN			aBer		ker 20		.010	
			27' Left of Construction Centerline										
			ustin Dillman / Donnie Thornton		HAMMI	ER CC	RRECT	TON	FACT	OR:		N/A	_
_	T		DEPTH: 54.1		1	_	r	r	_		-		-
D E P T H	S Y M B O L	S A M P L E S	DESCRIPTION OF MATERIAL SURFACE ELEVATION: 265.0	SOIL GROUP	PLASTIC LIMIT	% MOIST.	LIQUID	DRY WEIGHT	LBS PER CU.FT.	NO. OF BLOWS	PER 6-IN.	% T C R	
 5 10		X	Moist, Soft, Gray Clay			%		Q	T	0 2-:	2		
		X	Moist, Very Stiff, Brown and Gray Sandy Clay							5 11-1	12		
		X	Wet, Medium Stiff, Brown Clay with Sand							1			
	ZZ	X	Wet, Medium Stiff, Brown Sandy Clay*							2 3-3			
	$\langle \rangle \langle$	X	Wet, Stiff, Brown Sandy Clay							4 5-6			
30 	XX	\leq	SHALE - Medium Hard, Highly Weathered, Dark Gray							47			
			SHALE - Medium Hard, Weathered with Highly Weathered Layers, Dark Gray							(Ö"		53	<
35													

	1		DEPARTMENT OF TRANSPORTATION		BORIN						÷		
		_	DIVISION - GEOTECHNICAL SEC.		PAGE	2		_		111 Hours & Sta	1017120		-
JOB N			061509 Lonoke County		DATE:	20052-0-000			ary	13,20)19		
JOB N	AME:		Hwy. 367 - Hwy. 89 (Cabot)(S)		TYPE O				D	0			
			Route 321 Section 1				tem A	uger		amoi cer 20		ore	- 1
STAT			225+64		EQUIPM	EN1:			AC	ter 20	J94		
	TION:		27' Left of Construction Centerline ustin Dillman / Donnie Thornton			D CO	DDECT		- A ("T	00.	,	N/A	
	_	_			HAMMI	RCU	RRECT	IUN	ACT	OR:		IN/A	- 1
	PLET		DEPTH: 54.1		1							T	
D E	s	S A											
P	Y	M						E E	FT.	WS		%	%
Ť	M	P	DESCRIPTION OF MATERIAL	SOIL GROUP				GH	CU	FO		T C	R Q
Н	B	E		GROUP	I X	IST	A.	WEI	ER	FB	Ę	R	D
	L	E			PLASTIC	% MOIST.	LIQUID	DRY WEIGHT	LBS PER CU.FT	NO. OF BLOWS	PER 6-IN.		
FT,	_	S	SURFACE ELEVATION: 265.0		E E	%	23	ā	LE	ž	PE		
			SHALE - Medium Hard, Slightly Weathered,									100	80
			Frequent Fractures, Dark Gray										
40													
												100	99
													33
													1 1
		4	SHALE - Medium Hard, Unweathered,		1								
45			Occasional Fractures, Dark Gray										
	53									1			
												96	88
	臣王												
50								1					
			SHALE - Medium Hard, Unweathered, Dark									100	100
			Gray	1									
								1					
55			Boring Terminated		-	-	-	1	_	-	-		
- 55	1												
	1												
	1												
	-												
-	-												
60	-												
L													
L.	1												
				1									
65	1												
	1	1											
F -	1												
	1												
	-												
	-												
70		1						_					
	IARK		*A water stratum was encountered at 24.1' below g	round le	evel.								
I			White Oak Branch of the Bayou Two Prairie					_	_	_	_	_	

_		_	DIVISION - GEOTECHNICAL SEC.		PAGE	1	U	2	-	-	_		_
IOB N IOB N	O. AMĒ:		061509 Lonoke County Hwy. 367 - Hwy. 89 (Cabot)(S) Route 321 Section 1		date type o Holio		LLING: tem A			ary 5 iamor	nd C	ore	
	ION: TION:		225+53 30' Right of Construction Centerline		EQUIPM	IENT			Ack	ker 20)94		
_	-	_	ustin Dillman		наммі	ER CC	RRECT	ION	FACT	OR:		N/A	
	PLET	_	DEPTH: 64.5	1	1	_			_	_	_	_	_
D E P T H FT.	S Y M B O L	S A M P L H S	DESCRIPTION OF MATERIAL SURFACE ELEVATION: 265.2	SOIL GROUP	PLASTIC LIMIT	% MOIST.	LIQUID	DRY WEIGHT	LBS PER CU.FT.	NO. OF BLOWS	PER 6-IN.	% T C R	())
5			Wet, Medium Stiff, Gray Clay		I	6			I	3			
10 15		X	Moist, Stiff, Brown and Gray Clay							2 6-7	7		
		X	Moist, Medium Dense, Light Brown Silt with Trace Gravel							7 8-1			
		X	Wet, Medium Stiff, Gray Clay							3-4			
2 <u>5</u> 		X	Wet, Stiff, Reddish Brown Sandy Clay with Some Gravel							3 6-6			
30 		X	Wet, Hard, Brown and Gray Sandy Clay with Gravel							9 16-2			

			DEPARTMENT OF TRANSPORTATION		BORIN								
			DIVISION - GEOTECHNICAL SEC.		PAGE	2	OF		1				_
JOB N			061509 Lonoke County		DATE:				ebrua	ary 5			
JOR N	IAME:		Hwy. 367 - Hwy. 89 (Cabot)(S)		TYPE O				D '				
OTAT			Route 321 Section 1 225+53				tem A	uger				ore	
STAT	TION:				EQUIPM	IENT:			Ack	cer 20	J94		
			30' Right of Construction Centerline ustin Dillman				DDDDO			0.7	,	N1/A	
			I DEPTH: 64.5		HAMMI	ERCU	RRECT	ION	ACT	OR:		N/A	-
			DEF1H: 04.5		T	-		-		_	-1		
D E	S	S A											
P	Y	M						Ь	FT.	NS		%	%
Ť	M	P	DESCRIPTION OF MATERIAL	SOIL				HB	C	LO		T	R
н	B	L		GROUP		IST.		VEI.	ER	F B]	z	C R	Q D
_	L	Е			PLASTIC LIMIT	% MOIST.	LIQUID	DRY WEIGHT	LBS PER CU.FT.	NO. OF BLOWS	PER 6-IN.		2
FT,		S	SURFACE ELEVATION: 265.2		PL.	%]	E E	DR	LB	0Z	PEI		
	建拉	\ge								22			
	14									6 (2	D.		
	544		SHALE - Highly Weathered, Medium Hard, Dark							(2	′		
	177.		Gray										
40	222												
40	1.1.1.									2			
			SHALE - Slightly Weathered, Hard, Dark Gray	Į						20 (0	")		
		ł										89	77
45		-	CHALE Howesthered Medium Hand Davis					1					
			SHALE - Unweathered, Medium Hard, Dark Gray									0	
			Gray										
												98	86
50				1									
			SHALE - Unweathered, Medium Hard,					1				74	55
			Occasional Fractures, Dark Gray									/ 4	55
55	-												
			SHALE - Unweathered, Medium Hard, Frequent									96	45
			Fractures, Dark Gray										
60				1									-
			SHALE - Unweathered, Medium Hard,										
			Occasional Fractures, Dark Gray									94	60
65			Boring Terminated										
	{												
70													
the second s	ARKS	5: V	White Oak Branch of the Bayou Two Prairie		-			-				A	
_		_			_	_	_	_		_	-		

OBN	_	_	DIVISION - GEOTECHNICAL SEC. 061509 Lonoke County		PAGE DATE	1	_		anv'	20, 2	010		_
	AME:		Hwy. 367 - Hwy. 89 (Cabot)(S)		TYPE O	F DRI			iary .	20, 2	012		
			Route 321 Section 1				tem A		- Di	iamo	nd C	ore	
STAT	ION:	3	260+74		EQUIPM					cer 2			
	TION:		27' Right of Construction Centerline										
			ustin Dillman		намми	R CO	RRECT	TON	FACT	OR-	_	N/A	_
	PLET		DEPTH: 79.7		r				_		-	_	_
D E P T H	S Y B O L	SAMPLES	DESCRIPTION OF MATERIAL SURFACE ELEVATION: 259.8	SOIL GROUP	PLASTIC LIMIT	% MOIST.	LIQUID	DRY WEIGHT	LBS PER CU.FT.	NO. OF BLOWS	PER 6-IN.	% T C R	9 (
5		X	Moist, Stiff, Brown and Gray Sandy Clay		I	2,		1	1	6-	4		
 15		X	Moist, Very Stiff, Gray Sandy Clay*							8-			
		X	Moist, Stiff, Brown Sandy Clay							5.	-7		
		X	Wet, Stiff, Brown Sandy Clay								3 -5	1	
25	NBX.	X	Wet, Loose, Brown Silty Sand							_	2 -5		
<u>30</u> 35		X	Wet, Medium Stiff, Brown Sandy Clay							2.	1 -3		

			DEPARTMENT OF TRANSPORTATION		BORIN						_		
		_	DIVISION - GEOTECHNICAL SEC.		PAGE	2	_	_				_	-
JOB N			061509 Lonoke County		DATE:				iary i	20, 20	019		
JOB N.	AME:		Hwy. 367 - Hwy. 89 (Cabot)(S) Route 321 Section 1		TYPE O				D		10		
STATI	ON		260+74		EQUIPN		tem A	uger		amor cer 20		ore	
LOCA			27' Right of Construction Centerline		EQUIPM	IENI			Aci		174		
			ustin Dillman	-	HAMMI	ER CO	RRECT	ION	FACT	OR-	ו	N/A	
			DEPTH: 79.7					10111	1101	0.44			-
D		s						-					
E	S Y	Ā							<i>.</i> .				
P	M	M	DESCRIPTION OF MATERIAL	SOIL				Ħ	J.FT	SWC		% T	% R
T	B	P		GROUP		Ŀ.		BIG	С С	BLC		C	Q
н	0	E			NILS E	OIS	8E	M	PEF	OF	4I-9	R	D
FT.	L		SURFACE ELEVATION: 259.8		PLASTIC LIMIT	% MOIST.	LIQUID	DRY WEIGHT	LBS PER CU.FT	NO. OF BLOWS	PER 6-IN.		
		\bigtriangledown				0				1	_		
		\square								2-3	2		
			Wet, Very Loose, Brown Silty Sand										
			Wet, very Loose, brown only band										
40													
40	$\langle \cdot \rangle$	\mathbf{k}								6			
		\wedge								8-			
	\mathbf{N}		Wet, Very Stiff, Brown and Gray Sandy Clay										
	\mathbf{N}		with Some Gravel										
	\mathbf{N}												
45	\mathbf{N}	-	INESTONE Unweathered Mederately Llard							1			
	11	1	LIMESTONE - Unweathered, Moderately Hard, Gray							18 (1	")		
	1		(Arkadelphia Formation)										_
	\sim											46	7
	\sim												
50	\sim	++-	Majet Van Stiff to Used Dark Grou Olau										
	1		Moist, Very Stiff to Hard, Dark Gray Clay										
	\sim												
	\sim											50	0
	\sim												
55	1	1											
	\sim		CLAY WITH OCCASIONAL LIMESTONE										
	\sim		LAYERS - Unweathered, Medium Hard, Dark Gray										
			LIMESTONE - Unweathered, Moderately Hard,									80	14
	XX		Grav	ļ									
60			CLAY WITH FREQUENT LIMESTONE LAYERS										
	\sim		- Unweathered, Medium Hard, Dark Gray										
	1												
	1							1				56	0
	1									1			
	1	1											
65	1		Moist, Very Stiff to Hard, Dark Gray Clay								t i	-	
	1]											
	1]										56	0
	1]					1						
	1												
70	1												
REM	ARKS		A water stratum was encountered at 12.8' below g	round I	evel,								
	_	E	Bayou Two Prairie						_	_	_		

			DEPARTMENT OF TRANSPORTATION DIVISION - GEOTECHNICAL SEC.		BORIN PAGE	G NO		3				
	NAME:		061509 Lonoke County Hwy. 367 - Hwy. 89 (Cabot)(S) Route 321 Section 1			ow S	LLING: tem A		- D		nd C	ore
LOCA	TON: ATION: JED BY		260+74 27' Right of Construction Centerline Justin Dillman		EQUIPN			ION		ker 20 OR:		N/A
COM	IPLET	ION	I DEPTH: 79.7									
D E P T H FT,	S Y B O L	SAMPLES	DESCRIPTION OF MATERIAL SURFACE ELEVATION: 259.8	SOIL GROUP	PLASTIC	% MOIST.	LIQUID	DRY WEIGHT	LBS PER CU.FT.	NO. OF BLOWS	PER 6-IN.	% T C R
			Moist, Very Stiff to Hard, Dark Gray Clay with Occasional Limestone Concretions					k				100
75			LIMESTONE WITH FREQUENT CLAY LAYER - Unweathered, Moderately Hard, Dark Gray SANDY CLAY WITH FREQUENT LIMESTONE LAYERS - Unweathered, Soft Layers - Interbedded with Moderately Hard Layers, Dark	-								
80			Gray SHALE - Highly Weathered, Soft, Moderate Dip Dark Gray (Atoka Formation) SHALE - Weathered, Medium Hard, Moderate			_						86
			SHALE - Weathered, Medium Hard, Moderate Dip, Dark Gray Boring Terminated]								
85												
	-											
90												
95	-											
	-		н. Н									
100	-		8									
105												

JOB NO.		061509 Lonoke County		DATE:		E	ehm	any '	25, 20	10	
JOB NAN		Hwy. 367 - Hwy. 89 (Cabot)(S)		$\mathbf{FYPE} \mathbf{O}$	F DRI			ary .	4J, ZU	17	
		Route 321 Section 1						- Ro	otary V	Vash	
STATION	N :	261+65.5	I	EQUIPM	IENT:		-	Ack	cer 209) 4	
LOCATIO		9' Centerline of Construction									
	_	Don McCollum		AMME	ER CC	RRECT	'ION I	FACT	OR:	N/.	<u>A</u>
	_	N DEPTH: 100.1	_		-		r—				
	S Y M B O		SOIL GROUP	PLASTIC LIMIT	% MOIST.	LIQUID	DRY WEIGHT	LBS PER CU.FT.	NO. OF BLOWS	PER 6-IN.	
5		Moist, Stiff, Brown and Gray Clay		đ	6				2 5-6		
10		Moist, Medium Stiff, Brown and Gray Clay							3 3-5	_	
20		Wet, Soft, Light Gray Clay							1 2-2		
		Wet, Medium Stiff, Light Gray Silty Clay							2 3-4		
25 30		Wet, Stiff, Gray Sandy Clay							3 5-4	-	
30 		Wet, Medium Dense, Light Brown Sand with Clay							3 11-1	_	

REMARKS:	70	<u>6</u> <u>6</u> <u></u>	50 45		□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	LOGGED BY: COMPLETIC	LOCATION:	JOB NO. JOB NAME:	ARKANSAS MATERIALS
* Sampler blocked off by a cobble Bayou Two Prairie	(Sampler Refusal at 61.4') LIMESTONE Moist, Very Stiff, Dark Gray Clay	Moist, Very Stiff, Dark Gray Clay (Arkadelphia Formation) Moist, Very Hard, Dark Gray Clay	No Sample Recovered	Wet, Medium Stiff, Light Brown and Light Gray Sandy Clay	DESCRIPTION OF MATERIAL SURFACE ELEVATION: 265.5	LOGGED BY: Don McCollum COMPLETION DEPTH: 100.1	201+00.0 9' Centerline of Construction		ARKANSAS DEPARTMENT OF TRANSPORTATION MATERIALS DIVISION - GEOTECHNICAL SEC.
	13-23 (11") 14-16	8 ¹ / ₂ 8 ⁹ / ₃ 3	5 <mark>-</mark> 70	2.3	 GROLF PLASTIC LIMIT % MOIST. LIQUID LIMIT DRY WEIGHT LBS PER CU.FT. NO. OF BLOWS PER 6-IN. PO F % DQ P %	HAMMER CORRECTION FACTOR: N/A	EQUIPMENT: Acker 2094	Februa F DRILLING: ow Stem Auger	BORING NO. 6 PAGE 2 OF 3

		DEPARTMENT OF TRANSPORTATION DIVISION - GEOTECHNICAL SEC.		BORIN PAGE	G NC 3		2				
JOB NO.		061509 Lonoke County		DATE:	- 3	_	_	arv '	25, 2019		-
JOB NAME:		Hwy. 367 - Hwy. 89 (Cabot)(S)		TYPE O	F DRI			iary 2	25, 2017		
		Route 321 Section 1		Holle	ow S	tem A	uger	- Ro	otary Wa	.sh	
STATION:	200	261+65.5		EQUIPM	1ENT:		-	Ack	ker 2094		
LOCATION:		9' Centerline of Construction									
		on McCollum		HAMMI	ER CC	RRECT	TION	FACT	OR:	N/A	
COMPLET		DEPTH: 100.1									
D S P M H D	S A M P L E	DESCRIPTION OF MATERIAL	SOIL GROUP		% MOIST.	LIQUID	DRY WEIGHT	LBS PER CU.FT.	NO. OF BLOWS PER 6-IN.	% T C R	% R Q D
FT.		SURFACE ELEVATION: 265.5		PLAST	W %	LIMIT	NRY N	BS	G. SER		
75		Moist, Hard, Dark Gray Clay							15 15-16 9 14-17		
	\mathbf{X}	Moist, Very Hard, Dark Gray Clay							22		
85		LIMESTONE INTERBEDDED WITH CLAY							42-60 (8")		
90	~~	Moist, Very Hard, Sandy Clay with Some Gravel							60 (2")		
	X								60 (4")		
95	\times	SHALE - Weathered to Highly Weathered, Medium Hard, Dark Gray (Atoka Formation)							44 60 (1")		
100		SHALE - Slightly Weathered, Medium Hard, Dark Gray Boring Terminated					-		20 (1")	┢	
105											
REMARKS		Sampler blocked off by a cobble Bayou Two Prairie									

REMARKS: Drain Two & UPRR	30 30 	20 	Moist, Stiff, Brown and Gray Sandy Clay	10 Moist, Medium Stiff, Brown and Gray Clay	5 Moist, Stiff, Brown and Gray Clay	D S	ARKANSAS DEPARTMENT OF TRANSPORTATION MATERIALS DIVISION - GEOTECHNICAL SEC. JOB NO. 061509 Lonoke County JOB NAME: Hwy. 367 - Hwy. 89 (Cabot)(S) Route 321 Section 1 STATION: 265+78 LOCATION: 13.5' Right of Construction Centerline LOGGED BY: Don McCollum COMPLETION DEPTH: 101.5
	4.5 € 3-10	2-4	4 6		4 N	$\Box \sim \pi^{2}$ PLASTICLIMIT% MOIST.LIQUIDLIMITDRY WEIGHTLBS PER CU.FT.NO. OF BLOWSPER 6-IN. $\pi \circ \neg \%$ $\neg \sim \pi \%$	BORING NO. 7 PAGE 1 OF 3 DATE: February 27, 2019 TYPE OF DRILLING: Hollow Stem Auger - Rotary Wash EQUIPMENT: Acker 2094 HAMMER CORRECTION FACTOR: N/A

REMARKS: Drain Two & UPRR	Moist, Very Stiff, Dark Gray Clay (Arkadelphia Formation)	60 Wet, Medium Dense, Brown Silty Sand with Trace Gravel	Wet, Medium Stiff, Gray Sandy Clay	Wet, Medium Stiff, Brown and Gray Clay	50 Wet, Stiff, Brown and Gray Clay	45 Wet, Medium Stiff, Brown and Gray Clay	40	FT L S SURFACE ELEVATION 281.2	COMPLETION DEPTH: 101.5	LOGGED BY: Don McCollum			NSAS DEPARTMEN RIALS DIVISION - GI
	9-11 3	υ	μ μ μ μ	2-3	- 4 δ	4.3	5 0	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $		HAMMER CORRECTION FACTOR: N/A	EQUIPMENT: Acker 2094	DATE: February 27, 2019 TYPE OF DRILLING:	BORING NO. 7 PAGE 2 OF 3

		DEPARTMENT OF TRANSPORTATION		BORIN						
JOB NO. JOB NAME: STATION: LOCATION LOGGED B	: Y: D	DIVISION - GEOTECHNICAL SEC. D61509 Lonoke County Hwy. 367 - Hwy. 89 (Cabot)(S) Route 321 Section 1 265+78 13.5' Right of Construction Centerline on McCollum DEPTH: 101.5		DATE: TYPE O	OW S	F LLING: tem A	Febru uger	- Ro Acl	27, 201 otary W ker 209 OR:	/ash
D S E Y P M T B H O FT. L	S A M P L E S	DESCRIPTION OF MATERIAL SURFACE ELEVATION: 281.2	SOIL GROUP	PLASTIC	% MOIST.	LIQUID	DRY WEIGHT	LBS PER CU.FT.	NO. OF BLOWS	% T C R R
	X	Moist, Hard, Dark Gray Clay Clay with Frequent Limestone Layers							9 15-18	3
75	X	Moist, Very Stiff, Dark Gray Clay							9 12-14	1
80	X	Moist, Hard, Dark Gray Clay							10 15-19	Ð
85		_Moist, Very Hard, Dark Gray Clay LIMESTONE INTERBEDDED WITH CLAY							12 60 (0")	-
90	X	Moist, Hard, Dark Gray Clay						÷	9 15-11	9
95 	X								5 13-1	7
100		Moist, Very Stiff, Dark Gray Clay							6 12-1	5

REMARKS: Drain Two & UPRR	Wet, Medium Stiff, Reddish Brown Sandy Clay	Wet, Medium Stiff, Lt Brown and Light Gray Clay with Sand	Wet, Medium Dense, Lt Brown and Light Gray Clayey Sand	Wet, Stiff, Reddish Brown Clay	Wet, Stiff, Brown and Gray Silty Clay	5 5 10 10	FT. U S SURFACE ELEVATION: 258.1	N: BY: D	 Hwy. 367 - Hy Route 321 Se 266+60.5 	MATERIALS DIVISION - GEOTECHNICAL SEC.
	2-3	 	Υ ω	ې ۲	ω <mark>4</mark>	2.0	Group PLASTIC LIMIT % MOIST. LIQUID LIMIT DRY WEIGHT LBS PER CU.FT. NO. OF BLOWS PER 6-IN.	RRECTION	Hollow Stem Auger - Rotary Wash	BORING NO. 8 PAGE 1 OF 3

			DEPARTMENT OF TRANSPORTATION DIVISION - GEOTECHNICAL SEC.	-	BORIN PAGE	2		3				
JOB N JOB N	O. AME:	ł	061509 Lonoke County Hwy. 367 - Hwy. 89 (Cabot)(S) Route 321 Section 1		ΓΥΡΕ Ο	F DRI	LLING:			arch 5 a otary W		201
STATI	ION:		266+60.5		EQUIPM			uger		cer 2094		
	TION:		22' Right of Construction Centerline									
_	_	_	on McCollum	l i	HAMMI	ER CC	RRECT	TON	FACT	OR:	N/A	
	PLET		DEPTH: 100					r			1	-
D E P T H	S Y B C L	S A M P L E S	DESCRIPTION OF MATERIAL SURFACE ELEVATION: 258.1	SOIL GROUP	PLASTIC LIMIT	% MOIST.	LIQUID	DRY WEIGHT	LBS PER CUFT.	NO. OF BLOWS	% T C R	9 F C I
		V	SURFACE ELEVATION. 230.1		4 1	6			T	2	<u>'</u>	⊢
40			Wet, Loose, Reddish Brown Silty Sand							3-3		
	8 200 - 100	X	Wet, Medium Dense, Reddish Brown Silty Sand with Gravel							9 13-11		
		X	Moist, Very Stiff, Dark Gray Clay (Arkadelphia Formation)							7 12-16		
<u>50</u> 		X	Moist, Hard, Dark Gray Clay with Some Sand Seams							9 15-19		
<u>55</u> 		\times	Moist, Very Hard, Dark Gray Clay LIMESTONE							8 30 (5")		
60		X								11 20-22		
65 65		X	Moist, Hard, Dark Gray Clay							11 15-19		
 70			rain Two & UPRR									

			DEPARTMENT OF TRANSPORTATION DIVISION - GEOTECHNICAL SEC.		BORIN PAGE	G NC 3		3	_				
JOB N		_	061509 Lonoke County		DATE:	_		_	d M	arch 4	Sanc	6 2	019
	AME:		Hwy. 367 - Hwy. 89 (Cabot)(S)		TYPE O		-		u 1916	aron .		10,2	017
			Route 321 Section 1				tem A		- Ro	otary	Was	h	
STAT	ION:	:	266+60.5		EQUIPN			Ũ		ker 20			
LOCA	TION:		22' Right of Construction Centerline										
and the second states	and the second		Ion McCollum		HAMM	ER CO	RRECT	ION	FACT	OR:]	N/A	_
COM	PLET		DEPTH: 100										
D	s	S											
E P	Y	A M							FT.	SN		%	%
Т	M	P	DESCRIPTION OF MATERIAL	SOIL GROUF				Ε	cu.	F0		T C	R
Н	B	L		GROUP		IST	9_	WEI	ER	F B	Z	R	Q D
FT.	Ľ	E S			PLASTIC	% MOIST.	LIQUID	DRY WEIGHT	LBS PER CU.FT.	NO. OF BLOWS	PER 6-IN.		
ЕΙ,	5	3	SURFACE ELEVATION: 258.1	_		%		A		Z 1(_		_
	\sim	Х								17-			
	\sim		Moist, Hard, Dark Gray Clay with Some Sand										
	\sim	1	Seams										
75	\sim									1	0		
	\sim	riangle								17-	20		
	\sim												
	\sim												
80	$\langle \rangle$												
00	\sim	\bigtriangledown			1					6			
		arproptom								15-	18		
	\sim		Moist, Hard, Dark Gray Clay										
	\sim												
85	\sim												
	2		4								7		
	\sim	\square	Y Contraction of the second							14	-20		
]			1								
]											
90	N											l 1	
	11	\ge	Moist, Very Hard, Dark Gray Clay	1							7		
							1			6 (2	i0 2")		
											-		
95			SHALE - Weathered, Medium Hard, Dark Gray										
_			(Atoka Formation)								50 2")	1	
										('		
100					_					-			<u> </u>
			Boring Terminated								10)")		
	4									``	,		
							1						
<u> </u>	-												
105	1												
REM	ARK	5: I	Drain Two & UPRR										
		_			_					_			

JOB N			DIVISION - GEOTECHNICAL SEC. 061509 Lonoke County		PAGE	1	0.		11	1d 12	201	0	-
	IAME:		Hwy. 367 - Hwy. 89 (Cabot)(S)		DATE: FYPE O				[] 8[10 12	, 201	. 9	
			Route 321 Section 1				tem A		- R	otary	Was	sh	
STAT	ION:		269+16.5		EQUIPM			-6		ker 2			
	TION:		22' Right of Construction Centerline										
	-		ustin Dillman and Donnie Thornton		наммі	ER CO	RRECT	TION	FACT	OR:		N/A	
СОМ	PLET	ION	DEPTH: 100.2										
D E P T H	S Y M B O L	SAMPLES	DESCRIPTION OF MATERIAL SURFACE ELEVATION: 257.5	SOIL GROUP	PLASTIC LIMIT	% MOIST.	LIQUID	DRY WEIGHT	LBS PER CU.FT.	NO. OF BLOWS	PER 6-IN.	% T C R	9] (]
5			Moist, Stiff, Brown and Gray Clay		I	5		I	1	1 4-			
 15		X	Moist, Stiff, Light Gŕay Clay							4-			
		X	Moist, Stiff, Reddish Brown and Gray Sandy Clay							4-			
	<u> </u>	X	Wet, Stiff, Reddish Brown and Gray Sandy Clay							2 4-	-		
25		X	Wet, Loose, Light Brown Silty Sand							3 3 -			
30 35		X	Wet, Medium Stiff, Gray Sandy Clay								4		

REMARKS: Drain Two & UPRR	Moist, Ha	55 60 60	Moist, Very Stiff, Dark Gray Clay (Arkadelphia Formation)	Wet, Very Stiff, Gray Sandy Clay with Some Gravel	Wet, Stiff, Light Brown and Light Gray Sandy Clay	D S SURFACE ELEVATION: 257.5	TERIAL I NO. I NAME: I NAME: I NAME: I NAME: CATION: CATION: CATION: CATION:
	16-20	15-17 15-17 15-17	10	6- <u>10</u>	4 5-7	GROL PLASTIC LIMIT % MOIST. LIQUID LIMIT DRY WEIGHT LBS PER CU.FT. NO. OF BLOWS PER 6-IN. PO T % DO P %	BORING NO. 9 PAGE 2 OF 3 DATE: March 11 and 12, 2019 TYPE OF DRILLING: Hollow Stem Auger - Rotary Wash EQUIPMENT: Acker 2094 HAMMER CORRECTION FACTOR: N/A

	95		85				J I H D M D N ≻ S B O J N < S T J M O	151	STATION:	JOB NO.
SANDSTONE (Atoka Formation) Boring Terminated	Moist, Very Hard, Dark Gray Clay		Moist, Hard, Dark Gray Clay		•	CLAY INTERREDDED WITH I MESTONE	DESCRIPTION OF MATERIAL SURFACE ELEVATION: 257.5		Route 321 Section 1 269+16.5 22' Right of Construction Centerline	JOB NO. 061509 Lonoke County
79		11 16-20	11 15-20	12 16-20	13 19-24	16-19	PLASTIC LIMIT % MOIST. LIQUID LIMIT DRY WEIGHT LBS PER CU.FT. NO. OF BLOWS PER 6-IN. PER 6-IN.	HAMMER CORRECTION FACTOR N/A	Hollow Stem Auger - Rotary Wash EQUIPMENT: Acker 2094	PAGE 3 OF 3 DATE: March 11 and 12, 2019

DB N	0.	(061509 Lonoke County		DATE:		Ma	rch	18 ar	nd19	201	9	
DB N	AME:	1	Hwy. 367 - Hwy. 89 (Cabot)(S)		ΓΥΡΕ Ο	F DRI					,	-	
			Route 321 Section 1		Holle	ow S	tem A	uger	- Ro	otary	Was	sh	
	ION:		273+24.5	1	EQUIPN	IENT:			Acl	ker 2	094		
	TION:		27.75' Right of Construction Centerline										
_	_		ustin Dillman	1	HAMME	ER CO	RRECT	'ION I	FACT	OR:		N/A	_
	PLET		DEPTH: 101.5		1				_			_	_
D E	S	S A											
P	Y	M	DESCRIPTION OF MATERIAL					E	.FT.	WS		%	9
Т	M B	P	DESCRIPTION OF MATERIAL	SOIL GROUP		7.6		IGH	CU	LO.		T C	
н	l õ	Ľ		GROOT		ISI	la L	WE	ER	PF B	NI	R	
τ.	L	E S			PLASTIC LIMIT	% MOIST	LIQUID	DRY WEIGHT	LBS PER CU.FT	NO. OF BLOWS	PER 6-IN.		
1.4	~		SURFACE ELEVATION: 264.0			%		A		Ž	PI		_
	1												
	\sim												
-	\sim												
	\sim												
5	\sim										C		
	\sim	Х									-2		
	\sim									-	-		
-	\sim		Wet, Soft, Light Brown Clay with Trace Gravel										
	\sim												
10	\backslash	\mathbb{N}									2		
	$\backslash \rangle$	>								0	-2		
	\sim												
	\sim												
	\sim												
15	\mathcal{H}										4		
	\sim	X									+ -8		
	\sim										-		
	\sim		Moist, Stiff, Light Brown and Gray Clay										
	\sim												
20	1										2		
	\mathbf{N}	X									3 -7		
	\mathbf{N}		Moist, Stiff, Light Brown and Gray Clay with										
	\mathbb{N}		Sand										
	\mathbb{N}												
25	$\langle \rangle \rangle$										2		
	\mathbf{N}	X									2 -6		
	\mathbf{N}										÷		
			Moist, Stiff, Light Brown and Gray Sandy Clay										
_	5												
30	1									1			
											1 -5		
	\sim	()											
	\sim		Moist, Medium Stiff, Light Brown and Gray Clay				1						
	\sim						1						
5	NN					1	1					1	

REMARKS:		55		45		omg⊢i F ∿≻≥⊠O⊐	LOGGED BY: COMPLETI	JOB NAME: STATION: LOCATION:	ARKANSAS MATERIALS JOB NO.
Drain Two & UPRR			Moist, Very Stiff, Dark Gray Clay (Arkadelphia Formation)	Moist, Stiff, Light Brown and Gray Sandy Clay	Moist, Medium Stiff, Light Brown and Gray Sandy Clay	S DESCRIPTION OF MATERIAL P S SURFACE ELEVATION: 264.0	1912	Hwy. 367 - Hwy. 89 (Cabot)(S) Route 321 Section 1 273+24.5 27.75' Right of Construction Centerline	ARKANSAS DEPARTMENT OF TRANSPORTATION MATERIALS DIVISION - GEOTECHNICAL SEC. JOB NO. 061509 Lonoke County
	10 16-21 18-20	14-19	7-11 10 13-17	ი <mark>ყ</mark>		PLASTIC LIMIT % MOIST. LIQUID LIMIT DRY WEIGHT LBS PER CU.FT. NO. OF BLOWS PER 6-IN. R ∩ ⊣ % D ∩ ≂ %	HAMMER CORRECTION FACTOR N/A	TYPE OF DRILLING: Hollow Stem Auger - Rotary Wash EQUIPMENT: Acker 2094	BORING NO.10PAGE2OFDATE:March 18 and 19, 2019

MAT	ERIA	LSI	DEPARTMENT OF TRANSPORTATION DIVISION - GEOTECHNICAL SEC.		BORIN PAGE	G NO 3		3				
JOB N		(061509 Lonoke County		DATE:			_	18 ar	nd19, 20)19	_
OB N	AME:		Hwy. 367 - Hwy. 89 (Cabot)(S)		ГҮРЕ О	F DRI						
			Route 321 Section 1		Hollo	ow S	tem A	uger	- Ro	otary W	ash	
STATI			273+24.5		EQUIPM	IENT:			Ack	cer 2094	1 .	
	TION:		27.75' Right of Construction Centerline									
		_	ustin Dillman	1	HAMME	ER CO	RRECI	'ION I	FACT	OR:	N/A	_
	PLET	_	DEPTH: 101.5									T
D E	s	S A										
P	Y	M							FT.	SN	%	9
T	M	P	DESCRIPTION OF MATERIAL	SOIL				GH	CÚ.	LO L	T	
н	B	L		GROUP	$1 \simeq$	IST.	A.	VEI	ER	F B]	C R	
	Ľ	E			PLASTIC LIMIT	% MOIST.	LIQUID	DRY WEIGHT	LBS PER CU.FT	NO. OF BLOWS		
FT,	~~	S	SURFACE ELEVATION: 264.0		E E	%	23	ň	LB			
	$\langle \cdot \rangle$	X								12 16-21		
	$\langle \rangle$	\vdash								16-21		
_	\sim						1					
	$\backslash \rangle$											
75	\sim											
	\sim	\mathbb{N}								5		
	\sim	\leftarrow								12-19		
_	\sim											
	\sim											
80	1											
	\Box	\times	Moist, Very Hard, Dark Gray Clay]						10	-	
	11		LIMESTONE							34 (5")		
	\sim										1	
	\sim				1							
85	\sim											
	\sim	∇								12		
-0-	1	\bigtriangleup								16-22		
-0-	\sim		Moist, Hard, Dark Gray Clay									
	\sim											
90	\sim											
30	\sim	\bigtriangledown								22		
	\sim	\triangle								29-23		
	$\overline{7}$											
			CLAY WITH FREQUENT LIMESTONE LAYERS									
95	2012	\bigtriangledown								12		
	\sim	$\left(\right)$								75		
+	\sim		Meiet Von Hard Dark Craw Class	-						(5")		
	\sim		Moist, Very Hard, Dark Gray Clay				1					
	\sim											
100	\sim									12		
	~	X	Moist, Hard, Dark Gray Clay							14-2	-	
		Ē	Boring Terminated			-	1	-				+
			-									
-												
105												
2EM	ARKS	S: C	Drain Two & UPRR									

MAT	ERIA	LSI	DEPARTMENT OF TRANSPORTATION DIVISION - GEOTECHNICAL SEC.		BORIN PAGE	G NC		- 3					
JOB N	10.	1	061509 Lonoke County		DATE:				l4 ar	nd 18	, 20	18	
JOB N	AME:		Hwy. 367 - Hwy. 89 (Cabot)(S)		TYPE O								
OT A T			Route 321 Section 1				tem A	uger				sh	
	ION: TION:		274+65.5 6.25' Right of Construction Centerline		EQUIPN	1ENT			Ac	ker 2	094		
			ustin Dillman		наммі		RRECT		FACT	'OP-		N/A	
-		_	DEPTH: 101			SKCC	KKEC J		I'AC I	UK.		INA	_
D		S			1				_				
E	S Y	Α							<u>.</u>				
P T	M	M P	DESCRIPTION OF MATERIAL	SOIL				H	U.F.	MO		% T	% R
Ĥ	B	L		GROUP	\square	ST		EIG	RC	BL	ż		Q
	O L	Е			PLASTIC	% MOIST.	LIQUID	DRY WEIGHI	LBS PER CU.FT	NO. OF BLOWS	PER 6-IN.	R	D
FT,	_	S	SURFACE ELEVATION: 281.0		PL	N %	LE	DR	LB	0Z	PEI		
	N												
				्र									
	\mathbf{N}								- 1				
5			Moist, Soft, Light Brown Sandy Clay with Some Gravel		15		49			1			
		$ \ge $	Graver	ND						1-			
				-	1 - I		1						1
10													
10		\checkmark		0						1			
	\mathbb{N}	\bigtriangleup		CL						3-	4		
			Moist, Medium Stiff, Brown Sandy Lean Clay										
			with Trace Gravel	-									
15											1		
	\mathbf{N}	\bigvee		СН	14		51		1	Ū			
		$ rac{1}{2} $		OIT						2-	3		
_]			Moist, Medium Stiff, Brown and Gray Fat Clay with Sand and Trace Gravel										
	\mathbf{N}		with Salid and Trace Graver										
20													
	$\langle \rangle$	X	ά.	CL	12		38			0 2-			
			Wet, Medium Stiff, Brown and Gray Sandy Lean										
			Clay with Some Gravel										
25	24				17		33			0	i I		
		\land		CL						0-			
	1		Wet, Very Soft, Brown Lean Clay										
	1		Hos, very oor, brown Lean Olay	-									
30	1										2		
00	17			~	15		38			5			
	1			CL						8-	7		
	11		Wet, Stiff, Brown Lean Clay with Trace Organic				- 8						
	11		Matter										
35	1												
	ARKS	D	rain Two & UPRR								-	_	

ATERIA	LS	DEPARTMENT OF TRANSPORTATION DIVISION - GEOTECHNICAL SEC.		BORIN PAGE	2		3					
OB NO.		061509 Lonoke County		DATE:			_	4 ar	nd 18,	201	8	_
OB NAME:		Hwy. 367 - Hwy. 89 (Cabot)(S)	· ·	TYPE O	F DRI	LLING						
		Route 321 Section 1		Holle	ow S	tem A	uger	' - R	otary	Was	sh	
TATION:		274+65.5		EQUIPM	IENT:			Ac	ker 20	94		
OCATION:		6.25' Right of Construction Centerline			v -							
	_	ustin Dillman		HAMMI	ER CC	RRECT	TION I	FACT	OR:		N/A	_
	1	DEPTH: 101										_
D s	S											
5 Y	A							Ŀ.	ø		%	4
τ IVI	P	DESCRIPTION OF MATERIAL	SOIL				Η	U.F	MO		T	
ц В	Ľ		GROUP	<u>ಲ</u>	ST.		E	RC	BL	z	C	
	E			IT TI	ĨÕ	13 E	≷	PE	0F		R	
т, 📙	S	SURFACE ELEVATION: 281.0		PLASTIC LIMIT	% MOIST	LIQUID	DRY WEIGHT	LBS PER CU.FT	NO. OF BLOWS	PER 6-IN.		
	\mathbb{N}		CL	14		48			4			
	()								7-8	8		
\sim		Moist, Stiff, Brown and Gray Lean Clay										
	1		. 									
40	1											
	\mathbb{N}		CL	11		32			4			
	()		UL						5-7	7		
45		Moist, Stiff, Brown and Gray Lean Clay with										
	\bigtriangledown	Sand		12		31			4	.		
KN	\land		CL						5-	5		
NN												
\\												
NN			-									
50												
889	Х		SC	NP					4		1	
19		Wet, Medium Dense, Light Brown and Gray								~		
		Clayey Sand										
000			-				1					
55												
	Х		SM	NP					6			
	()	Wet, Medium Dense, Brown and Gray Silty								.9		
		Sand										
			-									
60												
		Moist, Very Stiff, Dark Gray Fat Clay	СН	24		75			5			
No.	$ \rightarrow $	(Arkadelphia Formation)							7-9	9		
		CLAY WITH FREQUENT LIMESTONE LAYERS					1					
11			-									
		<u>о</u>										
5	\bigtriangledown		011	21		65			8			
5	$ \wedge $		СН						13-	18		
5	-											
					1 °	1	1		1			L
			-									
			-									
		Drain Two & UPRR	-									

MAT	ERIA	LS	DEPARTMENT OF TRANSPORTATION DIVISION - GEOTECHNICAL SEC.		BORIN PAGE	3		3			_		
JOB N			061509 Lonoke County		DATE:				14 ar	nd 18	s , 20	8	
JOB N	AME:		Hwy. 367 - Hwy. 89 (Cabot)(S) Route 321 Section 1		TYPE O Holl		tem A		D.	otaru	Wa	ch	
STAT	ION:		274+65.5		EQUIPN			ugei		ker 2		311	
	TION:		6.25' Right of Construction Centerline										
		_	ustin Dillman		наммі	ER CC	ORRECT	TION	FACT	OR:		N/A	-
	PLET		DEPTH: 101		1		1						r –
D E	S	S A											
Ρ	Р М	Μ	DESCRIPTION OF MATERIAL	SOIL				t	FT.	MS		%	9
T H	В	P		GROUP	0	P		BIGH	SCU	BLO	7	T C	
п	0	L E	R.		STI	% MOIST	E E	DRY WEIGHT	PEF	NO. OF BLOWS	6-I)	R	1
FT.	L	-	SURFACE ELEVATION: 281.0		PLASTIC LIMIT	% N	LIQUID	DR	LBS PER CU.FT	NO.	PER 6-IN.		
_	1	X		СН	23		71			1	0		
										14	·17		
-	~			ā									
75	1	∇			24		70			1	1		
		Å		СН						17-			
											-		
				÷									
80			*										
_	1	Х		СН	23		67			1			
			Moist, Hard, Dark Gray Fat Clay							15-	19		
	$\mathbf{\cdot}$			7									
85		\bigtriangledown			19		54			1	3		
	V	Á		СН						16-			
	\mathbb{N}			-									
90	1												
	1	X		СН	22		69			1 16-			
	N									10-	.17		
	\mathcal{N}												
95	\mathbb{N}	$\overline{}$			21		55			1	1		
	V	$ \land $		СН	- '					18-			
	N												
	11												
100	1												
	1	\times	Moist, Very Hard, Dark Gray Clay	СН	20		50			1			
			Boring Terminated							18-	20		
105)			

ARKANSAS DEPARTMENT OF TRANSPORTATION

ARDOT.gov | IDriveArkansas.com | Scott E. Bennett, P.E., Director

MATERIALS DIVISION

11301 West Baseline Road | P.O. Box 2261 | Little Rock, AR 72203-2261 | Phone: 501.569.2185 | Fax: 501.569.2368

May 10, 2018

TO: Mr. Trinity Smith, Engineer of Roadway Design

SUBJECT: Job No. 061509 Hwy. 367 – Hwy. 89 (Cabot) (S) Route 321 Section 1 Lonoke County

Transmitted herewith is the requested Soil Survey, strength data and Resilient Modulus test results for the above referenced job. The project consists of widening approximately 3.7 miles of Highway 321 in Cabot. Samples were taken in the existing travel lanes, shoulders and ditch line.

Based on laboratory results of samples obtained, the subgrade soils consist primarily of moderately to highly plastic sandy clay. Cross-sections are not currently available, but it is assumed the construction grade line will closely match that of the existing roadway. The subgrade soils are expected to provide a stable working platform with conventional processing if the weather is favorable during construction. If embankment is to be placed within the existing ditch line all soft unstable organic material should be undercut prior to construction, anticipated to be no more than two feet.

Additional earthwork recommendations will be made upon request when plans are further developed and cross-sections become available.

Listed below is the additional information requested for use in developing the plans:

- 1. The Qualified Products List (QPL) indicates that Aggregate Base Course (Class CL-7) is available from commercial producers located in the vicinity of Little Rock.
- 2. Asphalt Concrete Hot Mix

Туре	Asphalt Cement %	Mineral Aggregate %
Surface Course	4.9	95.1
Binder Course	4.0	96.0
Base Course	3.6	96.4

Michael C. Benson

(Materials Engineer

MCB:pt:bjj Attachment

cc: State Constr. Eng. – Master File Copy District 6 Engineer System Information and Research Div. G. C. File ARKANSAS STATE HIGHWAY AND TRANSPORTATION DEPARTMENT - LITTLE ROCK, ARKANSAS MATERIALS DIVISION MICHAEL BENSON, MATERIALS ENGINEER *** SOIL SURVEY STRENGTH TEST REPORT *** DATE - 04/23/2018 SEQUENCE NO. - 1

RESII	JIENT MODULUS	
STA.	230+00	7375
STA.	255+00	6998
STA.	288+00	5846
STA.	346+00	5898

REMARKS -

AASHTO TESTS : T190

-

-

Job No. Date Sampled: Date Tested: Name of Project:	061509 3/6/18 April 18, 2018 HWY. 367 - HWY. 89 (CABOT)(S)	Material Code Station No.: Location:	SSRVPS 230+00 27'RT
County: Sampled By: Lab No.: Sample ID: LATITUDE:	Code: 43 Name: LONOKE THORNTON/FRAZIER/JORDAN 20180529 RV134	Depth: AASHTO Class: Material Type (1 or LONGITUDE:	0-5 A-4 (4) 2): 2
1. Testing Inform	nation:		
	Preconditioning - Permanent Strain > 5% (Y= Testing - Permanent Strain > 5% (Y=Yes or N Number of Load Sequences Completed (0-15	I=No)	N N 15
2. Specimen Infe	ormation:		
	Specimen Diameter (in): Top Middle		3.95 3.95
	Bottom Average Membrane Thickness (in):		3.95 3.95 0.01
	Height of Specimen, Cap and Base (in): Height of Cap and Base (in): Initial Length, Lo (in):		8.02 0.00 8.02
	Initial Area, Ao (sq. in): Initial Volume, AoLo (cu. in):		12.18 97.68
3. Soil Specime	n Weight: Weight of Wet Soil Used (g):		3187.20
4. Soil Propertie	s: Optimum Moisture Content (%):		14.6
	Maximum Dry Density (pcf): 95% of MDD (pcf):		112.1 106.5
	In-Situ Moisture Content (%):		N/A
5. Specimen Pro	operties:		
	Wet Weight (g): Compaction Moisture content (%): Compaction Wet Density (pcf): Compaction Dry Density (pcf): Moisture Content After Mr Test (%):		3187.20 14.9 124.32 108.20 14.7
C. Outiels Objects			
6. Quick Shear I	「est (Y=Yes, N=No, N/A=Not Applicable):		#VALUE!
7. Resilient Mod	ulus, Mr:	7608	8(Sc)^-0.15157(S3)^0.37310
8. Comments	1		······································
9. Tested By:	GW	Date: April 18, 2018	

.

k:

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS RECOMPACTED SAMPLES

Job No.	061509	Material Code	SSRVPS
Date Sampled:	3/6/18	Station No.:	230+00
Date Tested:	April 18, 2018	Location:	27'RT
Name of Project: County:	HWY. 367 - HWY. 89 (CABOT)(S) Code: 43 Name: LONOKE		
Sampled By:	THORNTON/FRAZIER/JORDAN	Depth:	0-5
Lab No.:	20180529	AASHTO Class:	A-4 (4)
Sample ID: LATITUDE:	RV134	Material Type (1 or 2): 2 LONGITUDE:	2): 2

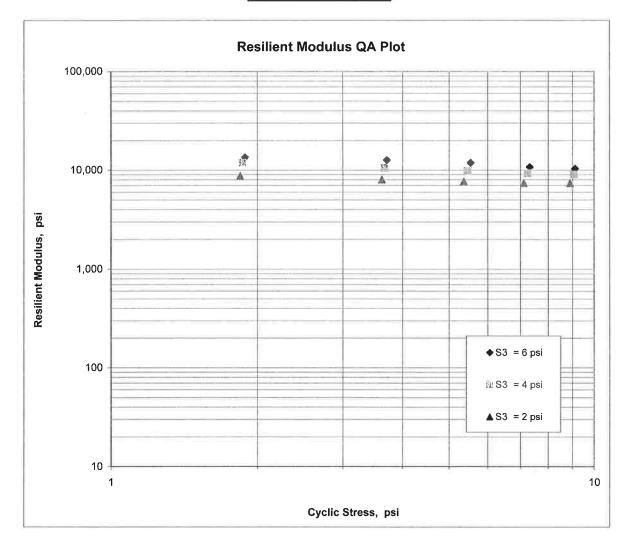
			Applied Applied	m Applied Applied Applied
Max. Axial		Contact Load	Cyclic Load Contact Load	ial Cyclic Load Contact Load
Stress	_			
S _{max}	_	P _{cyclic} P _{contact} S _{ma}	Pcontact	P _{cyclic} P _{contact}
psi		lbs	lbs lbs	lbs fbs lbs
2.1		23.0 2.6 2.1	2.6	23.0 2.6
3.9	_	45.1 2.6 3.5	2.6	45.1 2.6
5.8		67.4 3.5 5.8	3.5	67.4 3.5
7.8		89.1 5.9 7.8	5.9	89.1 5.9
9.8		111.0 8.4 9.8	8.4	111.0 8.4
2.1		22.7 2.7 2.	2.7	22.7 2.7
3.9		44.6 2.8 3.	2.8	44.6 2.8
5.7		66.5 2.8 5.	2.8	66.5 2.8
7.7		88.2 5.2 7.	5.2	88.2 5.2
9.7		110.4 7.6 9	7.6	110.4 7.6
2.1		22.4 2.8 2	2.8	22.4 2.8
3.8		44.1 2.8 3	2.8	44.1 2.8
5.6		65.3 2.8 5.	2.8	65.3 2.8
7.5		86.7 4.3 7	4.3	86.7 4.3
4.6		108 4 6 7 9	67	108.4 6.7

April 18, 2018

DATE DATE

GW

TESTED BY REVIEWED BY


- 34

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS RECOMPACTED / THINWALL TUBE SAMPLES

Job No.	061509	Material Code SSRVPS
Date Sampled:	3/6/18	Station No.: 230+00
Date Tested:	April 18, 2018	Location: 27'RT
Name of Project:	HWY. 367 - HWY. 89 (CABOT)(S)	
County:	Code: 43 Name: LONOKE	
Sampled By:	THORNTON/FRAZIER/JORDAN	Depth: 0-5
Lab No.:	20180529	AASHTO Class: A-4 (4)
Sample ID:	RV134	Material Type (1 or 2): 2
LATITUDE:		LONGITUDE:

 $M_{R} = K1 (S_{C})^{K2} (S_{3})^{K5}$

K1 =	7,608	
K2 =	-0.15157	
K5 =	0.37310	
$R^2 =$	0.99	_

Job No. Date Sampled: Date Tested: Name of Project:	061509 3/6/18 April 19, 2018 HWY. 367 - HWY. 89 (CABOT)(S)	Material Code Station No.: Location:	SSRVPS 255+00 27'LT	
County: Sampled By: Lab No.: Sample ID: LATITUDE:	Code: 43 Name: LONOKE THORNTON/FRAZIER/CAMPBELL 20180530 RV135	Depth: AASHTO Class: Material Type (1 o LONGITUDE:	or 2):	0-5 A-4 (5) 2
1. Testing Inform	nation:			
	Preconditioning - Permanent Strain > 5% (Y=Y Testing - Permanent Strain > 5% (Y=Yes or N= Number of Load Sequences Completed (0-15)			N N 15
2. Specimen Info	ormation:			
 Soil Specimer Soil Propertie 	Specimen Diameter (in): Top Middle Bottom Average Membrane Thickness (in): Height of Specimen, Cap and Base (in): Height of Cap and Base (in): Initial Length, Lo (in): Initial Area, Ao (sq. in): Initial Volume, AoLo (cu. in): Weight: Weight of Wet Soil Used (g):			3.96 3.96 3.96 0.01 8.02 0.00 8.02 12.24 98.18 3255.20
	Maximum Dry Density (pcf):			113.7
	95% of MDD (pcf): In-Situ Moisture Content (%):			108.0 N/A
5. Specimen Pro	-			
	Wet Weight (g): Compaction Moisture content (%): Compaction Wet Density (pcf): Compaction Dry Density (pcf): Moisture Content After Mr Test (%):			3255.20 15.2 126.33 109.66 14.7
6. Quick Shear T	est (Y=Yes, N=No, N/A=Not Applicable):			#VALUE!
7. Resilient Mod	ulus, Mr:	89	959(Sc)^-0.2335	I(S3)^0.33977
8. Comments	2			
9. Tested By:	_GW Da	te: <u>April 19, 2018</u>		

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS RECOMPACTED SAMPLES

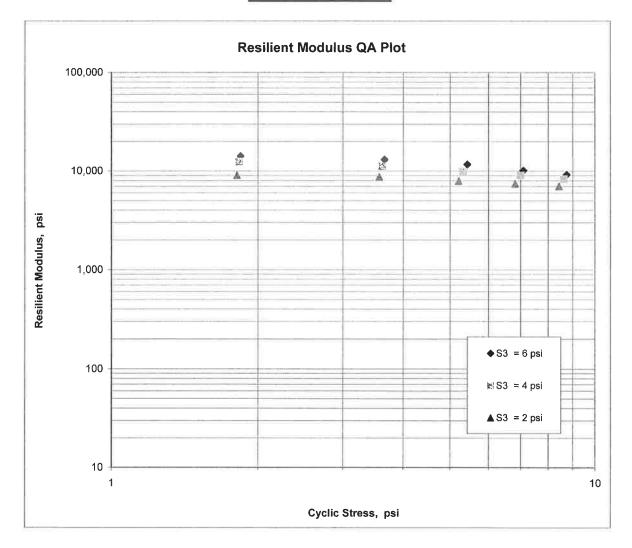
Job No. Date Sampled: Date Tested: Name of Project:	061509 3/6/18 April 19, 2018 HWY. 367 - HWY. 89 (CABOT)(S)	Material Code Station No.: Location:	SSRVPS 255+00 27'LT
County: Sampled By: Lab No.:	Code: 43 Name: LONOKE THORNTON/FRAZIER/CAMPBELL 20180530	Depth: AASHTO Class:	0-5 A-4 (5)
Sample ID: LATITUDE:	RV135	Material Type (1 or 2): 2 LONGITUDE:	2): 2

	Chamber	Nominal	Actual	Actual	Actual	Actual	Actual	Actual	Average	Resilient	Resilient
	Confining	Maximum	Applied	Applied	Applied	Applied	Applied	Applied	Recov Def.	Strain	Modulus
PARAMETER	Pressure	Axial	a/	Cyclic Load	Contact	Max.	Cyclic	Contact	LVDT 1		
		Stress	Load		Load	Axial	Stress	Stress	and 2		
						Stress					
DESIGNATION	လိ	S _{cyclic}	Р _{тах}	P _{cyclic}	P _{contact}	S _{max}	S _{cyclic}	Scontact	H _{avg}	٣	Mr
UNIT	psi	psi	lbs	sql	lbs	psi	psi	psi	ŗ	in/in	psi
Sequence 1	6.0	2.0	25.3	22.5	2.8	2.1	1.8	0.2	0.00105	0.00013	14,070
Sequence 2	6.0	4.0	47.5	44.8	2.8	3.9	3.7	0.2	0.00225	0.00028	13,029
Sequence 3	6.0	6.0	70.1	66.4	3.7	5.7	5.4	0.3	0.00373	0.00046	11,666
Sequence 4	6.0	8.0	93.0	86.8	6.1	7.6	7.1	0.5	0.00561	0.00070	10,131
Sequence 5	6.0	10.0	115.6	107.0	8.6	9.4	8.7	0.7	0.00763	0.00095	9,182
Sequence 6	4.0	2.0	25.2	22.4	2.8	2.1	1.8	0.2	0.00118	0.00015	12,407
Sequence 7	4.0	4.0	47.1	44.2	2.9	3.8	3.6	0.2	0.00260	0.00032	11,160
Sequence 8	4.0	6.0	68.0	65.1	2.9	5.6	5.3	0.2	0.00432	0.00054	9,886
Sequence 9	4.0	8.0	90.9	85.7	5.3	7.4	7.0	0.4	0.00622	0.00078	9,017
Sequence 10	4.0	10.0	113.2	105.5	7.8	9.3	8.6	9.0	0.00835	0.00104	8,278
Sequence 11	2.0	2.0	25.0	22.1	2.8	2.0	1.8	0.2	0.00160	0.00020	9,040
Sequence 12	2.0	4.0	46.5	43.7	2.8	3.8	3.6	0.2	0.00330	0.00041	8,668
Sequence 13	2.0	6.0	66.6	63.7	2.9	5.4	5.2	0.2	0.00530	0.00066	7,881
Sequence 14	2.0	8.0	87.9	83.5	4.4	7.2	6.8	0.4	0.00740	0.00092	7,395
Sequence 15	2.0	10.0	110.0	103.1	6.9	9.0	8.4	0.6	0.00965	0.00120	6,998

April 19, 2018

DATE DATE

GW


TESTED BY REVIEWED BY

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS RECOMPACTED / THINWALL TUBE SAMPLES

Job No.	061509	Material Code SSRVPS
Date Sampled:	3/6/18	Station No.: 255+00
Date Tested:	April 19, 2018	Location: 27'LT
Name of Project:	HWY'. 367 - HWY. 89 (CABOT)(S)	
County:	Code: 43 Name: LONOKE	3
Sampled By:	THORNTON/FRAZIER/CAMPBELL	Depth: 0-5
Lab No.:	20180530	AASHTO Class: A-4 (5)
Sample ID:	RV135	Material Type (1 or 2): 2
LATITUDE:		LONGITUDE:

 $M_{R} = K1 (S_{C})^{K2} (S_{3})^{K5}$

K1 =	8,959
K2 =	-0.23351
K5 =	0.33977
R ² =	0.95

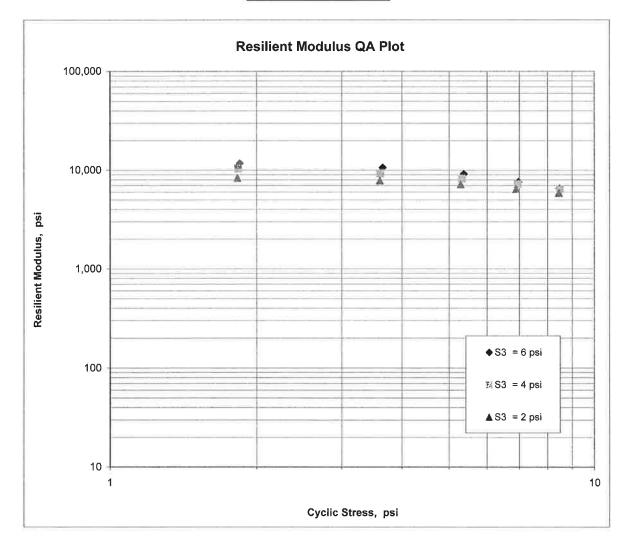
Job No. Date Sampled: Date Tested: Name of Project:	061509 3/6/18 April 19, 2018 HWY. 367 - HWY. 89 (CABOT)(S)	Material Code Station No.: Location:	SSRVPS 288+00 27'RT
County: Sampled By: Lab No.: Sample ID: LATITUDE:	Code: 43 Name: LONOKE THORNTON/FRAZIER/CAMPBELL 20180531 RV136	Depth: AASHTO Class: Material Type (1 or 2) LONGITUDE:	0-5 A-6 (4) 2
1. Testing Inform	nation:		
	Preconditioning - Permanent Strain > 5% (Y= Testing - Permanent Strain > 5% (Y=Yes or N Number of Load Sequences Completed (0-15	l=No)	N N 15
2. Specimen Info	ormation:		
3. Soil Specimer 4. Soil Propertie	Specimen Diameter (in): Top Middle Bottom Average Membrane Thickness (in): Height of Specimen, Cap and Base (in): Height of Cap and Base (in): Initial Length, Lo (in): Initial Area, Ao (sq. in): Initial Area, Ao (sq. in): Initial Volume, AoLo (cu. in): Weight: Weight of Wet Soil Used (g): s: Optimum Moisture Content (%): Maximum Dry Density (pcf): 95% of MDD (pcf):		3.95 3.95 3.95 3.95 0.01 8.02 0.00 8.02 12.18 97.68 3217.40 15.9 111.5 105.9
	In-Situ Moisture Content (%):		N/A
5. Specimen Pro	perties:		
	Wet Weight (g): Compaction Moisture content (%): Compaction Wet Density (pcf): Compaction Dry Density (pcf): Moisture Content After Mr Test (%):		3217.40 16.8 125.50 107.45 16.1
6. Quick Shear T	est (Y=Yes, N=No, N/A=Not Applicable):		#VALUE!
7. Resilient Mod	ulus, Mr:	9648(5	Sc)^-0.30099(S3)^0.21286
8. Comments	8 		
9. Tested By:	GW	Date: <u>April 19, 2018</u>	

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS RECOMPACTED SAMPLES

	Chamber	Nominal	Actual	Actual	Actual	Actual	Actual	Actual	Average	Resilient	Resilient
	Confining	Maximum	Applied	Applied	Applied	Applied	Applied	Applied	Recov Def.	Strain	Modulus
PARAMETER	Pressure	Axial	Max. Axial	Max. Axial Cyclic Load	Contact	Max.	Cyclic	Contact	LVDT 1		
		Stress	Load		Load	Axial	Stress	Stress	and 2		
						Stress					
DESIGNATION	လိ	S _{cyclic}	P _{max}	P _{cyclic}	P _{contact}	S _{max}	S _{cyclic}	Scontact	H _{avg}	εr	Mr
UNIT	psi	psi	lbs	lbs	lbs	psi	psi	psi	in	in/in	psi
Sequence 1	6.0	2.0	25.2	22.5	2.7	2.1	1.8	0.2	0.00127	0.00016	11,630
Sequence 2	6.0	4.0	47.1	44.4	2.6	3.9	3.6	0.2	0.00275	0.00034	10,629
Sequence 3	6.0	6.0	68.9	65.4	3.5	5.7	5.4	0.3	0.00469	0.00059	9,181
Sequence 4	6.0	8.0	90.8	84.9	5.9	7.5	7.0	0.5	0.00736	0.00092	7,594
Sequence 5	6.0	10.0	111.5	103.2	8.4	9.2	8.5	0.7	0.01043	0.00130	6,513
Sequence 6	4.0	2.0	25.1	22.3	2.8	2.1	1.8	0.2	0.00141	0.00018	10,421
Sequence 7	4.0	4.0	46.8	44.0	2.8	3.8	3.6	0.2	0.00311	0.00039	9,304
Sequence 8	4.0	6.0	67.7	64.8	2.9	5.6	5.3	0.2	0.00520	0.00065	8,212
Sequence 9	4.0	8.0	89.9	84.7	5.2	7.4	7.0	0.4	0.00772	0.00096	7,221
Sequence 10	4.0	10.0	111.1	103.5	7.7	9.1	8.5	0.6	0.01072	0.00134	6,353
Sequence 11	2.0	2.0	25.1	22.2	2.8	2.1	1.8	0.2	0.00176	0.00022	8,327
Sequence 12	2.0	4.0	46.7	43.9	2.8	3.8	3.6	0.2	0.00369	0.00046	7,832
Sequence 13	2.0	6.0	67.3	64.5	2.8	5.5	5.3	0.2	0.00592	0.00074	7,172
Sequence 14	2.0	8.0	88.3	84.0	4.3	7.2	6.9	0.4	0.00854	0.00107	6,472
Sequence 15	2.0	10.0	109.7	102.9	6.8	9.0	8.4	0.6	0.01159	0.00145	5,846

DATE April 19, 2018 DATE

TESTED BY REVIEWED BY


GW

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS RECOMPACTED / THINWALL TUBE SAMPLES

Job No.	061509	Material Code SSRVPS
Date Sampled:	3/6/18	Station No.: 288+00
Date Tested:	April 19, 2018	Location: 27'RT
Name of Project:	HWY. 367 - HWY. 89 (CABOT)(S)	
County:	Code: 43 Name: LONOKE	3
Sampled By:	THORNTON/FRAZIER/CAMPBELL	Depth: 0-5
Lab No.:	20180531	AASHTO Class: A-6 (4)
Sample ID:	RV136	Material Type (1 or 2): 2
LATITUDE:		LONGITUDE:

 $M_{R} = K1 (S_{C})^{K_{2}} (S_{3})^{K_{5}}$

K1 =	9,648	
K2 =	-0.30099	
K5 =	0.21286	
$R^2 =$	0.89	

Job No. Date Sampled: Date Tested: Name of Project:	061509 3/6/18 April 19, 2018 HWY. 367 - HWY. 89 (CABOT)(S)	Material Code Station No.: Location:	SSRVPS 346+00 27'LT
County: Sampled By: Lab No.: Sample ID: LATITUDE:	Code: 43 Name: LONOKE THORNTON/FRAZIER/CAMPBELL 20180532 RV137	Depth: AASHTO Class: Material Type (1 or 2 LONGITUDE:	0-5 A-7-6 (11) 2
1. Testing Inform	nation:		
	Preconditioning - Permanent Strain > 5% (Y=Ye Testing - Permanent Strain > 5% (Y=Yes or N=N Number of Load Sequences Completed (0-15)		N N 15
2. Specimen Info	ormation:		
	Specimen Diameter (in): Top Middle Bottom Average Membrane Thickness (in): Height of Specimen, Cap and Base (in): Height of Cap and Base (in): Initial Length, Lo (in): Initial Area, Ao (sq. in): Initial Volume, AoLo (cu. in):		3.96 3.96 3.96 0.01 8.02 0.00 8.02 12.24 98.18
3. Soil Specimer	n Weight:		
	Weight of Wet Soil Used (g):		3101.50
4. Soil Propertie	e'		
4. Son Propertie	 Optimum Moisture Content (%): Maximum Dry Density (pcf): 95% of MDD (pcf): In-Situ Moisture Content (%): 		17.2 106.3 101.0 N/A
5. Specimen Pro	nortios		
	Wet Weight (g): Compaction Moisture content (%): Compaction Wet Density (pcf): Compaction Dry Density (pcf): Moisture Content After Mr Test (%):		3101.50 17.4 120.37 102.53 17.0
6. Quick Shear T	est (Y=Yes, N=No, N/A=Not Applicable):		#VALUE!
7. Resilient Mod	ulus, Mr:	8074((Sc)^-0.21806(S3)^0.20114
8. Comments	·		
9. Tested By:	GW Dat	te: <u>April 19, 2018</u>	

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS RECOMPACTED SAMPLES

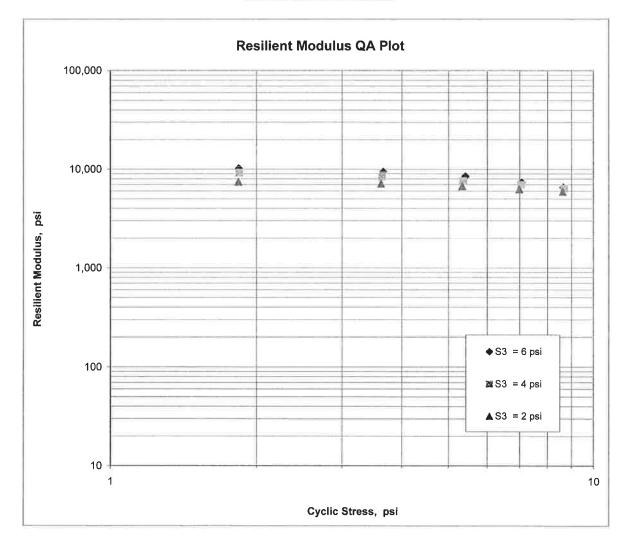
Job No.	061509	Material Code	SSRVPS
Date Sampled:	3/6/18	Station No.:	346+00
Date Tested:	April 19, 2018	Location:	27'LT
Name of Project:	HWY. 367 - HWY. 89 (CABOT)(S)		
County:	Code: 43 Name: LONOKE		
Sampled By:	THORNTON/FRAZIER/CAMPBELL	Depth:	0-5
Lab No.:	20180532	AASHTO Class:	A-7-6 (11)
Sample ID:	RV137	Material Type (1 or 2): 2	2): 2
LATITUDE:		LONGITUDE:	

Resilient	Recov Def. Strain Modulus	LVDT 1	(and 2	and 2	ana z H _{avg} s _r Mr	sr in/in	sr sr 5 0.00018 10	۶ _r in/in 0.00018 0.00039	⁵ r in/in 0.00018 0.00039 0.00064	ε ^r in/in 0.00018 0.00039 0.00064 0.00096	ε _r ε _r in/in in/in 0.00018 0.00039 0.00064 0.00096 0.00036 0.00036	Er Er in/in in/in 0.00018 0.00039 0.00064 0.00064 0.00036 0.00036 0.00036 0.00026	[€] ^r in/in 0.00018 0.00039 0.00064 0.00096 0.00096 0.00032	Er Er in/in in/in 0.00018 0.00039 0.00064 0.00064 0.00036 0.00036 0.00036 0.00036 0.00036 0.00036 0.00036 0.00036 0.00036 0.00036 0.00037 0.00036 0.00037 0.00037 0.00037 0.00037 0.00037 0.00037	ε _r μη/in in/in in/in 0.00018 0.00039 0.00039 0.00036 0.00036 0.00036 0.00032 0.00036 0.00033 0.00036 0.00033 0.00036 0.00034 0.00036 0.00043 0.00043 0.00071 0.00071	Er Er in/in in/in 0.00018 0.00039 0.00064 0.00036 0.00036 0.00036 0.00036 0.00036 0.00037 0.00036 0.00020 0.00037 0.00043 0.00043 0.00043 0.00043 0.00043 0.00043 0.00043 0.00043	ε _r μη/in in/in in/in in/in 0.00018 0.00039 0.00039 0.00039 0.00036 0.00039 0.00036 0.00039 0.00036 0.00039 0.00036 0.00030 0.00036 0.00032 0.00037 0.00032 0.00032 0.00035 0.00035	Er In/in In/in in/in 0.00018 0.00039 0.000064 0.00036 0.00036 0.000030 0.00030 0.00036 0.000030 0.00036 0.00036 0.000030 0.00036 0.00036 0.000132 0.00043 0.00043 0.000102 0.000136 0.00030 0.000136 0.00025 0.00025 0.000025 0.00025 0.00025	ε _r In/in In/in <th< th=""><th>Er In/in <thin in<="" th=""> In/in In/</thin></th></th<>	Er In/in In/in <thin in<="" th=""> In/in In/</thin>
_	_	Contact	Stress			Scontact	Scontact	S _{contact} psi 0.2													
Actual	Applied	Cyclic	Stress			S _{cyclic}	S _{cyclic} psi	S _{cyclic} psi 1.8	S _{cyclic} psi 3.7	S _{oyclic} psi 3.7 5.4	S _{oyclic} psi 1.8 3.7 5.4 7.1	S _{oyclic} psi 1.8 3.7 5.4 7.1 8.6	S _{oyclic} Psi 3.7 3.7 7.1 8.6 8.6	S _{oyclic} psi 1.8 3.7 5.4 7.1 7.1 8.6 8.6 3.6 3.6	S _{oyclic} Psi 3.7 3.7 3.6 3.6 3.6 3.6 5.4 5.4 5.4 5.4	S _{oyclic} psi 1.8 3.7 5.4 7.1 7.1 8.6 8.6 3.6 5.4 7.0	S _{oyclic} psi 1.8 3.7 5.4 7.1 8.6 8.6 3.6 5.4 7.0 8.7 8.7 8.7 8.7 8.7 8.7	S _{oyclic} psi 1.8 3.7 5.4 7.1 7.1 8.6 8.6 8.6 7.0 7.0 8.7 1.8	Soycelic psi 1.8 3.7 5.4 7.1 7.1 8.6 7.0 8.6 7.0 7.0 8.7 7.0 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6	S _{oyclic} psi 1.8 1.8 3.7 5.4 7.1 7.1 1.8 8.6 8.6 8.6 7.0 7.0 8.7 8.7 8.7 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.4 5.4 5.4 5.4 7.1 5.4 7.1 5.4 7.1 5.4 7.1 5.4 7.1 5.4 7.1 5.4 7.1 7.1 8.6 7.1 7.1 8.6 7.1 7.1 8.6 7.1 7.1 8.6 7.1 7.1 8.6 7.1 7.1 8.6 7.1 7.1 8.6 7.1 7.1 8.6 7.1 7.1 8.6 7.1 7.1 8.6 7.1 7.1 7.1 8.6 7.1 7.1 8.6 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1	S _{oyclic} psi 1.8 1.8 3.7 5.4 7.1 8.6 7.0 7.0 8.7 8.7 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7
_	Applied		Axial	20070	Olless																
	Applied		Load			-	P _{contact}														
	1 Applied	ial Cyclic Load					P _{cyclic} Ibs														
_	m Applied	Max. Axial	Load		_	۲ _{max}	_														
	g Maximum	e Axial	Stress		S _{cvclic}		psi	psi 2.0	psi 2.0 4.0	psi psi 2.0 4.0 6.0	psi 2.0 4.0 6.0 8.0	psi 2.0 4.0 6.0 8.0 10.0	psi 2.0 4.0 6.0 8.0 8.0 10.0 2.0	psi 2.0 4.0 6.0 8.0 8.0 10.0 4.0	psi 2.0 4.0 6.0 8.0 10.0 10.0 4.0 6.0	psi 2.0 2.0 6.0 8.0 10.0 10.0 4.0 8.0 8.0 8.0	psi 2.0 4.0 6.0 8.0 10.0 10.0 4.0 6.0 8.0 8.0	psi 2.0 2.0 6.0 8.0 10.0 4.0 6.0 6.0 8.0 8.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	psi 2.0 4.0 6.0 8.0 10.0 10.0 8.0 8.0 8.0 8.0 7.0 2.0 4.0 4.0	psi psi 6.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8	psi 2.0 2.0 4.0 6.0 8.0 10.0 2.0 2.0 2.0 2.0 8.0 10.0 8.0 8.0 10.0 2.0 2.0 2.0 2.0 2.0 2.0 8.0 8.0 8.0 8.0 8.0
Chamber	Confining	Pressure			S3		psi	6.0	psi 6.0 6.0	psi 6.0 6.0 6.0	psí 6.0 6.0 6.0	psi 6.0 6.0 6.0 6.0 6.0	psi 6.0 6.0 6.0 6.0 7 4.0	psi 6.0 6.0 6.0 6.0 4.0 4.0	psi 6.0 6.0 6.0 6.0 7 4.0 4.0	psi 6.0 6.0 6.0 6.0 4.0 4.0 4.0 4.0	psi 6.0 6.0 6.0 6.0 6.0 7 4.0 4.0 4.0 4.0 4.0	psi 6.0 7.0	psi 6:0 7:0 7:0 7:0	psi 6:0 6:0 7:0	psi 6.0 7.0 7.0
		PARAMETER			DESIGNATION		UNIT	UNIT Sequence 1	UNIT Sequence 1 Sequence 2	UNIT Sequence 1 Sequence 2 Sequence 3	UNIT Sequence 1 Sequence 2 Sequence 3 Sequence 4	UNIT Sequence 1 Sequence 2 Sequence 3 Sequence 4 Sequence 5	UNIT Sequence 1 Sequence 2 Sequence 3 Sequence 5 Sequence 6	UNIT Sequence 1 Sequence 2 Sequence 3 Sequence 5 Sequence 6 Sequence 7	UNIT Sequence 1 Sequence 2 Sequence 3 Sequence 6 Sequence 6 Sequence 7 Sequence 8	UNIT Sequence 1 Sequence 2 Sequence 3 Sequence 4 Sequence 6 Sequence 8 Sequence 8 Sequence 8	UNIT Sequence 1 Sequence 2 Sequence 3 Sequence 6 Sequence 6 Sequence 8 Sequence 8 Sequence 9 Sequence 9 Sequence 10	UNIT Sequence 1 Sequence 2 Sequence 3 Sequence 4 Sequence 6 Sequence 8 Sequence 8 Sequence 9 Sequence 10 Sequence 10	UNIT Sequence 1 Sequence 2 Sequence 2 Sequence 4 Sequence 6 Sequence 6 Sequence 8 Sequence 9 Sequence 10 Sequence 11 Sequence 12	UNIT Sequence 1 Sequence 2 Sequence 2 Sequence 4 Sequence 6 Sequence 6 Sequence 8 Sequence 10 Sequence 10 Sequence 11 Sequence 12 Sequence 13 Sequence 13	UNIT Sequence 1 Sequence 2 Sequence 2 Sequence 4 Sequence 6 Sequence 6 Sequence 8 Sequence 8 Sequence 10 Sequence 10 Sequence 11 Sequence 12 Sequence 13 Sequence 13 Sequence 13

– DATE DATE

April 19, 2018

TESTED BY REVIEWED BY


GW

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS RECOMPACTED / THINWALL TUBE SAMPLES

Job No.	061509	Material Code SSRVPS
Date Sampled:	3/6/18	Station No.: 346+00
Date Tested:	April 19, 2018	Location: 27'LT
Name of Project:	HWY. 367 - HWY. 89 (CABOT)(S)	
County:	Code: 43 Name: LONOK	E
Sampled By:	THORNTON/FRAZIER/CAMPBELL	Depth: 0-5
Lab No.:	20180532	AASHTO Class: A-7-6 (11)
Sample ID:	RV137	Material Type (1 or 2): 2
LATITUDE:		LONGITUDE:

 $M_{R} = K1 (S_{C})^{K2} (S_{3})^{K5}$

K1 =	8,074	
K2 =	-0.21806	
K5 =	0.20114	
$R^2 =$	0.91	

JOB: 061509

Arkansas State Highway Transporation Department Materials Division

JOB NAME: HWY. 367 - HWY. 89 (CABOT)(S)

COUNTY NO. 43 DATE TESTED 4/10/2018

Michael Benson, Materials Engineer

	000111		73			4/ I U/ A	2010						0	
	STA.#	LOC.	DEPTH	COLOR	#4	#10	# 40 E	#80 V	#200 E S	L.L.	P.I.	SOIL CLASS	<i>LAB</i> #:	%MOISTURE
	230+00	27 RT	0-5	BR/GR	95	94	92	90	87	24	07	A-4(4)	RV134	
	255+00	27 LT	0-5	BR/GR	90	88	86	84	78	24	09	A-4(5)	RV135	
	288+00	27 RT	0-5	BR/GR	79	72	65	59	38	37	24	A-6(4)	RV136	
	346+00	27 LT	0-5	BR/GR	82	81	79	76	54	4 1	28	A-7-6(11)	RV137	
	255+00	18 LT	0-5	BROWN	96	95	94	93	88	28	11	A-6(8)	S100	16.8
	255+00	27 LT	0-5	BR/GR	100		128		94	28	10	A-4(8)	S101	20.3
	261+00	06 RT	0-5	BR/GR	99	97	96	95	87	24	08	A-4(5)	S102	17.8
	261+00	18 RT	0-5	BROWN	98	97	96	94	86	24	07	A-4(4)	S103	16.9
	261+00	27 RT	0-5	BROWN	72	70	67	65	56	25	07	A-4(1)	S104	19.5
	280+00	06 LT	0-5	BROWN	100	99	98	95	64	40	22	A-6(12)	S105	26.6
	280+00	18 LT	0-5	BROWN	99	97	96	95	51	38	18	A-6(6)	S106	29.1
	280+00	27 LT	0-5	BROWN	96	94	91	86	66	39	27	A-6(15)	S107	25.2
	288+00	06 RT	0-5	GRAY	99	99	97	96	46	39	25	A-6(8)	S108	21.3
	288+00	18 RT	0-5	BROWN	98	91	89	81	56	42	29	A-7-6(12)	S109	21.1
	288+00	27 RT	0-5	BR/GR	99	99	98	88	70	37	26	A-6(15)	S110	21.7
	296+00	06 LT	0-5	GRAY	98	97	96	92	83	27	10	A-4(6)	S111	23.4
	296+00	18 LT	0-5	GRAY	92	83	77	71	61	26	09	A-4(3)	S112	26.8
	304+00	06 RT	0-5	GRAY	99	97	96	90	74	26	11	A-6(6)	S113	22.3
	304+00	18 RT	0-5	GRAY	100	99	99	93	75	23	04	A-4(1)	S114	23.8
	304+00	27 RT	0-5	GRAY	98	98	92	91	74	21	05	A-4(1)	S115	19.9
	312+00	12 LT	0-5	BROWN	77	68	63	58	44	26	13	A-6(2)	S116	22.2
	312+00	21 LT	0-5	BROWN	99	99	98	82	63				S117	18.6
;	320+00	06 RT	0-5	GRAY	99	95	91	85	74	35	22	A-6(14)	S118	21.6
	320+00	18 RT	0-5	GRAY	99	98	97	92	71	31	18	A-6(10)	S119	21.3
	320+00	27 RT	0-5	BROWN	99	97	94	89	72	34	20	A-6(12)	S120	22.4
;	328+00	06 LT	0-5	BROWN	99	99	95	85	69	28	15	A-6(7)	S121	21.5

comments: W=MULTIPLE LAYERS

03531249

1/5

STA.#	LOC.	DEPTH	COLOR	#4	#10	#40 E	#80 V	#200 E S	L.L.	<i>P.I</i> .	SOIL C	LASS	LAB #:	%MOISTURE
328+00	18 LT	0-5	BROWN	85	80	77	72	58	36	23	A-6(10))	S122	19.1
328+00	27 LT	0-5	BROWN	99	97	94	86	70	32	19	A-6(11)	S123	20.5
338+00	12 RT	0-5	BR/GR	98	95	93	82	66	31	16	A-6(8)		S124	19.6
338+00	20 RT	0-5	BR/GR	97	95	92	83	66	36	23	A-6(12	?)	S125	23.1
338+00	27 RT	0-5	BR/GR	85	83	81	71	56	25	11	A-6(3)		S126	19.9
346+00	12 LT	0-5	BROWN	99	99	98	94	58	46	33	A-7-6(15)	S127	29.7
346+00	18 LT	0-5	BROWN	99	99	97	93	66	28	12	A-6(5)		S128	22.1
346+00	27 LT	0-5	BR/GR	99	99	97	94	66	39	22	A-6(12	?)	S129	19.3
354+00	12 RT	0-5	BR/GR	98	95	75	72	58	22	07	A-4(1)		S130	19.7
354+00	18 RT	0-5	BROWN	99	99	97	76	61	24	11	A-6(4)		S131	17.2
362+00	12 LT	0-5	BROWN	100	99	97	84	68	23	07	A-4(2)		S132	21.5
362+00	18 LT	0-5	BROWN	98	97	94	88	72	31	16	A-6(9)		S133	20.8
203+00	12 RT	0-5	BR/GR	100	(free training the second s	6,2.	-Nor	93	32	16	A-6(14)	S82	21.2
203+00	21 RT	0-5	BROWN	90	87	83	80	72	23	07	A-4(3)		S83	21.4
203+00	30 RT	0-5	BROWN	98	95	93	90	85	28	12	A-6(8)		S84	23.9
211+00	12 LT	0-5	GRAY	100			325	93	26	11	A-6(8)		S85	23.2
211+00	21 LT	0-5	GRAY	100	5.8			90	27	11	A-6(8)		S86	21.4
219+00	12 RT	0-5	BR/GR	97	94	92	91	87	27	10	A-4(7)		S87	19.2
219+00	21 LT	0-5	BR/GR	96	91	87	84	78	23	08	A-4(4)		S88	14.6
219+00	30 RT	0-5	BR/GR	91	89	87	85	82	24	08	A-4(4)		S89	11.7
230+00	06 RT	0-5	GRAY	100		1945	ar far	93	26	09	A-4(7)		S90	18.2
230+00	18 RT	0-5	GRAY	96	95	94	93	90	25	08	A-4(5)		S91	18.7
230+00	27 RT	0-5	BR/GR	100		10/112	P. Star	92	24	06	A-4(4)		S92	20.4
238+00	06 LT	0-5	GRAY	100			(7253)	95	25	06	A-4(4)		S93	19.1
238+00	18 LT	0-5	GRAY	100	2 (1) 2 (1)			92	25	10	A-4(7)		S94	20.7
238+00	27 LT	0-5	BROWN	92	89	84	81	77	26	10	A-4(5)		S95	16.7
246+00	06 RT	0-5	GRAY	100				91	27	09	A-4(7)		S96	21.1
246+00	18 RT	0-5	GRAY	100		100		92	27	09	A-4(7)		S97	18.9

STA.#	LOC. I	DEPTH	COLOR	#4	#10	#40	#80	#200	<i>L.L</i> .	P.I .	SOIL CLASS	<i>LAB</i> #:	%MOISTURE
246+00	27 RT	0-5	BR/GR	73	70	66	63	<u>6 S</u> 59	26	08	A-4(2)	S98	17.7
255+00	06 LT	0-5	BROWN	100				90	31	14	A-6(12)	S99	19.6

JOB: JOB NA	0 1 <i>ME:</i> H	JOB: 061509 JOB NAME: HWY. 367 - HWY. 89 (CABOT)(S)	39 (CABOT)(S)	Arkansas State Highway Transporation Department Materials Division	DATE TESTED 4/10/2018
COUNTY NO.		43		Michael Benson, Materials Engineer	
STA.# LOC.	LOC.			PAVEMENT SOUNDINGS	
203+00	12 RT	ACHMSC 3.0W	ACHMBC 4.0	AGG. BASE CRS CL-7 6.0	
203+00	21 RT	ACHMSC 2.25W	ACHMBC	AGG. BASE CRS CL-7 7.0	
203+00	30 RT	ACHMSC 	ACHMBC	AGG. BASE CRS CL-7	
211+00	12 LT	ACHMSC 4.0W	ACHMBC 4.25	AGG. BASE CRS CL-7 8.0	
211+00	21 LT	ACHMSC 4.0W	ACHMBC	AGG. BASE CRS CL-7 8.0	
219+00	12 RT	ACHMSC 2.0W	ACHMBC 5.0	AGG. BASE CRS CL-7 6.0	
219+00	21 LT	ACHMSC 2.0W	ACHMBC 4.5	AGG, BASE CRS CL-7 7.0	
219+00	30 RT	ACHMSC	ACHMBC 	AGG. BASE CRS CL-7	
230+00	06 RT	ACHMSC 2.0W	ACHMBC 5.0	AGG. BASE CRS CL-7 6.0	
230+00	18 RT	ACHMSC 4.0W	ACHMBC	AGG. BASE CRS CL-7 7.0	
230+00	27 RT	ACHMSC	ACHMBC	AGG. BASE CRS CL-7	
238+00	06 LT	ACHMSC 4.0W	ACHMBC 4.0	AGG. BASE CRS CL-7 8.0	
238+00	18 LT	ACHMSC 4.0W	ACHMBC 	AGG. BASE CRS CL-7 8.0	
238+00	27 LT	ACHMSC	ACHMBC	AGG. BASE CRS CL-7	
246+00	06 RT	ACHMSC 3.0W	ACHMBC 4.0	AGG. BASE CRS CL-7 7.0	
246+00	18 RT	ACHMSC 3.5W	ACHMBC	AGG. BASE CRS CL-7 7.0	
246+00	27 RT	ACHMSC 	ACHMBC -	AGG. BASE CRS CL-7	
comments:	4	W=MULTIPLE LAYERS	ERS	Tuesday, April 24, 2018	

Page I of 3

STA.# LOC.	LOC.				PAVEMENT SOUNDINGS
00.120		1	ACHMBC		
001007	200	2.5		8.0	
255+00	18 LT		ACHMBC	AGG. BASE CRS CL-7	
			I	8.0	
255+00	27 LT	. ACHMSC	ACHMBC	AGG. BASE CRS CL-7	
		1	I		
261+00	06 RT	F ACHMSC	ACHMBC	AGG. BASE CRS CL-7	
		2.0	4.75W	7.0	
261+00	18 RT		ACHMBC	AGG. BASE CRS CL-7	
		5.0W	Ĩ	7.0	
261+00	27 RT	r ACHMSC	ACHMBC	AGG. BASE CRS CL-7	
		I	1	1	
280+00	06 LT		ACHMBC	AGG. BASE CRS CL-7	
		3.0W	4.5	7.0	
280+00	18 LT	- ACHMSC	ACHMBC	AGG. BASE CRS CL-7	
		4.5	1	8.0	
280+00	27 LT	- ACHMSC	ACHMBC	AGG. BASE CRS CL-7	
		1	1	8.0	
288+00	06 RT		ACHMBC	AGG. BASE CRS CL-7	
		2.5	6.0W	6.0	
288+00	18 RT		ACHMBC	AGG. BASE CRS CL-7	
		3.5W	I	7.0	
288+00	27 RT	r ACHMSC	ACHMBC	AGG. BASE CRS CL-7	
		I	1		
296+00	06 LT		ACHMBC	AGG. BASE CRS CL-7	
		3.0	4.5W	7.0	
296+00	18 LT	- ACHMSC	ACHMBC	AGG. BASE CRS CL-7	
		4.0W	I	8.0	
304+00	06 RT		ACHMBC	AGG. BASE CRS CL-7	
			0.0	0.0	
304+00	18 RT		ACHMBC	AGG. BASE CRS CL-7	
		4.5	I	6.0	
304+00	27 RT	T ACHMSC	ACHMSC	ACHMBC	AGG. BASE CRS CL-7
		I		Ĩ	1
312+00	12 LT		ACHMSC	ACHMBC	AGG. BASE CRS CL-7
		4.5W	1.0X	5.5	7.0
312+00	21 LT		ACHMSC	ACHMBC	AGG. BASE CRS CL-7
		7.0	1	ł	8.0
comments:	i	W=MULTIPLE LAYERS	rers		Turbury 12/ 2018

Page 2 of 3

Tuesday, April 24, 2018

comments: W=MULTIPLE LAYERS

3000 6FT 4CMMBC 4CM 4CM 3000 16FT ALMASC ACM ACM 3000 17 ALMASC ACM ACM 3000 17 ALMASC ACM ACM 3000 17 ACM ACM ACM 3000 17 ACM ACM ACM 3000 171 ACM ACM ACM 3000	STA.#	LOC.			PAVEMENT SOUNDINGS
33 50 70 IFI ACHMISC ACHMISC AC IFI ACHMISC ACHMISC ACG ACHMISC ACHMISC ACG BASE CRS CL-7 IFI ACHMISC ACHMISC ACG ACHMISC ACHMISC ACG BASE CRS CL-7 ACHMISC ACHMISC ACHMISC ACG ACHMISC ACHMISC ACG BASE CRS CL-7 ACHMISC ACHMISC ACG BASE CRS CL-7 ACHMISC ACHMISC ACG BASE CRS CL-7 ACHMISC ACHMISC ACHMISC ACG ACHMISC ACHMISC ACG ACG ACHMISC ACHMISC ACG ACG ACHMISC ACHMISC ACG	320+00	06 RT	ACHMSC	ACHMBC	AGG. BASE CRS CL-7
IFI ACHMBIC AGG BASE CRS CL.7 IFI			3.5	5.0	
IT ACHING	320+00	18 RT	ACHMSC	ACHMBC	3. BASE CRS
I.I. ACHINEC AGG. BASIE CRS 0? 3.30 4.0 GG. BASIE CRS 0? RT ACHINEC AGG. BASIE CRS 0? ACHINEC ACHINEC AGG. BASIE CRS 0? RT ACHINEC AGG. BASIE CRS 0? RT ACHINEC AGG. BASIE CRS 0? RT ACHINEC AGG. BASIE CRS 0? ACHINEC ACHINEC <			I	0.0	
I.T. ACHNISC ACHNISC ACHNISC ACHNISC ACHNISC ACHNISC 6.0 3.1 3.1 A.1 6.0 6.0 6.0 1.T. ACHNISC ACHNISC ACHNISC ACHNISC ACHNISC 3.1 A.1 ACHNISC ACHNISC ACHNISC ACHNISC R.T. ACHNISC ACHNISC ACHNISC ACHNISC ACHNISC ACHNISC ACHNISC ACHNISC ACHNISC R.T. ACHNISC ACHNISC ACHNISC ACHNISC R.T. ACHNISC ACHNISC ACHNISC ACHNISC ACHNISC ACHNISC ACHNISC ACHNISC ACHNISC R.T. ACHNISC ACHNISC	20+00	27 RT	ACHMSC -	ACHMBC	AGG. BASE CRS CL-7
III ACHMISC	00+80	1 ⊐U			
I.T ACHMSC ACHMSC AGCMSC 3.35 - - 80 1.T ACHMSC ACHMSC AGC BASE CRS CL-7 RT ACHMSC ACHMSC AGC BASE CRS CL-7 LT ACHMSC ACHMSC AGG BASE CRS CL-7		3	3.0	4.0	
325 60 11 ACHMBC ACHMBC AGS BASE CRS CL7 13 ACHMBC ACHMBC AGS BASE CRS CL7 14 ACHMSC ACHMBC AGS BASE CRS CL7 15 ACHMBC ACHMBC AGS BASE CRS CL7 16 ACHMBC ACHMBC AGS BASE CRS CL7 17 ACHMSC ACHMBC AGS BASE CRS CL7 11 ACHMSC ACHMBC AGS BASE CRS CL7 12 ACHMSC ACHMBC AGS BASE CRS CL7 13 ACHMSC ACHMBC AGS BASE CRS CL7 14 ACHMSC ACHMBC AGS BA	28+00	18 LT	ACHMSC	ACHMBC	AGG. BASE CRS CL-7
I.T ACHMISC ACHMISC AGG. BASE CRS CL.7 RT ACHMISC AGG. BASE CRS CL.7 AGG. BASE CRS CL.7 RT ACHMISC AGG. BASE CRS CL.7 AGG. BASE CRS CL.7 RT ACHMISC AGG. BASE CRS CL.7 AGG. BASE CRS CL.7 RT ACHMISC AGG. BASE CRS CL.7 AGG. BASE CRS CL.7 RT ACHMISC AGG. BASE CRS CL.7 AGG. BASE CRS CL.7 LT ACHMISC AGG. BASE CRS CL.7 AGG. BASE CRS CL.7 LT ACHMISC AGG. BASE CRS CL.7 AGG. BASE CRS CL.7 LT ACHMISC AGG. BASE CRS CL.7 AGG. BASE CRS CL.7 LT ACHMISC ACHMISC AGG. BASE CRS CL.7			3.25	1	
RT ACHMISC ACI ACI RT ACHMISC ACI ACI ACI 30 S.5 T.0 S.6 BASE CRS CL.7 65 ACHMISC ACI AGG. BASE CRS CL.7 ACI 65 ACHMISC ACHMISC AGG. BASE CRS CL.7 ACI 61 ACHMISC ACHMISC AGG. BASE CRS CL.7 ACI 65 ACHMISC AGG. BASE CRS CL.7 AGG. BASE CRS CL.7 AGG. BASE CRS CL.7 11 ACHMISC ACHMISC AGG. BASE CRS CL.7 AGG. BASE CRS CL.7 11 ACHMISC ACHMISC AGG. BASE CRS CL.7 12 ACHMISC AGG. BASE CRS CL.7 AGG. BASE CRS CL.7 11 ACHMISC	28+00	27 LT	ACHMSC	ACHMBC	AGG. BASE CRS CL-7
RT ACHMISC ACHMISC AGG. BASE CRS CL.7 3.0 5.5 7.0 6.1 ACHMISC AGG. BASE CRS CL.7 6.3 - - 6.4 ACHMISC AGG. BASE CRS CL.7 6.5 - - 6.1 ACHMISC AGG. BASE CRS CL.7 7.1 ACHMISC ACHMISC AGG. BASE CRS CL.7 1.1 ACHMISC ACHMISC AGG. BASE CRS CL.7			I	1	
3.0 5.5 7.0 RT ACHMISC AGG. BASE CRS CL.7 AGG. BASE CRS CL.7 6.5 ACHMISC AGG. BASE CRS CL.7 AGG. BASE CRS CL.7 1.1 ACHMISC ACHMISC AGG. BASE CRS CL.7 1.1 ACHMISC ACHMISC AGG. BASE CRS CL.7 1.1 ACHMISC AGG. BASE CRS CL.7 - 1.1 ACHMISC AGG. BASE CRS CL.7 - 1.1 ACHMISC AGG. BASE CRS CL.7 - 1.1 ACHMISC ACHMISC AGG. BASE CRS CL.7 1.1 ACHMISC ACHMISC ACHMISC 1.1 ACHMISC ACHMISC AGG. BASE CRS CL.7 1.1 ACHMISC ACHMISC AGG. BASE CRS CL.7 1.1 ACHMISC ACHMISC AGG. BASE CRS CL.7 1.1 ACHMISC ACHMISC ACHMISC 1.1 ACHMISC ACHMISC ACHMISC 1.1 ACHMISC ACHMISC ACHMISC 1.1 ACHMISC ACHMISC ACHMISC <td>38+00</td> <td>12 RT</td> <td>ACHMSC</td> <td>ACHMBC</td> <td>AGG. BASE CRS CL-7</td>	38+00	12 RT	ACHMSC	ACHMBC	AGG. BASE CRS CL-7
RT ACHMISC ACHMISC AGG. BASE CRS CL.7 6.5 - 8.0 RT ACHMISC AGG. BASE CRS CL.7 1 ACHMISC AGG. BASE CRS CL.7 4.0 - - 1.1 ACHMISC AGG. BASE CRS CL.7 4.0 - - 1.1 ACHMISC ACHMISC 1.2 ACHMISC ACHMISC 1.3 ACHMISC ACHMISC 1.4<			3.0	5.5	7.0
5.5 6.0 RT ACHMBC 8.0 LT ACHMBC AGG. BASE CRS CL-7 LT ACHMBC AGG. BASE CRS CL-7 4.0W 4.5 7.0 LT ACHMBC AGG. BASE CRS CL-7 4.0W 4.5 7.0 LT ACHMBC AGG. BASE CRS CL-7 ACHMSC ACHMBC AGG. BASE CRS CL-7 LT ACHMSC ACHMBC ACHMSC ACHMBC AGG. BASE CRS CL-7 LT ACHMSC ACHMBC ACHMSC ACHMBC AGG. BASE CRS CL-7 JOW 5.0 8.0 RT ACHMSC ACHMBC ACHMSC ACHMBC AGG. BASE CRS CL-7 JOW 5.0 8.0	84-00	20 RT	ACHMSC	ACHMBC	BASE CRS
RT ACHMISC AGG. BASE CRS CL-7			5.5	I	8.0
IT ACHINEC AGG. BASE CRS CL-7 IT <	84-00	27 RT	ACHMSC	ACHMBC	AGG. BASE CRS CL-7
LT ACHMBC AGG BASE CRS CL-7 LT ACHMSC AGHBC AGG BASE CRS CL-7 LT ACHMSC ACHMBC AGG BASE CRS CL-7 LT ACHMSC ACHMBC AGG BASE CRS CL-7 LT ACHMSC ACHMBC AGG BASE CRS CL-7 RT ACHMSC ACHMBC AGG BASE CRS CL-7 IT ACHMSC ACHMBC AGG BASE CRS CL-7 IT ACHMSC ACHMBC AGG BASE CRS CL-7 IT ACHMSC AGG BASE CRS CL-7 IT <td></td> <td></td> <td>1</td> <td>1</td> <td></td>			1	1	
4.0W 4.5 7.0 IT ACHNISC ACHNIBC AGG. BASE CRS CL-7 - 4.0 8.0 IT ACHNISC ACHNIBC AGG. BASE CRS CL-7 - - 4.0 8.0 IT ACHNISC ACHNIBC AGG. BASE CRS CL-7 RT ACHNISC ACHNIBC AGG. BASE CRS CL-7 RT ACHNISC ACHNIBC AGG. BASE CRS CL-7 IT ACHNISC ACHNIBC AGG. BASE CRS CL-7 4.5 - 7.0 8.0 IT ACHNISC ACHNIBC AGG. BASE CRS CL-7 3.0W 5.0 AGG. BASE CRS CL-7 - IT ACHNISC AGG. BASE CRS CL-7 -	00+9	12 LT	ACHMSC	ACHMBC	AGG. BASE CRS CL-7
LT ACHMBC ACHMBC ACG. BASE CRS CL-7 - 4.0 8.0 - 4.0 8.0 RT ACHMBC ACG. BASE CRS CL-7 RT ACHMBC AGG. BASE CRS CL-7 LT ACHMBC AGG. BASE CRS CL-7 LT ACHMSC ACHMBC ACHMSC ACHMBC AGG. BASE CRS CL-7 LT ACHMSC ACHMBC AGG. BASE CRS CL-7 - J.SW 5.0			4.0W	4.5	7.0
4.0 8.0 IT ACHMBC AGG. BASE CRS CL-7 - - - RT ACHMBC AGG. BASE CRS CL-7 IT ACHMSC AGG. BASE CRS CL-7 ISIM 5.0 -	00+9	18 LT	ACHMSC	ACHMBC	. BASE CRS
LT ACHIMSC ACHIMBC AGG. BASE CRS CL-7 RT ACHIMBC AGG. BASE CRS CL-7 3.0W 5.0 8.0 RT ACHIMBC AGG. BASE CRS CL-7 4.5 ACHIMBC AGG. BASE CRS CL-7 1. ACHIMSC ACHIMBC AGG. BASE CRS CL-7 1. ACHIMSC AGG. BASE CRS CL-7 2. ACHIMBC 3.0 1. ACHIMSC AGG. BASE CRS CL-7 A.5 A.5 ACHIMBC AGG. BASE CRS CL-7 ACHIMBC ACHIMBC			I	4.0	8.0
RT ACHMBC AGG. BASE CRS CL-7 3.0W 5.0 8.0 RT ACHMBC AGG. BASE CRS CL-7 LT ACHMBC AGG. BASE CRS CL-7 JSW 5.0	00+9	27 LT	ACHMSC	ACHMBC	AGG. BASE CRS CL-7
RT ACHMBC AGG. BASE CRS CL7 3.0W 5.0 8.0 3.0W 5.0 8.0 4.5 - 7.0 LT ACHMBC AGG. BASE CRS CL7 A.5 - 7.0 I.1 ACHMBC AGG. BASE CRS CL7 - - 7.0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -			1	1	1
ACHMISC 8.0 4.5 ACHMISC ACHMISC 4.5 - 7.0 1.1 ACHMISC ACHMISC ACHMISC ACHMISC AGG. BASE CRS CL-7 1.1 ACHMISC AGG. BASE CRS CL-7 3.5W 5.0 -	4+00	12 RT	ACHMSC	ACHMBC	BASE CRS
RT ACHMISC ACHMISC AGG. BASE CRS CL-7 LT 4.5 - 7.0 LT ACHMISC ACHMISC AGG. BASE CRS CL-7 LT ACHMISC AGG. BASE CRS CL-7 - 3.5W 5.0 - - MEMULTIPLE LAYERS Tuesday, April 24, 2018			3.0W	5.0	8.0
4.5 7.0 LT ACHMSC AG. BASE CRS CL-7 LT ACHMSC AGG. BASE CRS CL-7 3.5W 5.0 V=MULTIPLE LAYERS Tuesday, April 24, 2018	4+00	18 RT	ACHMSC	ACHMBC	AGG. BASE CRS CL-7
LT ACHMISC ACHMIBC AGG. BASE CRS CL-7 — — — — — — — — — — — — — — — — — — —			4.5	I	7.0
LT ACHMSC AGG. BASE CRS CL-7 3.5W 5.0 W=MULTIPLE LAYERS Tresday, April 24, 2018	2+00	12 LT	ACHMSC	ACHMBC	AGG. BASE CRS CL-7
LI ACIMOL AGG. BASE CKS CL-7 3.5W 5.0 W-MULTIPLE LAYERS W-MULTIPLE LAYERS Tuesday, April 24, 2018	00.0	- - -			
W=MULTIPLE LAYERS Tuesday, April 24, 2018	00+7	18 L I	achmsc 3.5W	AGG. BASE CRS CI 5.0	
W=MULTIPLE LAYERS Tuesday, April 24, 2018					
W=MULTIPLE LAYERS Tuesday, April 24, 2018					
W=MULTIPLE LAYERS Tuesday, April 24, 2018					
	тэтт	1	MULTIPLE LAYE	ERS	Tuesday, April 24, 2018
					Dama 2 of 3

ARKANSAS STATE H	IIGHWA	Y AND I		SPORTATIO			- LITI	LE	ROCK,	ARKA	ANSAS
	MIC	IAEL BE	INSON	N, MATER	IAI	S ENGINEER	2				
* * *	SOIL	SURVEY	/ F	AVEMENT	SC	UNDING TES	T REPOR	т *	* *		
DATE- 04/23/18SEQUENCE NO 1JOB NUMBER- 061509MATERIAL CODE - SSRVPSFEDERAL AID NOTO BE ASSIGNEDSPEC. YEAR - 2014PURPOSE- SOIL SURVEY SAMPLESUPPLIER ID 1SPEC. REMARKS- NO SPECIFICATION CHECKCOUNTY/STATE - 43SUPPLIER NAME- STATEDISTRICT NO 06NAME OF PROJECT- HWY. 367 - HWY. 89 (CABOT)(S)-PROJECT ENGINEER- NOT APPLICABLEPIT/QUARRY- ARKANSAS							RVPS 14				
LOCATION - LONOKE		ITY					DATE	MAR	PLED -	- 03	/06/18
SAMPLED BY - THORNTO									EIVED -		
SAMPLE FROM - TEST H									TED -		
MATERIAL DESC SOII	SURV	EY - F	R VAI	LUE- PAV	EMI	ENT SOUNDIN	IGS				
LAB NUMBER	-	20180	477		-	20180478		÷	201804	179	
SAMPLE ID	-	S82			-	S83		Ξž	S84		
TEST STATUS	-	INFOR				INFORMATI	ON ONLY				ON ONLY
STATION					-	203+00			203+00	D	
LOCATION		12 RT			_	21 RT			30 RT		
DEPTH IN FEET		0-5			_	0-5		-	0-5		
MAT'L COLOR MAT'L TYPE	-	BR/GR			-	BROWN		<u>.</u>	BROWN		
LATITUDE DEG-MIN-S						34 56			34		
LONGITUDE DEG-MIN-S	EC -	92	03	41.50		92 03	41.50		92	03	41.60
	IN				-			E.			
1 1/2					-	100		4			
	IN					91		-			
	IN				-	91		12	100		
NO.		100			-	90		4	98		
NO. NO.					-	87 83		÷	95 93		
	40 - 80 -					80		5	93 90		
NO. NO. 2		93			-	72		2	85		
LIQUID LIMIT	-	32			-	23		-	28		
PLASTICITY INDEX	-	16			-	07			12		
AASHTO SOIL	-	A-6 (14)		-	A-4(3)		-	A-6 (8)	
UNIFIED SOIL	-				_	01.4		-			
% MOISTURE CONTENT	-	21				21.4			23		
	(IN) -	3.0			-	2.25W		-			
	(IN) -	4.0 6.0			75 75	7.0		_			
AGG. DADE CRD CL-/	(IN) -	0.0	,		2	1.0		-			
	-				i R			-			
	1993) 1994				-			-			
					15 72			_			
	-				2			_			
	1 7 8				÷			-			

	-					
	1 7.5					
AASHTO T	ESTS :	T24	T88	T89	T90	T265
	ः					

ARKANSAS STATE	HIGHWAY	Y AND TRANSPORTAT: MATERIALS		r - LITTLE	ROCK, ARKANSAS	
**		HAEL BENSON, MATER SURVEY / PAVEMENT			**	
DATE - 04/10/18 SEQUENCE NO 2 JOB NUMBER - 061509 MATERIAL CODE - SSRVPS FEDERAL AID NO TO BE ASSIGNED SPEC. YEAR - 2014 PURPOSE - SOIL SURVEY SAMPLE SUPPLIER ID 1 SPEC. REMARKS - NO SPECIFICATION CHECK COUNTY/STATE - 43 SUPPLIER NAME - STATE DISTRICT NO 06 NAME OF PROJECT - HWY. 367 - HWY. 89 (CABOT)(S) PROJECT ENGINEER - NOT APPLICABLE PIT/QUARRY - ARKANSAS						
LOCATION - LONOF SAMPLED BY - THORN SAMPLE FROM - TEST MATERIAL DESC SO	(E, COUN FON/FRAZ HOLE	ZIER	/EMENT SOUNDII	DATE REC DATE TES	IPLED - 03/06/18 EIVED - 03/15/18 TED - 04/10/18	
LAB NUMBER					20180482	
SAMPLE ID TEST STATUS STATION LOCATION DEPTH IN FEET MAT'L COLOR	- - -	S85 INFORMATION ONLY 211+00 12 LT 0-5	- S86 - INFORMATI	- ON ONLY - -	S87 INFORMATION ONLY 219+00 12 RT 0-5	
MAT'L TYPE LATITUDE DEG-MIN- LONGITUDE DEG-MIN-	SEC -					
<pre>% PASSING 2 1 1/2 3/4 3/8 NO. NO. NO. NO. NO.</pre>	IN IN IN IN 4 - 10 - 40 - 80 -		- - - - 100 -		100 97 94	
NO. LIQUID LIMIT PLASTICITY INDEX AASHTO SOIL UNIFIED SOIL	- - -	93 26 11 A-6(8)	90 - 27 - 11 - A-6(8) -	- - -	87 27 10 A-4(7)	
% MOISTURE CONTENT ACHMSC	- (IN) -	23.2 4.0W	- 21.4 - 4.0W		19.2 2.0W	
ACHMBC AGG. BASE CRS CL-7	(IN) - (IN) - - - - - - -	4.25 8.0	- 8.0 		5.0 6.0	
	-		-	1		

---AASHTO TESTS : T24 T88 T89 T90 T265

:

ARKANSAS STATE HIGHWAY AND TRANSPORTATION MATERIALS I						
MICHAEL BENSON, MATERI *** SOIL SURVEY / PAVEMENT						
DATE - 04/10/18 SEQUENCE NO 3 JOB NUMBER - 061509 MATERIAL CODE - SSRVPS FEDERAL AID NO TO BE ASSIGNED SPEC. YEAR - 2014 PURPOSE - SOIL SURVEY SAMPLE SUPPLIER ID 1 SPEC. REMARKS - NO SPECIFICATION CHECK COUNTY/STATE - 43 SUPPLIER NAME - STATE DISTRICT NO 06 NAME OF PROJECT - HWY. 367 - HWY. 89 (CABOT)(S) PROJECT ENGINEER - NOT APPLICABLE PIT/QUARRY - ARKANSAS						
LOCATION - LONOKE, COUNTY SAMPLED BY - THORNTON/FRAZIER SAMPLE FROM - TEST HOLE MATERIAL DESC SOIL SURVEY - R VALUE- PAVE	DATE SAMPLED - 03/06/18 DATE RECEIVED - 03/15/18 DATE TESTED - 04/10/18 EMENT SOUNDINGS					
SAMPLE ID - S88 TEST STATUS - INFORMATION ONLY	- 219+00 - 230+00 - 30 RT - 06 RT - 0-5 - 0-5 - BR/GR - GRAY - 34 56 34.90 - 34 56 35.50					
LIQUID LIMIT - 23 PLASTICITY INDEX - 08 AASHTO SOIL - A-4(4) UNIFIED SOIL - % MOISTURE CONTENT - 14.6 ACHMSC (IN) - 2.0W ACHMBC (IN) - 4.5 AGG. BASE CRS CL-7 (IN) - 7.0 - - - - - - - - - - - - -	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					

-

AASHTO TESTS : T24 T88 T89 T90 T265

.

.8
.8 .8
1LA
0 0
1.

-

AASHTO TESTS : T24 T88 T89 T90 T265

.

-

ARKANSAS STATE		AND TRANSPORTATI MATERIALS	DIVISION		ROCK, ARKANSAS	
**		IAEL BENSON, MATER SURVEY / PAVEMENT			**	
DATE04/23/18SEQUENCE NO 5JOB NUMBER061509MATERIAL CODE - SSRVPSFEDERAL AID NOTO BE ASSIGNEDSPEC. YEAR - 2014PURPOSE- SOIL SURVEY SAMPLESUPPLIER ID 1SPEC. REMARKSNO SPECIFICATION CHECKCOUNTY/STATE - 43SUPPLIER NAME- STATEDISTRICT NO 06NAME OF PROJECT- HWY. 367 - HWY. 89 (CABOT)(S)DISTRICT NO 06PROJECT ENGINEER- NOT APPLICABLE- 1						
PIT/QUARRY - ARKAN LOCATION - LONOR SAMPLED BY - THORNT SAMPLE FROM - TEST MATERIAL DESC SOL	E, COUN CON/FRAZ HOLE	IER	YEMENT SOUNDI	DATE REC DATE TES	IPLED - 03/06/18 EIVED - 03/15/18 TED - 04/10/18	
SAMPLE ID TEST STATUS STATION LOCATION DEPTH IN FEET MAT'L COLOR	- - -	INFORMATION ONLY 238+00 18 LT 0-5	_ S95	- ION ONLY - - -	20180491 S96 INFORMATION ONLY 246+00 06 RT 0-5 GRAY	
MAT'L TYPE LATITUDE DEG-MIN- LONGITUDE DEG-MIN-	SEC -	34 56 36.10		- 36.20 - 7.30		
3/4 3/8 NO. NO. NO. NO.	IN IN IN 4 - 10 - 40 - 80 -	100	- - - 97 - 92 - 89 - 84 - 81		100	
NO. LIQUID LIMIT PLASTICITY INDEX AASHTO SOIL UNIFIED SOIL	200 -	92 25 10 A-4(7)	77 - 26 - 10 - A-4(5) -	- - -	91 27 09 A-4(7)	
% MOISTURE CONTENT ACHMSC ACHMBC AGG. BASE CRS CL-7	(IN) - (IN) - (IN) - -	20.7 4.0W 8.0	- 16.7		21.1 3.0W 4.0 7.0	
				- - - -		

::

ARKANSAS STATE		AND TRANSPORTATI MATERIALS I IAEL BENSON, MATER	DIV	ISION		ĒF	COCK, ARKANSAS
**		SURVEY / PAVEMENT				**	*
DATE - 04/10/18 SEQUENCE NO. = 6 JOB NUMBER - 061509 MATERIAL CODE - SSRVPS FEDERAL AID NO TO BE ASSIGNED SPEC. YEAR - 2014 PURPOSE - SOIL SURVEY SAMPLE SUPPLIER ID. = 1 SPEC. REMARKS - NO SPECIFICATION CHECK COUNTY/STATE - 43 SUPPLIER NAME - STATE DISTRICT NO. = 06 NAME OF PROJECT - HWY. 367 - HWY. 89 (CABOT)(S) PROJECT ENGINEER - NOT APPLICABLE PIT/QUARRY - ARKANSAS							
LOCATION - LONOK SAMPLED BY - THORNI SAMPLE FROM - TEST MATERIAL DESC SOJ	E, COUN CON/FRAZ HOLE	IER	FMF	NT SOUNDIN	DATE RI DATE TI	ECE	LED - 03/06/18 IVED - 03/15/18 ED - 04/10/18
LAB NUMBER							
SAMPLE ID				S98			S99
TEST STATUS							255+00
STATION LOCATION		246+00 18 RT	_	246+00 27 RT			255+00 06 LT
DEPTH IN FEET			-	0-5			0-5
			-	BR/GR		-	BROWN
MAT'L COLOR MAT'L TYPE	-	GRAY	-	Dit, dit		-	DROWN
LATITUDE DEG-MIN-		34 56 34.70	_	34 56	34.70	_	34 56 31.70
LONGITUDE DEG-MIN-							92 02 48.10
% PASSING 2	IN		-			×	
1 1/2	IN			100		Ξ.	
3/4	IN		-	86		8	
3/8	IN		-	78			
	4 -	100	-	73		- -	100
	10 -		-	70		÷	
	40 -		-	66		¥	
- 60	80 -	0.0	-	63		æ	0.0
NO.	200 -	92		59			90
LIQUID LIMIT	-	27	-	26		-	31
PLASTICITY INDEX	-	09		08		-	14
AASHTO SOIL	-	A-4(7)		A-4(2)		ас жи	A-6(12)
UNIFIED SOIL	-					-	
% MOISTURE CONTENT	-	18.9		17.7			19.6
ACHMSC	(IN) -	3.5W	-			-	2.5
ACHMBC	(IN) -		-			-	4.OW
AGG. BASE CRS CL-7	(IN) - -	7.0	_			_	8.0
	-		_			-	
	-		-			-	
	-		-			-	
	-		-			_	
	-		_			_	
	ידי אעדי	20					

AASHTO TESTS : T24 T88 T89 T90 T265

.

ARKANSAS STATE			DIVISION		ROCK, ARKANSAS	
* * :		HAEL BENSON, MATH SURVEY / PAVEMEN			* *	
DATE - 04/23/18 JOB NUMBER - 061509 FEDERAL AID NO TO BE ASSIGNED PURPOSE - SOIL SURVEY SAMPLE SPEC. REMARKS - NO SPECIFICATION CHECK SUPPLIER NAME - STATE NAME OF PROJECT - HWY. 367 - HWY. 89 (CABOT) (S) PROJECT ENGINEER - NOT APPLICABLE PIT/QUARRY - ARKANSAS						
LOCATION - LONOK SAMPLED BY - THORNT SAMPLE FROM - TEST	E, COUN ON/FRAZ HOLE	ZIER		DATE REC DATE TES	PLED - 03/06/18 EIVED - 03/15/18 TED - 04/10/18	
MATERIAL DESC SOI	L SURVI	EY - R VALUE- PA	AVEMENT SOUNDI	NGS		
SAMPLE ID TEST STATUS	100 110	INFORMATION ONL	- S101	- ON ONLY -	S102	
LOCATION DEPTH IN FEET	20 20 20	18 LT 0-5 BROWN	- 27 LT - 0-5 _ BR/GR		06 RT 0-5 BR/GR	
LATITUDE DEG-MIN-: LONGITUDE DEG-MIN-:					34 56 30.30 92 02 43.60	
% PASSING 2 1 1/2 3/4 3/8 NO. NO. NO. NO. NO.	IN IN IN IN 4 - 10 - 40 - 80 - 200 -	100 96 96 95 94	- - - - - - 94		100 99 97 96 95 87	
LIQUID LIMIT PLASTICITY INDEX AASHTO SOIL UNIFIED SOIL		28 11 A-6(8)	- 28 - 10 - A-4(8)	-	24 08 A-4(5)	
% MOISTURE CONTENT	<u>.</u>	16.8	20.3		17.8	
ACHMSC ACHMBC AGG. BASE CRS CL-7	(IN) - (IN) - (IN) - -	3.5W 8.0	- 00000 - 120-00 - 20000		2.0 4.75W 7.0	
			-	-		
			-			
REMARKS - W=MULTIPL	E LAYE	RS				

ाः •

ARKANSAS STATE HIGHWAY AND TRANSPORTATION MATERIALS I						
MICHAEL BENSON, MATER: *** SOIL SURVEY / PAVEMENT						
DATE - 04/10/18 SEQUENCE NO 8 JOB NUMBER - 061509 MATERIAL CODE - SSRVPS FEDERAL AID NO TO BE ASSIGNED SPEC. YEAR - 2014 PURPOSE - SOIL SURVEY SAMPLE SUPPLIER ID 1 SPEC. REMARKS - NO SPECIFICATION CHECK COUNTY/STATE - 43 SUPPLIER NAME - STATE DISTRICT NO 06 NAME OF PROJECT - HWY. 367 - HWY. 89 (CABOT) (S) PROJECT ENGINEER - NOT APPLICABLE PIT/QUARRY - ARKANSAS						
LOCATION - LONOKE, COUNTY SAMPLED BY - THORNTON/FRAZIER	DATE SAMPLED - 03/06/18 DATE RECEIVED - 03/15/18					
SAMPLE FROM - TEST HOLE MATERIAL DESC SOIL SURVEY - R VALUE- PAV	DATE TESTED - 04/10/18 EMENT SOUNDINGS					
SAMPLE ID - S103 TEST STATUS - INFORMATION ONLY STATION - 261+00 LOCATION - 18 RT DEPTH IN FEET - 0-5 MAT'L COLOR - BROWN MAT'L TYPE - LATITUDE DEG-MIN-SEC - 34 56 29.50 LONGITUDE DEG-MIN-SEC - 92 02 41.00 % PASSING 2 IN 1 1/2 IN 3/4 IN 3/8 IN 100 NO. 4 - 98 NO. 10 - 97 NO. 40 - 96 NO. 80 - 94	- 261+00 - 280+00 - 27 RT - 06 LT - 0-5 - 0-5 - BROWN - BROWN 					
NO. 200 - 86 LIQUID LIMIT - 24 PLASTICITY INDEX - 07 AASHTO SOIL - A-4(4) UNIFIED SOIL - % MOISTURE CONTENT - 16.9 ACHMSC (IN) - 5.0W ACHMBC (IN) AGG. BASE CRS CL-7 (IN) - 7.0 - - - - - - - - - -	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					

-

-

AASHTO TESTS : T24 T88 T89 T90 T265

:

_

ARKANSAS STATE HIGHWAY	AND TRANSPORTATI MATERIALS I		- LITTLE	ROCK, ARKANSAS	
	IAEL BENSON, MATER SURVEY / PAVEMENT			* *	
DATE - 04/23/18 SEQUENCE NO 9 JOB NUMBER - 061509 MATERIAL CODE - SSRVPS FEDERAL AID NO TO BE ASSIGNED SPEC. YEAR - 2014 PURPOSE - SOIL SURVEY SAMPLE SUPPLIER ID 1 SPEC. REMARKS - NO SPECIFICATION CHECK COUNTY/STATE - 43 SUPPLIER NAME - STATE DISTRICT NO 06 NAME OF PROJECT - HWY. 367 - HWY. 89 (CABOT)(S) PROJECT ENGINEER - NOT APPLICABLE PIT/QUARRY - ARKANSAS					
LOCATION - LONOKE, COUN SAMPLED BY - THORNTON/FRAZ				PLED - 03/06/18 EIVED - 03/15/18	
SAMPLE FROM - TEST HOLE MATERIAL DESC SOIL SURVE	זאת סוזיגעי טיי		DATE TEST	TED - 04/10/18	
LAB NUMBER - SAMPLE ID - TEST STATUS - STATION -	20180501 S106 INFORMATION ONLY	- 20180502 - S107	- - - - -	20180503 S108 INFORMATION ONLY 288+00 06 RT	
DEPTH IN FEET -	0-5 BROWN	0-5 BROWN	-	0-5 GRAY	
MAT'L TYPE -					
LATITUDE DEG-MIN-SEC - LONGITUDE DEG-MIN-SEC -				34 56 21.30 92 02 14.20	
<pre>% PASSING 2 IN 1 1/2 IN 3/4 IN 3/8 IN NO. 4 - NO. 10 - NO. 40 - NO. 40 - NO. 80 - NO. 200 -</pre>	99	- - - 99 - 96 - 94 - 91 - 86 66		100 99 99 97 96 46	
LIQUID LIMIT - PLASTICITY INDEX -	38 18	- 39 - 27	-	39 25	
AASHTO SOIL - UNIFIED SOIL -	A-6(6)	- A-6(15)	-	A-6(8)	
% MOISTURE CONTENT -	29.1	25.2	_	21.3	
ACHMSC (IN) - ACHMBC (IN) - AGG. BASE CRS CL-7 (IN) -	4.5 8.0	8.0		2.5 6.0W 6.0	
-		2 2	-		
-		2 2	24 35		
-		-			

(3)

ARKANSAS STATE HIGHWAY AND TRANSPORTATIO MATERIALS D MICUNEL DENCON MATERI	DIVISION				
MICHAEL BENSON, MATERI *** SOIL SURVEY / PAVEMENT					
DATE- 04/23/18SEQUENCE NO 10JOB NUMBER- 061509MATERIAL CODE - SSRVPSFEDERAL AID NOTO BE ASSIGNEDSPEC. YEAR - 2014PURPOSE- SOIL SURVEY SAMPLESUPPLIER ID 1SPEC. REMARKS- NO SPECIFICATION CHECKCOUNTY/STATE - 43SUPPLIER NAME- STATEDISTRICT NO 06NAME OF PROJECT- HWY. 367 - HWY. 89 (CABOT)(S)-PROJECT ENGINEER- NOT APPLICABLE-PIT/QUARRY- ARKANSAS-					
PIT/QUARKY - ARRANSAS LOCATION - LONOKE, COUNTY SAMPLED BY - THORNTON/FRAZIER DATE RECEIVED - 03/15/1 SAMPLE FROM - TEST HOLE MATERIAL DESC. - SOIL SURVEY - NUMBER - 04/10/1					
SAMPLE ID - S109 TEST STATUS - INFORMATION ONLY	- 20180505 - 20180506 - S110 - S111 - INFORMATION ONLY - INFORMATION ONLY - 288+00 - 296+00 - 27 RT - 06 LT - 0-5 - 0-5 - BR/GR - GRAY				
LATITUDE DEG-MIN-SEC - 34 56 20.40 LONGITUDE DEG-MIN-SEC - 92 02 10.60	- 34 56 20.40 - 34 56 20.40 92 02 10.70 92 02 4.20				
<pre>% PASSING 2 IN 1 1/2 IN 3/4 IN 100 3/8 IN 98 NO. 4 - 98 NO. 10 - 91 NO. 40 - 89 NO. 80 - 81 NO. 200 - 56</pre>					
LIQUID LIMIT - 42 PLASTICITY INDEX - 29 AASHTO SOIL - A-7-6(12) UNIFIED SOIL - % MOISTURE CONTENT - 21.1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
ACHMSC (IN) - 3.5W ACHMBC (IN) AGG. BASE CRS CL-7 (IN) - 7.0 - - - - - - - - -	3.0 4.5W - 7.0				

---_

ARKANSAS STATE HIGHW	AY AND TRANSPORTATIO MATERIALS D		- LITTLE H	ROCK, ARKANSAS			
	CHAEL BENSON, MATERI SURVEY / PAVEMENT		REPORT **	**			
*** SOIL SURVEY / PAVEMENT SOUNDING TEST REPORT ***DATE- 04/23/18SEQUENCE NO 11JOB NUMBER- 061509MATERIAL CODE - SSRVPSFEDERAL AID NOTO BE ASSIGNEDSPEC. YEAR - 2014PURPOSE- SOIL SURVEY SAMPLESUPPLIER ID 1SPEC. REMARKS- NO SPECIFICATION CHECKCOUNTY/STATE - 43SUPPLIER NAME- STATEDISTRICT NO 06NAME OF PROJECT- HWY. 367 - HWY. 89 (CABOT)(S)DISTRICT NO 06PROJECT ENGINEER - NOT APPLICABLEPIT/QUARRY- ARKANSASLOCATION- LONOKE, COUNTYDATE SAMPLED - 03/06/18							
SAMPLED BY - THORNTON/FRA	AZIER		DATE RECE	IVED - 03/15/18			
SAMPLE FROM - TEST HOLE MATERIAL DESC SOIL SUR	VEY - R VALUE- PAVE	EMENT SOUNDING		ED - 04/10/18			
SAMPLE ID - TEST STATUS - STATION -	<pre>INFORMATION ONLY 296+00 18 LT 0-5</pre>	_ S113	- N ONLY - - - -	S114			
LATITUDE DEG-MIN-SEC - LONGITUDE DEG-MIN-SEC -			- 0.90 - 52.90	34 56 21.00 92 01 51.00			
<pre>% PASSING 2 IN 1 1/2 IN 3/4 IN 3/8 IN NO. 4 - NO. 10 - NO. 40 - NO. 40 - NO. 80 - NO. 200 -</pre>	100 98 92 83 77 71	- - - 99 - 97 - 96 - 90 74	- - - - - - - -	100 99 99 93 75			
LIQUID LIMIT - PLASTICITY INDEX - AASHTO SOIL - UNIFIED SOIL -	26 09 A-4(3)	- 26 - 11 - A-6(6)		23 04 A-4(1)			
% MOISTURE CONTENT -	26.8	- 22.3		23.8			
ACHMSC (IN) - ACHMBC (IN) - AGG. BASE CRS CL-7 (IN) - -		- 2.0 - 6.0 - 6.0 		4.5 6.0			
-		-	-				

	1.1	-					
		2					
		0					
AASHTO	TESTS	:	T24	T88	Т89	T9 0	T265
		3					

ARKANSAS STATE HIGHWAY AND TRANS MATI	PORTATION DEPARTMEN' ERIALS DIVISION	r - Little F	ROCK, ARKANSAS
MICHAEL BENSON *** SOIL SURVEY / PA	, MATERIALS ENGINEED AVEMENT SOUNDING TES		*
DATE - 04/23/18 JOB NUMBER - 061509 FEDERAL AID NO TO BE ASSIGNED PURPOSE - SOIL SURVEY SAMPLE SPEC. REMARKS - NO SPECIFICATION CHEC SUPPLIER NAME - STATE NAME OF PROJECT - HWY. 367 - HWY. 89 PROJECT ENGINEER - NOT APPLICABLE PIT/QUARRY - ARKANSAS	СК	MATERIAL (ATE - 43
LOCATION - LONOKE, COUNTY			LED - 03/06/18
SAMPLED BY - THORNTON/FRAZIER SAMPLE FROM - TEST HOLE			IVED - 03/15/18 ED - 04/11/18
MATERIAL DESC SOIL SURVEY - R VAL	UE- PAVEMENT SOUNDI		
SAMPLE ID - S115 TEST STATUS - INFORMATIC	- 20180511 _ S116 DN ONLY - INFORMATI - 312+00 - 12 LT - 0-5 BROWN	- CON ONLY - - - -	S117 INFORMATION ONLY
MAT'L TYPE - LATITUDE DEG-MIN-SEC - 34 56			
LONGITUDE DEG-MIN-SEC - 92 01		43.80	
<pre>% PASSING 2 IN 1 1/2 IN 3/4 IN 100 3/8 IN 99 NO. 4 - 98 NO. 10 - 98 NO. 10 - 98 NO. 40 - 92 NO. 80 - 91 NO. 80 - 91 NO. 200 - 74</pre>	- - 100 - 86 - 84 - 77 - 68 - 63 - 58 - 44		100 99 99 98 82 63
LIQUID LIMIT - 21	- 26		
PLASTICITY INDEX - 05 AASHTO SOIL - A-4(1) UNIFIED SOIL -	- 13 - A-6(2)	-	
% MOISTURE CONTENT - 19.9	- 22.2	-17/)	18.6
ACHMSC (IN) ACHMSC (IN)	- 4.5W - 1.0X		7.0
ACHMBC (IN) AGG. BASE CRS CL-7 (IN)	- 5.5 - 7.0	-	8.0
AGG. BASE CRS CL-7 (IN)	_ /.0	-	0.0
-	-	25 19	
-	-	-	
	-	-	

AASHTO TESTS : T24 T88 T89 T90 T265

:

ARKANSAS STATE HIGHWAY AND TRANSPORTATION MATERIALS DI	
MICHAEL BENSON, MATERIA *** SOIL SURVEY / PAVEMENT S	
DATE - 04/23/18 JOB NUMBER - 061509 FEDERAL AID NO TO BE ASSIGNED PURPOSE - SOIL SURVEY SAMPLE SPEC. REMARKS - NO SPECIFICATION CHECK SUPPLIER NAME - STATE NAME OF PROJECT - HWY. 367 - HWY. 89 (CABOT)(PROJECT ENGINEER - NOT APPLICABLE PIT/QUARRY - ARKANSAS	SEQUENCE NO 13 MATERIAL CODE - SSRVPS SPEC. YEAR - 2014 SUPPLIER ID 1 COUNTY/STATE - 43 DISTRICT NO 06 S)
LOCATION - LONOKE, COUNTY SAMPLED BY - THORNTON/FRAZIER SAMPLE FROM - TEST HOLE MATERIAL DESC SOIL SURVEY - R VALUE- PAVEN	DATE SAMPLED - 03/06/18 DATE RECEIVED - 03/15/18 DATE TESTED - 04/10/18 MENT SOUNDINGS
LAB NUMBER- 20180513SAMPLE ID- S118TEST STATUS- INFORMATION ONLYSTATION- 320+00LOCATION- 06 RTDEPTH IN FEET- 0-5MAT'L COLOR- GRAYMAT'L TYPE-	- S119 - S120
LATITUDE DEG-MIN-SEC - 34 56 22.00 LONGITUDE DEG-MIN-SEC - 92 01 32.00	
3/4 IN 3/8 IN 100 NO. 4 - 99 NO. 10 - 95 NO. 40 - 91	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
LIQUID LIMIT - 35 PLASTICITY INDEX - 22 AASHTO SOIL - A-6(14) UNIFIED SOIL - % MOISTURE CONTENT - 21.6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
ACHMSC (IN) - 3.5 ACHMBC (IN) - 5.0 AGG. BASE CRS CL-7 (IN) - 7.0 - - - - -	

1.5

	ATION DEPARTMENT - LITTLE ROCK, ARKANSAS LS DIVISION FERIALS ENGINEER
*** SOIL SURVEY / PAVEME	NT SOUNDING TEST REPORT ***
DATE - 04/23/18 JOB NUMBER - 061509 FEDERAL AID NO TO BE ASSIGNED PURPOSE - SOIL SURVEY SAMPLE SPEC. REMARKS - NO SPECIFICATION CHECK SUPPLIER NAME - STATE NAME OF PROJECT - HWY. 367 - HWY. 89 (CAB PROJECT ENGINEER - NOT APPLICABLE PIT/QUARRY - ARKANSAS	COUNTY/STATE - 43 DISTRICT NO 06
LOCATION - LONOKE, COUNTY SAMPLED BY - THORNTON/FRAZIER SAMPLE FROM - TEST HOLE	DATE SAMPLED - 03/06/18 DATE RECEIVED - 03/15/18 DATE TESTED - 04/10/18
MATERIAL DESC SOIL SURVEY - R VALUE- P	
SAMPLE ID - S121	
LIQUID LIMIT - 28 PLASTICITY INDEX - 15 AASHTO SOIL - A-6(7) UNIFIED SOIL - % MOISTURE CONTENT - 21.5 ACHMSC (IN) - 3.0 ACHMBC (IN) - 4.0 AGG. BASE CRS CL-7 (IN) - 6.0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	5 35 5 36 5 32 5 32 5 35

AASHTO TESTS : T24 T88 T89 T90 T265

	MATERIALS D EL BENSON, MATERI	IVISION ALS ENGINEER		
	URVEY / PAVEMENT :	SOUNDING TEST		
DATE - 04/11/18 JOB NUMBER - 061509 FEDERAL AID NO TO BE ASSIG PURPOSE - SOIL SURVEY SPEC. REMARKS - NO SPECIFIC SUPPLIER NAME - STATE NAME OF PROJECT - HWY. 367 PROJECT ENGINEER - NOT APPLIC PIT/QUARRY - ARKANSAS	SAMPLE ATION CHECK - HWY. 89 (CABOT)		MATERIAL SPEC. YEA SUPPLIER COUNTY/ST	NO 15 CODE - SSRVPS AR - 2014 ID 1 TATE - 43 NO 06
LOCATION - LONOKE, COUNT			DATE SAM	PLED - 03/06/18
SAMPLED BY - THORNTON/FRAZI SAMPLE FROM - TEST HOLE			DATE TES	EIVED - 03/15/18 TED - 04/10/18
MATERIAL DESC SOIL SURVEY	Y - R VALUE- PAVE	MENT SOUNDING	SS	
SAMPLE ID - 2 TEST STATUS - 3 STATION - 3	338+00 12 RT 0-5 BR/GR 34 56 21.90 92 01 16.40 92 01 16.40 98 95 93	- S125 - INFORMATIC - 338+00 - 20 RT - 0-5 - BR/GR - 34 56 2		S126 INFORMATION ONLY 338+00 27 RT 0-5 BR/GR 34 56 20.90 92 01 10.60 100 93 86 85 83 81
LIQUID LIMIT -	31	- 36	8	25
PLASTICITY INDEX - AASHTO SOIL -	16 A-6(8)	- 23 - A-6(12)	-	11 A-6(3)
UNIFIED SOIL - % MOISTURE CONTENT -	19.6	- 23.1	H	19.9
ACHMSC (IN) -	3.0	- 5.5	(E)	a mai
ACHMBC (IN) - AGG. BASE CRS CL-7 (IN) -	5.5 7.0			
AGG. DADE CRO CL-/ (IN)	7.0	- 0.0	-	
-		-		
-		-	2000 2000	
-		-	-	
-		-	57	
	_			

ARKANSAS STATE HIGHWAY AND TRANSPORTATION MATERIALS I	DIVISION
MICHAEL BENSON, MATER *** SOIL SURVEY / PAVEMENT	
DATE - 04/23/18 JOB NUMBER - 061509 FEDERAL AID NO TO BE ASSIGNED PURPOSE - SOIL SURVEY SAMPLE SPEC. REMARKS - NO SPECIFICATION CHECK SUPPLIER NAME - STATE NAME OF PROJECT - HWY. 367 - HWY. 89 (CABOT) PROJECT ENGINEER - NOT APPLICABLE PIT/QUARRY - ARKANSAS LOCATION - LONOKE, COUNTY SAMPLED BY - THORNTON/FRAZIER	DATE SAMPLED - 03/06/18
SAMPLED BY - THORNTON/FRAZIER SAMPLE FROM - TEST HOLE MATERIAL DESC SOIL SURVEY - R VALUE- PAV	DATE RECEIVED - 03/15/18 DATE TESTED - 04/10/18
LAB NUMBER - 20180522 SAMPLE ID - S127 TEST STATUS - INFORMATION ONLY STATION - 346+00 LOCATION - 12 LT DEPTH IN FEET - 0-5	- 20180523 - 20180524 - S128 - S129 - INFORMATION ONLY - INFORMATION ONLY - 346+00 - 346+00 - 18 LT - 27 LT - 0-5 - 0-5
MAT'L COLOR - BROWN MAT'L TYPE - LATITUDE DEG-MIN-SEC - 34 56 18.80 LONGITUDE DEG-MIN-SEC - 92 01 2.40	
<pre>% PASSING 2 IN - 1 1/2 IN - 3/4 IN - 3/8 IN - 100 NO. 4 - 99 NO. 10 - 99 NO. 40 - 98 NO. 40 - 98 NO. 80 - 94 NO. 200 - 58</pre>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
LIQUID LIMIT - 46 PLASTICITY INDEX - 33 AASHTO SOIL - A-7-6(15) UNIFIED SOIL - % MOISTURE CONTENT - 29.7	- 28 - 39 - 12 - 22 - A-6(5) - A-6(12) - 22.1 - 19.3
ACHMSC (IN) - 4.0W ACHMBC (IN) - 4.5 AGG. BASE CRS CL-7 (IN) - 7.0 	

-

-

-

MICHAEL BENSON, MATERIALS ENGINERR **** SOIL SURVEY / PAVEMENT SOUNDING TEST REPORT *** DATE - 04/23/18 SEQUENCE NO 17 JUB NUMBER 061509 MATERIAL CODE - SSRVPS PEDERAL AID NO. TO BE ASSIGNED SPEC. YEAR - 2014 PURPOSE - SOIL SURVEY SAMPLE SUPPLIER ID. = 1 SPEC. REMARKS - NO SPECIFICATION CHECK COUNTY/STATE - 43 SUPPLIER NAME - STATE DISTRICT NO 06 NAME OF PROJECT - HWY. 367 - HWY. 89 (CABOT) (S) PROJECT ENGINEER - NOT APPLICABLE PIT/QUARTY - ARKANSAS DATE SAMPLED - 03/06/18 SAMPLE FROM - TEST HOLE DATE TRECEIVED - 03/15/18 SAMPLE FROM - TEST HOLE DATE TRECEIVED - 03/15/18 SAMPLE D - SOIL SURVEY - R VALUE- PAVEMENT SOUNDINGS - 04/11/18 MATERIAL DESC SOIL SURVEY - R VALUE - PAVEMENT SOUNDINGS - 20180526 - 20180527 SAMPLE ID - SI30 - 20180526 - 20180527 - 362+00 LOCATION - 12 KT INFORMATION ONLY - INFORMATION ONLY SI32 TEST STATUS - INFORMATION ONLY - INFORMATION ONLY - INFORMATION ONLY SI34 MAT'L COLOR - 0.5 - 0.5
JOB NUMBER - 061509 MATERIAL CODE SSRVPS FEDERAL ALD NO TO BE ASSIGNED SUPC. YEAR - 2014 PURPOSE - SOIL SURVEY SAMPLE SUPPLICER ID. = 1 SPEC. REMARKS - NO SPECIFICATION CHECK COUNTY/STATE - 43 SUPPLIER NAME - STATE DISTRICT NO 06 NAME OF FROJECT - HWY. 89 (CABOT) (S) - - 43 SUPPLIER NAME - NOT APPLICABLE - - 03/06/18 SAMPLE DY - - NONKE, COUNTY DATE SAMPLED - 03/06/18 SAMPLE DY - - RAIRANSAS - 04/11/18 MATERIAL DESC SOIL SURVEY - R VALUE- PAVEMENT SOUNDINGS - - 04/11/18 MATERIAL DESC - 20180525 - 20180526 - 20180527 SAMPLE ID - S130 - S132 - - - TEST STATUS - INFORMATION ONLY - INFORMATION ONLY - -<
LOCATION - LONOKE, COUNTY DATE SAMPLED - 03/06/18 SAMPLED BY - THORNTON/FRAZIER DATE RECEIVED - 03/15/18 SAMPLE FROM - TEST HOLE DATE TESTED - 04/11/18 MATERIAL DESC. - SOIL SURVEY - R VALUE- PAVEMENT SOUDINGS - 04/11/18 MATERIAL DESC. - SOIL SURVEY - R VALUE- PAVEMENT SOUDINGS - 04/11/18 MATERIAL DESC. - SOIL SURVEY - R VALUE- PAVEMENT SOUDINGS - 04/11/18 MATESTATUS - 10180525 - 20180526 - 20180527 SAMPLE ID - S130 - S131 - S132 TEST STATUS - INFORMATION ONLY - INFORMATION ONLY - INFORMATION ONLY STATION - 354+00 - 354+00 - 362+00 LOCATION - 12 RT - 18 RT - 12 LT DEPTH IN FEET -0-5 - 0-5 - 0-5 MAT'L COLOR - BR/GR - BROWN
SAMPLE ID - \$130 - \$131 - \$132 TEST STATUS - INFORMATION ONLY - INFORMATION ONLY - INFORMATION ONLY STATION - 354+00 - 354+00 - 362+00 LOCATION - 12 RT - 18 RT - 12 LT DEPTH IN FEET - 0-5 - 0-5 0-5 0-5 MAT'L COLOR - BR/GR - BROWN - BROWN MAT'L COLOR - BR/GR - - - - - LATITUDE DEG-MIN-SEC - 34 56 17.70 - 34 56 17.70 - 34 56 17.70 - 34 56 17.70 - 34 56 17.70 - 34 56 17.70 - 34 56 17.70 - 34 56 17.70 - 34 56 17.70 - 34 56 17.70 - 34 56 17.70 - 34 56 17.70 - 34 56 17.70 - 34 56 17.70 - 34 56 17.70 - 34 56 17.70 - 34 56 17.70 - 34 56 17.70 - 34 56 17.70
LONGITUDE DEG-MIN-SEC - 92 00 52.60 92 00 52.50 92 00 45.10 % PASSING 2 IN
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
PLASTICITY INDEX - 07 - 11 - 07 AASHTO SOIL - A-4(1) - A-6(4) - A-4(2)
% MOISTURE CONTENT - 19.7 17.2 21.5
ACHMSC (IN) - 3.0W - 4.5 ACHMBC (IN) - 5.0

---AASHTO TESTS : T24 T88 T89 T90 T265

ARKANSAS STATE HIGH	WAY AND TRANSPORTATION MATERIALS I		- LITTLE ROCK, ARKANSAS
	ICHAEL BENSON, MATERI IL SURVEY / PAVEMENT		'REPORT ***
DATE - 04/11/1 JOB NUMBER - 061509 FEDERAL AID NO TO BE A PURPOSE - SOIL SU SPEC. REMARKS - NO SPEC SUPPLIER NAME - STATE NAME OF PROJECT - HWY. PROJECT ENGINEER - NOT A	8 SSIGNED RVEY SAMPLE IFICATION CHECK 367 - HWY. 89 (CABOT)		SEQUENCE NO 18 MATERIAL CODE - SSRVPS SPEC. YEAR - 2014 SUPPLIER ID 1 COUNTY/STATE - 43 DISTRICT NO 06
PIT/QUARRY - ARKANSAS LOCATION - LONOKE, C SAMPLED BY - THORNTON/F SAMPLE FROM - TEST HOLE	RAZIER		DATE SAMPLED - 03/06/18 DATE RECEIVED - 03/15/18 DATE TESTED - 04/10/18
MATERIAL DESC SOIL SU	RVEY - R VALUE- PAVI	EMENT SOUNDING	S
LAB NUMBER	- 20180528	-	-
SAMPLE ID	- S133	-	-
TEST STATUS		-	-
	362+00	-	5.
LOCATION		-	-
DEPTH IN FEET		-	-
MAT'L COLOR	- BROWN	-	
	-	-	-
LATITUDE DEG-MIN-SEC LONGITUDE DEG-MIN-SEC		-	<u></u>
% PASSING 2 IN.		-	-
1 1/2 IN.		-	
3/4 IN.	-	2 2 2	-
3/8 IN.	- 100	(=)	÷
NO. 4	- 98		
NO. 10		17. 19.	
NO. 40	- 94	-	-
NO. 80	- 88	:=:	-
NO. 200	- 72		
LIOUID LIMIT	- 31	-	2 7
PLASTICITY INDEX	- 16	121	
AASHTO SOIL	- A-6(9)		E.
UNIFIED SOIL		-	.
% MOISTURE CONTENT	- 20.8		_
ACHMSC (IN)	- 3.5W	H	-
AGG. BASE CRS CL-7 (IN)			
()	-		-
		0 	
		85. N=	
	2 /		
	-	-	
	7 <u>2</u> 0	8	
סבואס עכ <u>אן אווו</u> ייד הי הי	VEDC		

---AASHTO TESTS : T24 T88 T89 T90 T265

М	MATERIALS D CHAEL BENSON, MATERI	IVISION ALS ENGINEER	- LITTLE ROCK, ARKANSAS
*** SOI	L SURVEY / PAVEMENT	SOUNDING TEST	REPORT ***
DATE - 04/11/18 JOB NUMBER - 061509 FEDERAL AID NO TO BE AS PURPOSE - SOIL SUR SPEC. REMARKS - NO SPECT SUPPLIER NAME - STATE NAME OF PROJECT - HWY. 3 PROJECT ENGINEER - NOT AF PIT/QUARRY - ARKANSAS		SEQUENCE NO 1 MATERIAL CODE - RV SPEC. YEAR - 2014 SUPPLIER ID 1 COUNTY/STATE - 43 DISTRICT NO 06	
LOCATION - LONOKE, CO	UNTY		DATE SAMPLED - 03/06/18
SAMPLED BY - THORNTON/FI	AZIER		DATE RECEIVED - 03/15/18
SAMPLE FROM - TEST HOLE MATERIAL DESC SOIL SU			DATE TESTED - 04/10/18
lab number Sample ID			- 20180531 - RV136
			ONLY - INFORMATION ONLY
		- 255+00	- 288+00
LOCATION		- 27 LT	
DEPTH IN FEET		0-5 BR/GR	- 0-5 - BR/GR
MAT'L COLOR MAT'L TYPE	- BR/GR	_ DR/GR	_ BR/GR
			2.00 - 34 56 20.40
LONGITUDE DEG-MIN-SEC	- 92 03 16.90	92 02 4	7.60 92 02 10.70
% PASSING 2 IN.		-	-
1 1/2 IN. 3/4 IN.		- 100	- - 100
3/4 IN. 3/8 IN.		- 93	- 89
NO. 4		90	79
NO. 10		88	72
NO. 40		- 86 - 84	_ 65 - 59
NO. 80 NO. 200	- 87	78	38
LIQUID LIMIT	- 24	- 24	- 37
PLASTICITY INDEX	- 07	- 09	- 24
AASHTO SOIL	- A-4(4)	- A-4(5)	- A-6(4)
UNIFIED SOIL	-	-	-
% MOISTURE CONTENT	-		
	-	-	2 0
	-	-	
	-	-	-
	-	-	-
	-	_	
	-	-	-
	-	-	-
REMARKS - W=MULTIPLE LA	YERS		

<u>;</u>

---AASHTO TESTS : T24 T88 T89 T90 T265

	HWAY AND TRANSPORTATION DEPARTM MATERIALS DIVISION	
	MICHAEL BENSON, MATERIALS ENGIN DIL SURVEY / PAVEMENT SOUNDING T	
DATE - 04/11/1 JOB NUMBER - 061509 FEDERAL AID NO TO BE A PURPOSE - SOIL SU SPEC. REMARKS - NO SPEC SUPPLIER NAME - STATE NAME OF PROJECT - HWY. PROJECT ENGINEER - NOT A PIT/QUARRY - ARKANSAS	ASSIGNED IRVEY SAMPLE CIFICATION CHECK 367 - HWY. 89 (CABOT)(S)	SEQUENCE NO 2 MATERIAL CODE - RV SPEC. YEAR - 2014 SUPPLIER ID 1 COUNTY/STATE - 43 DISTRICT NO 06
LOCATION - LONOKE, C SAMPLED BY - THORNTON/F SAMPLE FROM - TEST HOLE	FRAZIER	DATE SAMPLED - 03/06/18 DATE RECEIVED - 03/15/18 DATE TESTED - 04/10/18 UAL RESULTS
LAB NUMBER		
SAMPLE ID	- 20180532 - - RV137 -	
	- INFORMATION ONLY -	
	- 346+00	# 8
LOCATION		
DEPTH IN FEET	- 0-5 -	
MAT'L COLOR	- BR/GR	-
MAT'L TYPE	-	
LATITUDE DEG-MIN-SEC		-
LONGITUDE DEG-MIN-SEC	- 92 01 1.50	
% PASSING 2 IN.		-
1 1/2 IN.		
	- 91 ⁻	
	- 84 -	2 1
NO. 4	- 82 -	-
NO. 10	- 81.	
NO. 40	- 79 _	
NO. 80	- 76 -	10 0
NO. 200	- 54	
LIQUID LIMIT	- 41 -	-
PLASTICITY INDEX	- 28 -	-
AASHTO SOIL	- A-7-6(11)	-
UNIFIED SOIL	_	-
% MOISTURE CONTENT		-
		-
	-	
	-	
	- *	
		-
		10
	- 2	
		-

:

	3	-						
	-	2						
	9							
	3	-						
AASHTO	TESTS	:	T24	Т88	T89	т90	T265	