ARKANSAS DEPARTMENT OF TRANSPORTATION

SUBSURFACE INVESTIGATION

STATE JOB NO.						
FEDERAL AID PROJECT NO. NHPP-1765(7)						
	HWYS. 64, 96 &	252 STRS. & APPR	(S. (S)			
STATE HIGHWAY _	64, 96, & 252	SECTION	2, 3, & 4			
IN	CRAWFO	ORD & SEBASTIAN		COUNTY		

The information contained herein was obtained by the Department for design and estimating purposes only. It is being furnished with the express understanding that said information does not constitute a part of the Proposal or Contract and represents only the best knowledge of the Department as to the location, character and depth of the materials encountered. The information is only included and made available so that bidders may have access to subsurface information obtained by the Department and is not intended to be a substitute for personal investigation, interpretation and judgment of the bidder. The bidder should be cognizant of the possibility that conditions affecting the cost and/or quantities of work to be performed may differ from those indicated herein.

ARKANSAS STATE HIGHWAY AND TRANSPORTATION DEPARTMENT

June 6, 2017

TO:

Mr. Rick Ellis, Bridge Engineer

SUBJECT:

Job No. 040625

Hwy. 22 - Hwy. 252 Strs. & Apprs. (S)

Route 96 Section 3 Sebastian County

Transmitted herewith are a brief summary of the geology and site conditions, D50 analysis test results, unconfined compressive strength results, RMR, and the logs of the borings conducted for the structures and approaches of the above referenced project. The samples obtained by the Standard Penetration Tests were brought to the laboratory and visually classified by experienced lab personnel to confirm the field identifications. As noted in the attached Site Geology, there are a number of normal faults in this area. An east-west trending, down-to-the-south normal fault has been mapped to the north of the proposed bridge site. The rocks encountered during the subsurface investigation do not correlate very well between the borings (there are two shale beds present in the southern boring that are not present in the northern boring). This may be explained most likely by a moderate dip of the rocks to the south or less likely a small offsetting fault between the borings. The rock cores are available for inspection at the Materials Division.

Based on the depth at which bedrock was encountered, it is anticipated that both end bents will be founded on piling. No borings were obtained at intermediate bents 2 or 3, station 488+88 and 489+33, due to inaccessibility caused by the steep bank and low bridge clearance. Based on discussions with Bridge Design, it is anticipated that all intermediate bents will be founded on drilled shafts. Drilled shafts socketed into the competent shale with sandstone or sandstone with shale should be sized based on the values provided in Table 1.

TABLE 1 – Bearing Capacity Recommendations for Drilled Shafts

Foundation Description	Nominal Shaft Side Resistance (ksf)	Factored Shaft Side Resistance (ksf)	Nominal Shaft Tip Resistance (ksf)	Factored Shaft Tip Resistance (ksf)
Drilled Shafts	21.2	11.7	38	19

If you have any questions concerning these recommendations, please contact the Geotechnical Section.

Michael C. Benson Materials Engineer

MCB:rpt:mlg

CC:

State Construction Engineer - Master File Copy

District 4 Engineer

G.C. File

GEOLOGY AND SITE CONDITIONS Job No. 040625

Hwy. 22 – Hwy. 252 Strs. & Apprs. (S)
Sebastian County
Route 96 Section 3

Site Conditions

The existing structure over Onion Creek is a two span bridge. The deck is constructed of corrugated steel overlain by asphalt. The deck is supported by 10 sets of steel beams. The bents are constructed of rock and mortar. The guardrail is constructed of steel supported by steel posts on the bridge and concrete and timber posts leading up to the bridge. An overhead power line parallels the west side of the roadway. The channel is lined with trees and thick vegetation, with pastureland in the areas beyond the channel. Onion Creek is a slow-moving slough that flows into the Arkansas River to the west.

Site Geology

The project alignment is located on deposits mapped as alluvial deposits (map symbol Qal). Alluvial deposits are typically composed of gravels, sands, silts, clays, and mixtures of any and all of these clastic materials and have been deposited by present-day streams. The alluvial deposits have an unconformable contact with bedrock, meaning that the depth to bedrock could be quite variable. Depth to bedrock in the two borings drilled ranged from 29 to 35.3 feet below ground level (bgl).

The rocks encountered below the alluvial deposits are shales and sandstones of the McAlester Formation (map symbol Pm). The McAlester consists of (in ascending order): several hundred feet of shale with thin sandstone and coal (the Lower Hartshorne coal is just above the base), several hundred feet of shale with a few sandstone beds and coal (Upper Hartshorne Coal), and capped by several hundred feet of shale with a few coal beds. The unit ranges from about 500 to 2,300 feet in thickness. The proposed bridge site is most likely in the lowest part of the McAlester, below the Lower Hartshorne coal.

There are a number of normal faults in this area. An east-west trending, down-to-the-south normal fault has been mapped to the north of the proposed bridge site. The rocks encountered during the subsurface investigation do not correlate very well between the borings (there are two shale beds present in the southern boring that are not present in the northern boring). This may be explained most likely by a moderate dip of the rocks to the south or less likely a small offsetting fault between the borings.

Onion Creek may lie in a previous course of the Arkansas River. Due to the connectivity of Onion Creek to the Arkansas River and the low elevation, the area of the proposed bridge site may be subject to flooding when the Arkansas River floods.

Subsurface Conditions

Based on the results of the borings, the subsurface stratigraphy may be generalized as follows:

0 to 20.0 Feet: Consists of moist, soft to stiff, brown clay. Many samples in this zone

contained some amount of gravel.

20.0 to 29.0 Feet: Consists of moist to wet, stiff, brown sandy clay to clay with gravel (rock

fragments).

29.0 to 35.3 Feet: Varies from wet, stiff to very hard, brown clay with gravel (rock

fragments) to sandstone with frequent shale seams.

35.3 to 51.6 Feet: Varies from unweathered, cemented, gray sandstone with frequent shale

seams to unweathered, medium hard, dark gray shale with occasional

sandstone layers.

51.6 to 57.5 Feet: Consists of unweathered, cemented, gray sandstone with frequent shale

seams.

D₅₀ AGGREGATE ANALYSIS FOR SCOUR CALCULATIONS

		Job No.	040625		
Creek Name	Station	Sample Type	Location	Depth (FT)	Aggregate Size (D50) (IN)
Onion Creek	489+30	Creek Bank	30' Rt. C.L. Construction	NA	0.0035

Rock Core Unconfined Compression Test Summary

Project Number: 040625

Project Name: Hwy. 22 - Hwy. 252 Str. & Apprs. (S)

Date Tested: 5/23/2017

Station	Location	Sample No.	Depth (ft)	Diameter (in)	Height (in)	Total Load (lbs)	Correction Factor	Stress (psi)	Remarks
488+53	7' RT	1	39.00	1.75	3.50	18,430	1.00	7,662	SS w/ Shale Seams & Layers
488+53	7' RT	2	41.00	1.75	3.50	13,140	1.00	5,463	SS w/ Shale Seams & Layers
488+53	7' RT	3	53.00	0	0.00	0	1.00	0	SS w/ Shale Seams (Broke while capping)
488+53	7' RT	4	55.25	1.75	3.50	12,580	1.00	5,230	SS w/ Shale Seams (Shale)
488+53	7' RT	5	56.50	1.75	3.55	19,740	1.00	8,207	SS w/ Shale Seams
489+68	12' RT	6	29.75	1.75	3.50	8,850	1.00	3,679	SS w/ Shale Seams
489+68	12' RT	7	35.75	1.75	3.55	20,030	1.00	8,328	SS w/ Shale Seams
489+68	12' RT	8	40.75	1.75	3.55	32,460	1.00	13,495	SS w/ Shale Seams
489+68	12' RT	9	45.00	0	0.00	0	1.00	0	SS w/ Shale Seams (Broke while capping)
489+68	12' RT	10	46.75	1.75	3.50	17,130	1.00	7,122	SS w/ Shale Seams
									-

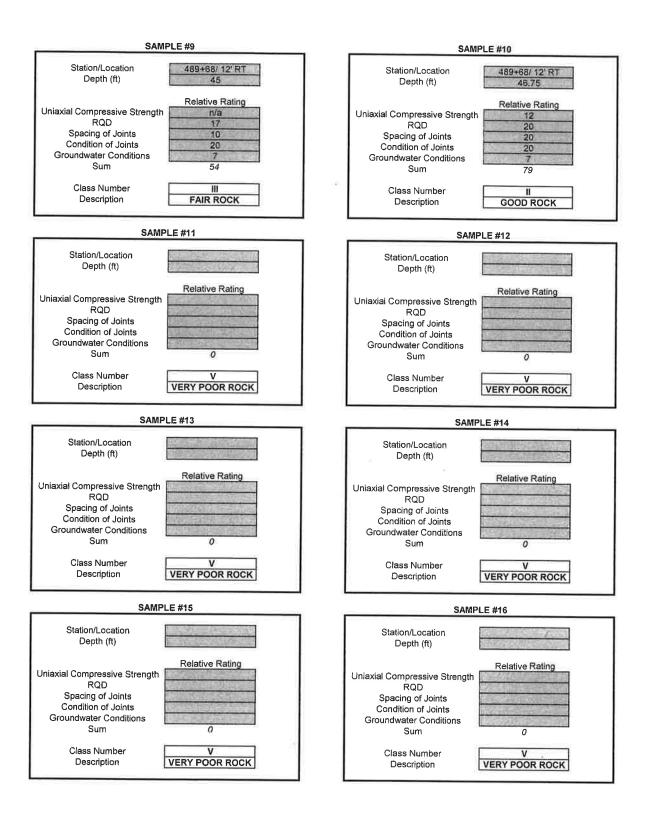
^{*} Please note any broken samples, fractures or other characteristics of sample in Remarks.

ROCK MASS RATING SUMMARY JOB # 040625

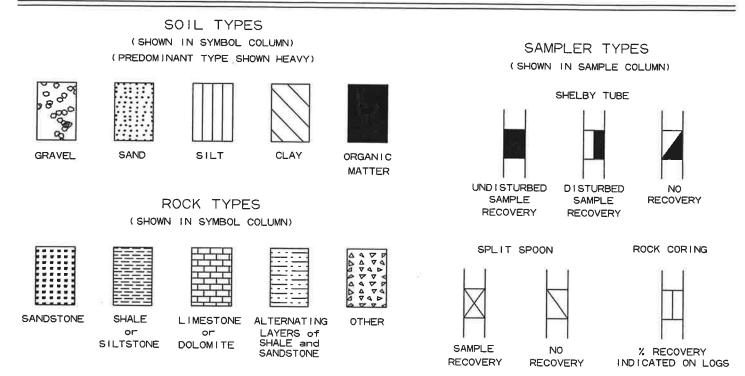
SAMPLE #1 Station/Location 488+53/7° RT Depth (ft) 39 Relative Rating Uniaxial Compressive Strength RQD 13 Spacing of Joints 10 20 7 Condition of Joints Groundwater Conditions Sum 57 Class Number 111 Description FAIR ROCK

SAMPLE #2 Station/Location 488+53/7' RT Depth (ft) 41 Relative Rating Uniaxial Compressive Strength RQD 13 Spacing of Joints 10 Condition of Joints 20 Groundwater Conditions Sum 54 Class Number Ш Description **FAIR ROCK**

SAMPLE #3						
Station/Location	488+53/7' RT					
Depth (ft)	53					
42	Relative Rating					
Uniaxial Compressive Strength 📗	n/a					
RQD [17					
Spacing of Joints	10					
Condition of Joints	20					
Groundwater Conditions	7					
Sum	54					
Class Number	N					
Description	FAIR ROCK					


SAMPLE #4					
Station/Location Depth (ft)	488+53/7' RT 55.25				
_	Relative Rating				
Uniaxial Compressive Strength	4 W				
RQD	17				
Spacing of Joints	10				
Condition of Joints	20				
Groundwater Conditions	7				
Sum	58				
Class Number	101				
Description	FAIR ROCK				

SAMPLE #5							
Station/Location Depth (ft)	488+53/ 7" RT 56.5						
	Relative Rating						
Uniaxial Compressive Strength	7						
RQD	17						
Spacing of Joints	10						
Condition of Joints	20						
Groundwater Conditions	7						
Sum	61						
Class Number	ıı I						
Description	GOOD ROCK						


Station/Location	489+68/ 12' RT
Depth (ft)	29.75
12	Relative Rating
Uniaxial Compressive Strength 📗	100 004 00 00
RQD	8
Spacing of Joints	10
Condition of Joints	20
Groundwater Conditions	103 C 5 11 7 11 11 11 11 11 11 11 11 11 11 11 1
Sum	49
Class Number	
Description	FAIR ROCK

SAMP	LE #7
Station/Location	489+68/ 12 RT
Depth (ft)	35.75
70	Relative Rating
Uniaxial Compressive Strength	7
RQD	1.7
Spacing of Joints	20
Condition of Joints	20
Groundwater Conditions	7
Sum	71
Class Number	11
Description	GOOD ROCK

Station/Location	489+68/ 12' RT
Depth (ft)	40.75
	Relative Rating
Uпіaxial Compressive Strength [7
RQD	20
Spacing of Joints	10
Condition of Joints	20
Groundwater Conditions	7
Sum	64
Class Number	li
Description	GOOD ROCK

LEGEND

TERMS DESCRIBING CONSISTENCY OR CONDITION

GRANL	JLAR SOIL		CLAY	CL/	AY-SHALE	SHALE				
N* Value	Density	N° Value	Consistency	N' Value	Consistency	N. Value	Consistency			
0-4 5-10 11-30 31-50 Over 50	Very Loose Loose Medium Dense Dense Very Dense	0-1 2-4 5-8 9-15 16-30 31-60 Over 60	Very Soft Soft Medium Stiff Stiff Very Stiff Hard Very Hard	0-1 2-4 5-8 9-15 16-30 31-60 Over 60	Very Soft Soft Medium Stiff Stiff Very Stiff Hard Very Hard	More than Penetrati	on vs: Medium Hard 2'			
						in 60 Blow	s Hard			

- 1. Ground water elevations indicated on boring logs represent ground water elevations at date or time shown on boring log. Absence of water surface implies that no ground water data is available but does not necessarily mean that ground water will not be encountered at locations or within the vertical reaches of these borings.
- 2. Borings represent subsurface conditions at their respective locations for their respective depths. Variations in conditions between or adjacent to boring locations may be encountered.
- 3. Terms used for describing soils according to their texture or grain size distribution are in accordance with the Unified Soil Classification System.

Standard Penetration Test – Driving a 2.0" O.D., 1-3/8" I.D. sampler a distance of 1.0 foot into undisturbed soil with a 140 pound hammer free falling a distance of 30 inches. It is customary to drive the spoon 6.0 inches to seat into undisturbed soil, then perform the test. The number of hammer blows for seating the spoon and performing the test are recorded for each 6 inches of penetration on the drill log. The field "N" Value (N_f) can be obtained by

adding the bottom two numbers for example: $\frac{6}{8-9} \Rightarrow 8+9=17 blows/ft$. The "N" Value corrected to 60% efficiency (N₆₀) can be obtained by multiplying N_f by the hammer correction factor published on the boring log.

MAT			HWY. & TRANS. DEPARTMENT DIVISION - GEOTECHNICAL SEC.		BORI PAGE		10, 1 1 c)F 2					
JOB N			040625 Sebastian County		DATE	_				9, 20	17		
	IAME:		Hwy. 22 - Hwy. 252 Str. & Apprs. (S)		TYPE OF DRILLING: Hollow Stem Auger								er -
			Route 96 Section 3				Wash					Ŭ	
STAT	ION:	33	488+53		EQUII	MEN	T:		C	ME	75		
LOCA	TION:	2	7' Right of Construction Centerline										
LOGG	ED BY	: C	oty Campbell		HAMN	ÆR (CORREC	CTION	I FAC	TOR:	ž	1.37	
COM	PLET	_	DEPTH: 57.5				-						_
D E P T H	S Y M B O	SAMPLE	DESCRIPTION OF MATERIAL	SOIL GROUP	PLASTIC LIMIT	% MOIST.	UID IT	DRY WEIGHT	LBS PER CU.FT.	NO. OF BLOWS	PER 6-IN.	% T C R	% R Q D
FT.	-		SURFACE ELEVATION: 389.3		PLA	% W	LIQUID	DRY	LBS	NO.	PER		
5		X	Moist, Medium Stiff, Brown Clay with Sand							3-3-	4		
10 15		X	Moist, Soft, Brown Clay with Sand and Some Gravel (Rock Fragments)							3 2-			
 20		X	Moist, Medium Stiff, Brown Clay							3-	4		
 25		X	Wet, Stiff, Brown Clay							3-4-			
 30		X	Wet, Stiff, Brown Sandy Clay							4-			
 35		X	Wet, Stiff, Brown Clay with Gravel (Rock Fragments)							5-4			

			HWY. & TRANS. DEPARTMENT DIVISION - GEOTECHNICAL SEC.		BOR		NO. 1	OF 2					
JOB N			040625 Sebastian County		DATE					9, 20	17		
JOB N			Hwy. 22 - Hwy. 252 Str. & Apprs. (S)				RILLIN	_				Δ 11 (76	
Joba	ii tivili.		Route 96 Section 3				Wash					riugi	,,
STAT	ION·		488+53		EQUI	-		- DI		CME			
LOCA			7' Right of Construction Centerline		Legon	IVILLIN	11.)1 VII 2	13		
			oty Campbell		HAM	νΈR (CORRE	CTIO	V FAC	TOR.		1.37	
			DEPTH: 57.5		120.11	· LLIC	JOILLE	01101		71011		1.57	_
D		s									-		
ΙĔ	S	A											
ΙĒ	Y	м	DESCRIPTION OF MATERIAL					Н	Ή	WS		%	%
T	M B	Р	DESCRIPTION OF MATERIAL	SOIL GROUP				H5	CO	10		T C	R
Н	Ö	L		GROOF][]	IST	la.	WEI	ER	FB	.6-IN.	R	Q D
l	ľ	E			PLASTIC LIMIT	% MOIST.	LIQUID	DRY WEIGHT	LBS PER CU.FT	NO. OF BLOWS	PER 6		
FT.		S	SURFACE ELEVATION: 389.3		물표	%		DI	LE		_		
		\sim	Wet, Very Hard, Brown Clay with Gravel (Shale							1: (4	3,		
			\Fragments) SHALE							(+	'		
			STALL							ľ		}	
	owa	\perp											_
40			SANDSTONE WITH FREQUENT SHALE										
-10			SEAMS AND LAYERS - Unweathered,									98	68
	Y I I I		Cemented, Gray									00	00
	g Dg		, c										
⊢ -													
<u> </u>			SHALE WITH OCCASIONAL SANDSTONE								55		
45			SEAMS - Unweathered, Medium Hard, Dark									96	80
			Gray										00
		+											
			SHALE WITH OCCASIONAL SANDSTONE										
50			LAYERS - Unweathered, Medium Hard,										
- 00			Occasional Fractures, Dark Gray		1 3							100	56
								ľ					
	gæ												
	ana								- 1				
		Ш	SANDSTONE WITH FREQUENT SHALE								- 1		- 1
55			SEAMS - Unweathered, Cemented, Gray									98	85
			, , , , , ,										*
	9:29												
		\dashv	Boring Terminated								_		
			Borning Forminated										
60													
											-		
											-		
\vdash													
65													
=====													
70													
REMA	ARKS	:											

			HWY. & TRANS. DEPARTMENT DIVISION - GEOTECHNICAL SEC.		BORI PAGE		10, 2	OF 2					
JOB N		_	040625 Sebastian County		DATE	_				5, 20	17		
JOB N	AME:		Hwy. 22 - Hwy. 252 Str. & Apprs. (S)		TYPE	OF D	RILLIN			-,			
			Route 96 Section 3		Но	llow	Stem	Aug	er - l	Diam	ond	Core	
STAT	ION:		489+68		EQUII	MEN	T:		(CME	75		
	TION:		12' Right of Construction Centerline										
			Coty Campbell		HAM	ÆR (CORRE	CTION	V FAC	CTOR:		1.37	
COM	PLET	ION	DEPTH: 51.7					_					
D E P T H	S Y M B O L	SAMPLES	DESCRIPTION OF MATERIAL SURFACE ELEVATION: 388,9	SOIL GROUP	PLASTIC LIMIT	% MOIST.	LIQUID LIMIT	DRY WEIGHT	LBS PER CU.FT.	NO. OF BLOWS	PER 6-IN.	% T C R	% R Q D
5		X	Moist, Medium Stiff, Brown Clay		I	8	Jerr Ind	I	I	2 3~			
10		X	Moist, Medium Stiff, Brown Clay with Some Gravel							3-3-			
		X	Moist, Medium Stiff, Brown Clay							3-4			
20		X	Moist, Stiff, Brown Clay with Trace Gravel							4-6			
25		X	Wet, Stiff, Brown Clay with Gravel (Rock Fragments)							6-8			
30										15 (0"	5)	100	44
 												98	82
REMA	RKS	:											

			HWY. & TRANS. DEPARTMENT DIVISION - GEOTECHNICAL SEC.		BORI PAGI		NO. 2	OF 2					
JOB N			040625 Sebastian County		DATE					5, 20	17		-
JOB N			Hwy. 22 - Hwy. 252 Str. & Apprs. (S)				RILLIN	_		, 20			
			Route 96 Section 3				Stem		er - I	Diam	ond	Core	
STAT	ION:		489+68		EQUII			Ū		CME			
LOCA	TION:		12' Right of Construction Centerline										
LOGG	ED BY	7: C	oty Campbell		HAM	MER (CORRE	CTION	N FA	CTOR:		1.37	
COM	PLET	ION	J DEPTH: 51.7	14									
D	s	S											
E	Y	Α							Ţ	S		%	%
P	М	M P	DESCRIPTION OF MATERIAL	SOIL				Ħ	U.F	№		Т	R
Ι'n	В			GROUP	၂ ႍ	ST		EIG	RC	BE	z	C	Q
	0	Ē			PLASTIC LIMIT	% MOIST.		<u>×</u>	PE	NO. OF BLOWS	PER 6-IN.	R	D
FT.	L		SURFACE ELEVATION: 388.9		PLAST LIMIT	% \	LIQUID	DRY WEIGHT	LBS PER CU.FT	N O N	PER		
					İ								
	äää												
40												100	92
			SANDSTONE WITH FREQUENT SHALE										
— –			SEAMS - Unweathered, Cemented, Gray										
-													
- -										1	3		
H												96	82
45			3										
<u> </u>													
L -													
L -												100	100
50	888											100	100
	H:::::	-H	Boring Terminated						_		_		
			Bonnig Terminated										
55				-1									
60													
65													
_ =													
				i.									
REMA	7BK6							-					
	-11 (1/ C)	•											
					_						_		

ARKANSAS STATE HIGHWAY AND TRANSPORTATION DEPARTMENT

November 16, 2016

TO:

Mr. Trinity Smith, Engineer of Roadway Design

SUBJECT:

Job No. 040625

Hwy. 22 - Hwy. 252 Strs. & Apprs. (S)

Route 96 Section 3 Sebastian County

Transmitted herewith is the requested Soil Survey, Strength Data and Resilient Modulus test results for the above referenced job. The project consists of replacing three bridges on Highway 96. Samples were obtained in the existing travel lanes and ditch line. There were no paved shoulders within the project

Based on laboratory results of samples obtained, the subgrade soils consist primarily of moderately plastic sandy clays containing varying amounts of gravel. Isolated locations of highly plastic clay were encountered within the project limits. Rock was encountered at station 510+00 6 feet and 18 feet left of centerline at depths of 4.0 feet and 2.5 feet respectively. Cross-sections are not currently available, but it is anticipated that the construction grade line will closely match that of the existing roadway. The subgrade soils are expected to provide a stable working platform with normal drying and compactive efforts, if the weather is favorable during construction.

Additional earthwork recommendations will be made upon request when plans are further developed.

Listed below is the additional information requested for use in developing the plans:

- 1. The Qualified Products List (QPL) indicates that Aggregate Base Course (Class CL-7) is available from commercial producers located near Lavaca.
- 2. Asphalt Concrete Hot Mix

Type	Asphalt Cement %	Mineral Aggregate %
Surface Course	5.4	94.6
Binder Course	4.5	95.5
Base Course	4.2	95.8

Michael C. Benson Materials Engineer

MCB:pt:bjj Attachment

cc: State Constr. Eng. – Master File Copy

District 4 Engineer

System Information and Research Div.

G. C. File

MICHAEL BENSON, MATERIALS ENGINEER

*** SOIL SURVEY STRENGTH TEST REPORT ***

DATE - 11/14/2016 SEQUENCE NO. - 1

JOB NUMBER - 040625 MATERIAL CODE - SSRV

SPEC. YEAR - 2014

SUPPLIER ID. - 1

COUNTY/STATE - 65

DISTRICT NO. - 04

JOB NAME - HWY.22 - HWY.252 STRS. & APPRS. (S)

* STATION LIMITS R-VALUE AT 240 psi *

BEGIN JOB - END JOB LESS THAN 5

RESILIENT MODULEUS

STA. 100+00 7320 STA. 495+00 4854

REMARKS -

AASHTO TESTS : T190

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS RECOMPACTED SAMPLES

Job No. Date Sampled:	040625 11/10/16	Material Code Station No.:	SSRVPS 100+00
Date Sampled:	November 10, 2016	Location:	18 RT
Name of Project:	HWY.22 - HWY.252 STRS & APPRS (S)		10 101
County:	Code: 65 Name: SEBASTIAN		
Sampled By:	THORNTON	Depth:	0-5
Lab No.:	20163507	AASHTO Class:	A-4(1)
Sample ID:	RV389	Material Type (1 or 2):	2
LATITUDE:		LONGITUDE:	
1. Testing Inform			
	Preconditioning - Permanent Strain > 5% (N
	Testing - Permanent Strain > 5% (Y=Yes or	•	N
	Number of Load Sequences Completed (0-1	15)	15
2. Specimen Info			
	Specimen Diameter (in):		
	Тор		3.96
	Middle		3.96
	Bottom		3.96
	Average Membrane Thickness (in):		3.96 0.01
	Height of Specimen, Cap and Base (in):		8
	Height of Cap and Base (in):		0.00
	Initial Length, Lo (in):		8
	Initial Area, Ao (sq. in):		12.25
	Initial Volume, AoLo (cu. in):		98.03
	miliai voidine, Aolo (cd. iii).		90.03
3. Soil Specimen	Weight:		
	Weight of Wet Soil Used (g):		3232.00
4. Soil Properties	: :		
	Optimum Moisture Content (%):		14.1
	Maximum Dry Density (pcf):		113.7
	95% of MDD (pcf):		108.0
	In-Situ Moisture Content (%):		N/A
5. Specimen Pro			
	Wet Weight (g):		3232.00
	Compaction Moisture content (%):		14.0
	Compaction Wet Density (pcf):		125.62
	Compaction Dry Density (pcf):		110.19
	Moisture Content After Mr Test (%):		14.1
6. Quick Shear To	est (Y=Yes, N=No, N/A=Not Applicable):		#VALUE!
7. Resilient Modu	ılus, Mr:	7547(S	c)^-0.15722(S3)^0.39753
8. Comments			
9. Tested By:	DT	Date: November 10, 2016	

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS RECOMPACTED SAMPLES

HWY.22 - HWY.252 STRS & APPRS (S) November 10, 2016 11/10/16 040625 Name of Project: Date Sampled: Date Tested: Job No.

SEBASTIAN Name: Code: 65

THORNTON 20163507 RV389 Sampled By: LATITUDE: Sample ID: Lab No.: County:

100+0018 RT Station No.: Location:

SSRVPS

Material Code

Material Type (1 or 2): 2 LONGITUDE:

0-5

Depth:

nt	Si						8	_	2	_	8	9	7			_	0.1	01	10	
Resilient	Modulus				Σ	psi	13,958	13,051	12,062	11,101	10,668	11,916	10,677	606'6	9,525	9,209	8,872	8,222	7,605	
Resilient	Strain				ည်	in/in	0.00013	0.00028	0.00045	0.00065	0.00084	0.00015	0.00034	0.00054	0.00075	0.00096	0.00020	0.00043	0.00068	
Average	Recov Def.	LVDT 1	and 2		Havg	ņ	0.00106	0.00224	0.00361	0.00518	0.00670	0.00123	0.00271	0.00432	0.00598	0.00767	0.00162	0.00343	0.00545	
Actual	Applied	Contact	Stress		Scontact	psi	0.2	0.2	0.3	0.5	0.7	0.2	0.2	0.2	0.4	9.0	0.2	0.2	0.2	
Actual	Applied	Cyclic	Stress		Scyclic	psi	1.8	3.7	5.4	7.2	8.9	1.8	3.6	5.4	7.1	8.8	1.8	3.5	5.2	4
Actual	Applied	Мах.	Axial	Stress	S _{max}	psi	2.1	3.9	5.7	7.7	9.6	2.1	3.8	5.6	7.5	9.5	2.0	3.7	5.4	
Actual	Applied	Contact	Load		Pcontact	sql	2.7	2.8	3.6	6.1	8.6	2.8	2.8	2.8	5.2	7.7	2.7	2.7	2.7	
Actual	Applied	Cyclic Load			P _{cyclic}	sql	22.6	44.9	66.7	88.0	109.5	22.4	44.3	65.6	87.2	108.2	22.0	43.2	63.5	
Actual		(ia/	Load		Р _{шах}	sql	25.3	47.7	70.3	94.1	118.1	25.2	47.1	68.5	92.4	115.8	24.8	45.9	66.2	0 00
Nominal	Maximum	Axial	Stress		Scyclic	isd	2.0	4.0	6.0	8.0	10.0	2.0	4.0	0.9	8.0	10.0	2.0	4.0	0.9	0
Chamber	Confining	Pressure			S³	psi	6.0	6.0	6.0	6.0	0.9	4.0	4.0	4.0	4.0	4.0	2.0	2.0	2.0	0
		PARAMETER			DESIGNATION	TINO	Sequence 1	Sequence 2	Sequence 3	Sequence 4	Sequence 5	Sequence 6	Sequence 7	Sequence 8	Sequence 9	Sequence 10	Sequence 11	Sequence 12	Sequence 13	;

November 10, 2016	
DATE	DATE
DT	
TESTED BY	REVIEWED BY

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS RECOMPACTED / THINWALL TUBE SAMPLES

Job No. 040625

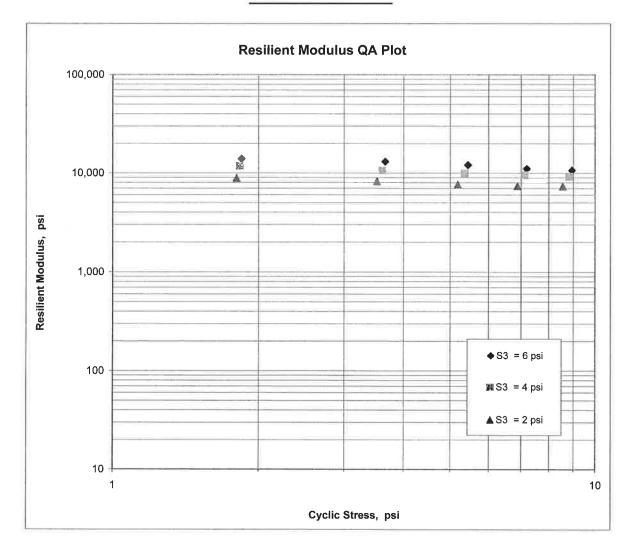
Material Code SSRVPS 11/10/16 **Station No.:** 100+00

Date Sampled: Date Tested: Location: 18 RT November 10, 2016

Name of Project: HWY.22 - HWY.252 STRS & APPRS (S) Name: SEBASTIAN County: Code: 65

Sampled By: **THORNTON Depth:** 0-5 Lab No.: 20163507 **AASHTO Class:** A-4(1) Sample ID: **RV389** Material Type (1 or 2): 2

LATITUDE: LONGITUDE:


$$M_R = K1 (S_C)^{K2} (S_3)^{K5}$$

K1 = 7,547

K2 = -0.15722

K5 = 0.39753

 $R^2 = 0.99$

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS RECOMPACTED SAMPLES

Job No. Date Sampled: Date Tested: Name of Project:	040625 11/10/16 November 10, 2016 HWY.22 - HWY.252 STRS & APPRS (S) Code: 65 Name: SEBASTIAN	Material Code Station No.: Location:	SSRVPS 495+00 18 LT
County: Sampled By: Lab No.: Sample ID: LATITUDE:	Code: 65 Name: SEBASTIAN THORNTON 20163508 RV390	Depth: AASHTO Class: Material Type (1 or 2 LONGITUDE:	0-5 A-7-6(29) 2):
1. Testing Inform			
	Preconditioning - Permanent Strain > 5% (Y=Ye Testing - Permanent Strain > 5% (Y=Yes or N=Number of Load Sequences Completed (0-15)	•	N N 15
2. Specimen Info	rmation:		
	Specimen Diameter (in): Top Middle		3.92 3.94
	Bottom Average		3.94 3.93
	Membrane Thickness (in): Height of Specimen, Cap and Base (in): Height of Cap and Base (in):		0.00 8.03 0.00
	Initial Length, Lo (in): Initial Area, Ao (sq. in):		8.03 12.15
	Initial Volume, AoLo (cu. in):		97.57
3. Soil Specimen	Weight:		
	Weight of Wet Soil Used (g):		3003.30
4. Soil Properties	:		
	Optimum Moisture Content (%):		19.2
	Maximum Dry Density (pcf):		104
	95% of MDD (pcf): In-Situ Moisture Content (%):		98.8 N/A
	, <i>,</i>		14// (
5. Specimen Prop			0000.00
	Wet Weight (g): Compaction Moisture content (%):		3003.30
	Compaction Wet Density (pcf):		19.6 117.28
	Compaction Dry Density (pcf):		98.06
	Moisture Content After Mr Test (%):		20.1
6. Quick Shear Te	est (Y=Yes, N=No, N/A=Not Applicable):		#VALUE!
7. Resilient Modu	llus, Mr:	87720	(Sc)^-0.31280(S3)^0.13779
8. Comments			
9. Tested By:	DT Dat	e: November 10, 2016	

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS RECOMPACTED SAMPLES

SSRVPS 495+00 18 LT

Material Code Station No.: Location: HWY.22 - HWY.252 STRS & APPRS (S) November 10, 2016 11/10/16 040625 Name of Project: Date Sampled: Date Tested: Job No.

County: Code: 65 Name: SEBASTIAN
Sampled By: THORNTON
Lab No.: 20163508
Sample ID: RV390

LATITUDE:

AASHTO Class: A-Material Type (1 or 2): 2 LONGITUDE:

A-7-6(29)

0-5

Depth:

	Chamber	Nominal	Actual Applied	Actual Applied	Actual Applied	Actual Applied	Actual	Actual Applied	Average Recov Def.	Resilient Strain	Resilient
PARAMETER	Pressure	Axial	Max. Axial	Cyclic Load	Contact	Max.	Cyclic	Contact	LVDT 1		
		Stress	Load		Load	Axial	Stress	Stress	and 2		
						Stress					
DESIGNATION	လိ	Scyclic	P _{max}	P _{cyclic}	Pcontact	S _{max}	Scyclic	Scontact	H _{avg}	చ్	Ā
TINO	psi	psi	lps	sql	sql	psi	psi	psi	ņ	in/in	psi
Sequence 1	0.9	2.0	25.1	22.4	2.8	2.1	1.8	0.2	0.00165	0.00021	8,966
Sequence 2	0.9	4.0	47.1	44.3	2.8	3.9	3.6	0.2	0.00364	0.00045	8,035
Sequence 3	0.9	0.9	68.5	65.0	3.5	5.6	5.3	0.3	0.00627	0.00078	6,845
Sequence 4	0.9	8.0	90.4	84.5	0.9	7.4	7.0	0.5	0.00936	0.00117	5,963
Sequence 5	0.9	10.0	111.9	103.5	8.4	9.2	8.5	0.7	0.01277	0.00159	5,353
Sequence 6	4.0	2.0	25.1	22.5	2.7	2.1	1.8	0.2	0.00172	0.00021	8,634
Sequence 7	4.0	4.0	46.6	43.9	2.7	3.8	3.6	0.2	0.00387	0.00048	7,488
Sequence 8	4.0	0.9	67.3	64.6	2.7	5.5	5.3	0.2	0.00649	0.00081	6,579
Sednence 9	4.0	8.0	89.5	84.4	5.1	7.4	6.9	0.4	0.00959	0.00119	5,817
Sequence 10	4.0	10.0	111.4	103.9	7.5	9.2	9.6	9.0	0.01312	0.00163	5,234
Sequence 11	2.0	2.0	25.1	22.4	2.7	2.1	1.8	0.2	0.00198	0.00025	7,479
Sequence 12	2.0	4.0	46.5	43.7	2.7	3.8	3.6	0.2	0.00435	0.00054	6,639
Sequence 13	2.0	0.9	8.99	04.0	2.8	5.5	5.3	0.2	0.00716	0.00089	5,906
Sequence 14	2.0	8.0	87.9	83.6	4.3	7.2	6.9	0.4	0.01037	0.00129	5,328
Sequence 15	2.0	10.0	109.7	103.0	6.7	9.0	8.5	9.0	0.01402	0.00175	4,854

November 10, 201	
DATE	DATE
DT	ВУ
TESTED BY	REVIEWED BY

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS RECOMPACTED / THINWALL TUBE SAMPLES

Job No.

040625

Material Code SSRVPS

Date Sampled:

11/10/16

Station No.: 495+00

Date Tested:

November 10, 2016

Location: 18 LT

Name of Project: HWY.22 - HWY.252 STRS & APPRS (S)

THURSON THE

County:

Code: 65

Name: SEBASTIAN

Sampled By:

THORNTON

Depth: 0-5

Lab No.:

20163508

AASHTO Class: A-7-6(29)

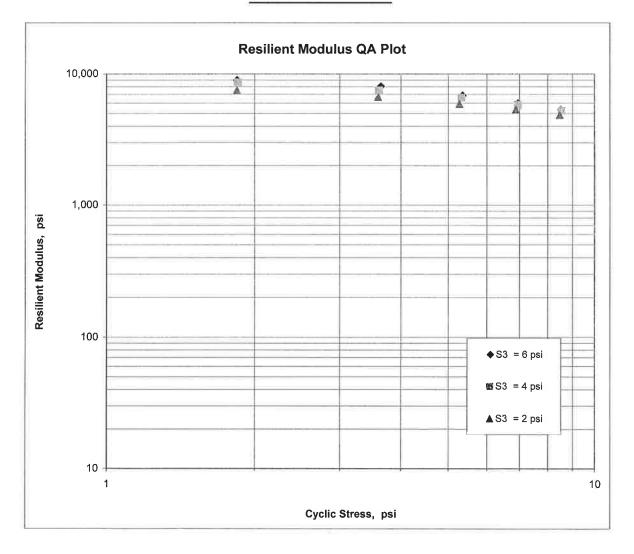
Sample ID:

RV390

Material Type (1 or 2): 2

LONGITUDE:

LATITUDE:


$$M_R = K1 (S_C)^{K2} (S_3)^{K5}$$

$$K1 = 8,772$$

$$K2 = -0.31280$$

$$K5 = 0.13779$$

$$R^2 = 0.95$$

JOB NAME: HWY.22 - HWY.252 STRS. & APPRS. (S)

Materials Division

COUNTY NO. 65 **DATE TESTED** 11/2/2016

Michael Benson, Materials Engineer

STA.#	LOC.	<i>DEPTH</i>	COLOR	#4	#10	#40	#80	#200	L.L.	P.I.	SOIL CLASS	<i>LAB</i> #:	%MOISTURE
100+00	18RT	0-5	BR/RD	98	95	93	92	86	22	04	A-4(1)	RV389	
495+00	18 LT	0-5	RD/BR	99	97	95	88	84	50	34	A-7-6(29)	RV390	
100+00	06 RT	0-5	BROWN	99	98	95	94	89	22	5	A-4 (2)	S377	18.3
100+00	17 RT	0-5	BROWN	99	97	94	93	87	21	3	A-4 (0)	S378	12,5
109+00	06 LT	0-5	GRAY	99	97	95	93	82	24	7	A-4 (4)	S379	21
109+00	18 LT	0-5	BR/GR	95	90	86	81	71	21	7	A-4 (2)	S380	15.7
487+00	06 RT	0-5	BROWN	99	93	86	80	73	36	22	A-6 (14)	S381	26.3
487+00	12 RT	0-5	BROWN	90	79	68	62	55	26	12	A-6 (3)	S382	18.4
495+00	06 LT	0-5	BR/RD	96	86	75	56	36	ND	NP	A-4 (0)	S383	24.3
495+00	18 LT	0-5	BR/RD	98	93	86	79	71	42	26	A-7-6(17)	S384	18.2
503+00	06 RT	0-5	BROWN	97	91	80	74	70	34	16	A-6 (9)	S385	25.2
503+00	18 RT	0-5	BROWN	79	72	64	60	53	26	10	A-4 (2)	S386	11.4
510+00	06 LT	0-4Z	BROWN	98	93	87	84	78	32	19	A-6 (13)	S387	10.8
510+00	18' LT	0-2.5Z	BROWN	96	93	87	80	69	31	15	A-6 (8)	S388	9.4

DATE TESTED

11/2/2016

Arkansas State Highway Transporation Department

Materials Division

JOB NAME: HWY.22 - HWY.252 STRS. & APPRS. (S)

100+00

100+00

109+00

487+00

487+00

495+00

495+00

503+00

109+00

040625

JOB:

Michael Benson, Materials Engineer PAVEMENT SOUNDINGS AGG. BASE CRS CL AGG. BASE CRS CL 5 AGG. BASE CRS CL AGG.BASE CRS CL ACHIMBC ACHIMBC **ACHIMBC** AGG. BASE CRS CL ACHIMSC ACHIMSC **ACHMSC** ACHIMSC ACHIMSC ACHIMSC ACHMSC ACHIMSC 4.0XW 3.0XW 1.5X ACHMSC ACHIMSC ACHIMSC ACHIMSC ACHIMSC ACHIMSC ACHMSC ACHIMSC ACHIMSC 3.0W 3.0W 1.5 COUNTY NO. 65 17 RT 06 RT 12 RT 06 RT 18 LT 06 LT 18 RT 06 LT 18 LT STA.# LOC.

AGG.BASE CRS CL

ACHIMSC

ACHMSC

06 RT

503+00

1.75WX

AGG. BASE CRS CL

ACHIMSC

18' LT

510+00

AGG, BASE CRS CL

ACHIMSC

06 LT

510+00

3.0W

Monday, November 14, 2016

W=MULTIPLE LAYERS, X=STRIPPED, Z=AUGER REFUSAL comments:

MICHAEL BENSON, MATERIALS ENGINEER

*** SOIL SURVEY / PAVEMENT SOUNDING TEST REPORT ***

DATE - 11/ JOB NUMBER - 040 FEDERAL AID NO TO PURPOSE - SOI SPEC. REMARKS - NO SUPPLIER NAME - STA NAME OF PROJECT - H PROJECT ENGINEER - N PIT/QUARRY - ARKAN LOCATION - SEBAS SAMPLED BY - THORNT SAMPLE FROM - TEST	625 BE ASSI L SURVE SPECIFI TE WY.22 - OT APPL SAS TIAN, CON, BAT	Y SAMPLE CATION CHECK HWY.252 STRS. & ICABLE OUNTY	APP	RS. (S)	DATE REC	CODE AR ID. TATE NO.	- SSRVPS - 2014 - 1 - 65 - 04 - 10/25/16 - 10/27/16
MATERIAL DESC SOI		Y - R VALUE- PA	VEME	NT SOUNDIN	DATE TES	TED	- 11/02/16
LAB NUMBER SAMPLE ID TEST STATUS STATION LOCATION DEPTH IN FEET MAT'L COLOR MAT'L TYPE	# # # # # # # # # # # # # # # # # # #	20163495 S377 INFORMATION ONLY 100+00 06 RT 0-5 BROWN		20163496 S378 INFORMATIO 100+00 17 RT 0-5 BROWN	- CON ONLY - - - - - -	109+0 06 LT 0-5 GRAY	MATION ONLY 0
LATITUDE DEG-MIN- LONGITUDE DEG-MIN-				35 19 94 11		35 94	
<pre>% PASSING 2 1 1/2 3/4 3/8 NO. NO. NO. NO. NO. NO.</pre>	IN IN IN IN 4 - 10 - 40 -	100 99 98		100 99 97 94 93 87	47.10	100 99 97 95 93 82	11 41.60
LIQUID LIMIT	Ħ		-	21	-	24 7	
PLASTICITY INDEX AASHTO SOIL UNIFIED SOIL	-	5 A-4 (2)	- - -	3 A-4 (0)	- -	A-4	
% MOISTURE CONTENT		18.3		12.5		21	0
ACHMSC ACHMSC ACHMBC AGG. BASE CRS CL	(IN) - (IN) - - - -	1.0 3.0XW 5				3.(1.5 7	

REMARKS - W= MULTIPLE LAYERS, X= STRIPPED, Z=AUGER REFUSAL

12

AASHTO TESTS : T24 T88 T89 T90 T265

MICHAEL BENSON, MATERIALS ENGINEER

*** SOIL SURVEY / PAVEMENT SOUNDING TEST REPORT ***

DATE - 11/02/16 JOB NUMBER - 040625 FEDERAL AID NO TO BE ASSIGNED PURPOSE - SOIL SURVEY SAMPLE SPEC. REMARKS - NO SPECIFICATION CHECK SUPPLIER NAME - STATE NAME OF PROJECT - HWY.22 - HWY.252 STRS. & APPRS. (S) PROJECT ENGINEER - NOT APPLICABLE PIT/QUARRY - ARKANSAS LOCATION - SEBASTIAN, COUNTY SAMPLED BY - THORNTON, BATES SAMPLE FROM - TEST HOLE						SEQUENCE NO 2 MATERIAL CODE - SSRVPS SPEC. YEAR - 2014 SUPPLIER ID 1 COUNTY/STATE - 65 DISTRICT NO 04 DATE SAMPLED - 10/25/16 DATE RECEIVED - 10/27/16 DATE TESTED - 11/02/16				
MATERIAL DESC SOI	IL SURVE	EY - F	R VALUE- PAV	EME	ENT SOUNDIN	GS				
LAB NUMBER SAMPLE ID TEST STATUS STATION LOCATION DEPTH IN FEET	=	INFORM 109+0 18 LT 0-5	MATION ONLY 0	4 0	487+00 06 RT 0-5		- - -	487+0 12 RT 0-5	MAT] 0	ON ONLY
MAT'L COLOR MAT'L TYPE		BR/GR		30	BROWN		-	BROWN		
LATITUDE DEG-MIN-	CEC S	25	10 0 60	50	35 23	35.30	-	2.5	2.2	25 20
LONGITUDE DEG-MIN-							-	35 94		35.30 5.50
		71	11 41.70		51 07	5.60		74	0 /	3.30
% PASSING 2				**						
	IN			==			-			
	IN			=			•	100		
	IN	100		-	100		_	99		
	4 -			=	99		-	90		
	10 -				93		-	79		
	40 -			2	86		-	68		
	- 08			-	80		-	62		
NO.	200 -	71			73			55		
LIQUID LIMIT	_	21		27.	36		=	26		
PLASTICITY INDEX	-	7		2	22		-	12		
AASHTO SOIL	-	A-4	(2)	-	A-6 (14)			A-6	(3)	
UNIFIED SOIL	-			*			-			
% MOISTURE CONTENT	_	15	. 7	77	26.3		-	18	. 4	
ACHMSC	(IN) -	22			1.5					
ACHMSC	(IN) -			- 170 - 170	4.0XW		_			
AGG.BASE CRS CL	(IN) -				5.02W		_			
	, ±11,7			1	J		-			
	-			77.0			-			
	-			-			-			
	-						_			
	_			, TT			_			
	-			-			-			

REMARKS - W=MULTIPLE LAYERS, X=STRIPPED, Z=AUGER REFUSAL

-

AASHTO TESTS : T24 T88 T89 T90 T265

MICHAEL BENSON, MATERIALS ENGINEER

*** SOIL SURVEY / PAVEMENT SOUNDING TEST REPORT ***

DATE - 11/ JOB NUMBER - 040 FEDERAL AID NO TO PURPOSE - SOI SPEC. REMARKS - NO SUPPLIER NAME - STA NAME OF PROJECT - F PROJECT ENGINEER - N PIT/QUARRY - ARKAN LOCATION - SEBAS SAMPLED BY - THORNY SAMPLE FROM - TEST	S. (S)	SEQUENCE NO 3 MATERIAL CODE - SSRVPS SPEC. YEAR - 2014 SUPPLIER ID 1 COUNTY/STATE - 65 DISTRICT NO 04 DATE SAMPLED - 10/25/16 DATE RECEIVED - 10/27/16 DATE TESTED - 11/02/16							
MATERIAL DESC SOIL SURVEY - R VALUE- PAVEMENT SOUNDINGS									
LAB NUMBER	-	20163501		20163502		2016350)3		
SAMPLE ID	MPLE ID - S383			3384		- S385			
TEST STATUS	-			INFORMATION ONLY - INFO					
STATION	-			195+00	-	503+00			
LOCATION	-	**		L8 LT	_	06 RT			
DEPTH IN FEET	-	• •	_)-5	_	0-5			
MAT'L COLOR MAT'L TYPE	-	BR/RD	- F	BR/RD	_	BROWN			
LATITUDE DEG-MIN-	CEC -	35 23 43 0	_	35 23 4	3.00 -	25 2	3 50.60		
LONGITUDE DEG-MIN-					5.80		7 10.20		
		31 0, 31,	•	51 0,	J.00	71 (7, 10.20		
% PASSING 2			=		=				
	IN		-		; <u>-</u> ;				
	IN	100	2		-	100			
	IN	98	-	100 98	===	99 97			
	4 - 10 -		÷	93	ş	97 91			
	40 -		7.	86	; = =1	80			
	80 -		=======================================	79	570	74			
	200 -		_	71	-	70			
		30							
LIQUID LIMIT	-		-	42	·	34			
PLASTICITY INDEX	-		-	26	1.57 2.24	16			
AASHTO SOIL	-	A-4 (0)	_	A-7-6(17)	-	A-6 (9))		
UNIFIED SOIL	-		_	10.0	-				
% MOISTURE CONTENT	-	24.3		18.2		25.2	2		
ACHMSC	(IN) -	3.0W	•			1.75	XW		
ACHMSC	(IN) -				=	-			
AGG.BASE CRS CL	(IN) -	5	-	54.04 16.04 16.04	=	5			
	_				_				
	-		-		-				
	_		*		<u>=</u>				
	-		***		=				
	-		;= 3		-				
	_				=				

REMARKS - W=MULTIPLE LAYERS, X=STRIPPED, Z=AUGER REFUSAL

AASHTO TESTS : T24 T88 T89 T90 T265

MICHAEL BENSON, MATERIALS ENGINEER

*** SOIL SURVEY / PAVEMENT SOUNDING TEST REPORT ***

DATE - 11/0 JOB NUMBER - 0400 FEDERAL AID NO TO F PURPOSE - SOII SPEC. REMARKS - NO S SUPPLIER NAME - STAT NAME OF PROJECT - HV PROJECT ENGINEER - NO PIT/QUARRY - ARKANS LOCATION - SEBAST SAMPLED BY - THORNTO SAMPLE FROM - TEST F	525 BE ASSI SURVE SPECIFI FE VY.22 - OT APPI SAS FIAN, C ON, BAS HOLE	EY SAMP CCATION - HWY.2 LICABLE COUNTY FES	CHECK 52 STRS. & A			DATE I	AL YEA (ST CT SAM) RECH	CODE - R - ID ATE - NO	- SS - 20 - 1 - 65 - 04 - 10	14	
MATERIAL DESC SOI	L SURVI	ых - К				3S					
LAB NUMBER	-	20163			20163505			20163	506		
SAMPLE ID	-	~~~						S388			
TEST STATUS		INFORMATION ONLY				N ONLY					
STATION		503+0		_	510+00		-	510+0			
LOCATION DEPTH IN FEET		18 RT 0-5		-	06 LT		-	18' L 0-2.5			
		BROWN		-	0-4Z BROWN			BROWN			
MAT'L COLOR MAT'L TYPE	_	DKOMIN		-	BROWN			BROWN			
LATITUDE DEG-MIN-S	EC -	35	23 50.70	_	35 23	56.70		35	23	56.70	
LONGITUDE DEG-MIN-S						12.40				12.40	
% PASSING 2 1 1/2	IN			# 2			_				
-	IN	100		-			_				
	IN			=	100		-	100			
•	4 -			2	98		-	96			
	10 -			2	93		-	93			
	40 -			-	87		_	87			
NO.	80 -	60		2	84		-	80			
NO. 2	- 00	53			78			69			
LIQUID LIMIT	_	26		2	32		.=:	31			
PLASTICITY INDEX	_				19			15			
AASHTO SOIL	_	A-4	(2)	=	A-6 (13)		-	A-6	(8)		
UNIFIED SOIL	_			ä			-				
% MOISTURE CONTENT	-	11	. 4	-	10.8		-	9	. 4		
ACHMSC	(IN) -			_	3.0W		_	22			
	(IN) -			_	1.5		_				
	-			-			-				
	-			-			-				
	-			-			_				
	<u></u>			_			_				
	-			-			-				
	-			-			-				
				-			-				

REMARKS - W=MULTIPLE LAYERS, X=STRIPPED, Z=AUGER REFUSAL

- AASHTO TESTS : T24 T88 T89 T90 T265

MICHAEL BENSON, MATERIALS ENGINEER

*** SOIL SURVEY / PAVEMENT SOUNDING TEST REPORT ***

```
- 11/03/16
DATE
                                                  SEQUENCE NO. - 1
JOB NUMBER - 040625
                                                  MATERIAL CODE - RV
FEDERAL AID NO. - TO BE ASSIGNED
                                                  SPEC. YEAR - 2014
PURPOSE - SOIL SURVEY SAMPLE
                                                  SUPPLIER ID. - 1
SPEC. REMARKS - NO SPECIFICATION CHECK
                                                  COUNTY/STATE - 65
SUPPLIER NAME - STATE
                                                  DISTRICT NO. - 04
NAME OF PROJECT - HWY.22 - HWY.252 STRS. & APPRS. (S)
PROJECT ENGINEER - NOT APPLICABLE
PIT/QUARRY - ARKANSAS
          - SEBASTIAN, COUNTY
LOCATION
                                                  DATE SAMPLED - 10/25/16
SAMPLED BY - THORNTON, BATES
                                                  DATE RECEIVED - 10/27/16
SAMPLE FROM - TEST HOLE
                                                  DATE TESTED - 11/02/16
MATERIAL DESC. - SOIL SURVEY - RESISTANCE R-VALUE ACTUAL RESULTS
  LAB NUMBER
                     - 20163507
                                      20163508
                    - RV389
                                      _ RV390
  SAMPLE ID
                   - INFORMATION ONLY - INFORMATION ONLY -
  TEST STATUS
                                       <sup>≈</sup> 495+00
                    - 100+00
  STATION
                  - 18RT
- 0-5
  LOCATION
                                      2 18 LT
                                      0-5
  DEPTH IN FEET
                                      _ RD/BR
                   - BR/RD
  MAT'L COLOR
 MAT'L TYPE
  LATITUDE DEG-MIN-SEC - 35 19 3.00 = 35 23 43.00
 LONGITUDE DEG-MIN-SEC - 94 11 47.10 94 07 5.80
  % PASSING
            2
                 IN. -
            1 1/2 IN. -
              3/4 IN. -
                                       100
              3/8 IN. - 100
             NO. 4 - 98
                                         99
             NO. 10 - 95
                                          97
             NO. 40 - 93
                                         95
             NO. 80 - 92
                                          88
             NO. 200 - 86
                                          84
  LIOUID LIMIT
                    - 22
                                       - 50
  PLASTICITY INDEX
                                       - 34
                    - 04
                                     - A-7-6(29)
  AASHTO SOIL
                       A-4(1)
  UNIFIED SOIL
  % MOISTURE CONTENT
```

REMARKS - W=MULTIPLE LAYERS, X=STRIPPED, Z=AUGER REFUSAL

-

AASHTO TESTS : T24 T88 T89 T90 T265

: