ARKANSAS DEPARTMENT OF TRANSPORTATION

SUBSURFACE INVESTIGATION

STATE JOB NO.	030497				
FEDERAL AID PRO	JECT NO.	NHPP-0046(50)			
	MILL & BC	DCAU CREEKS STRS. &	APPRS. (S)		
STATE HIGHWAY	82	SECTION	1 & 2		
IN	LAFAYETTE & MILLER CO			COUNTY	

The information contained herein was obtained by the Department for design and estimating purposes only. It is being furnished with the express understanding that said information does not constitute a part of the Proposal or Contract and represents only the best knowledge of the Department as to the location, character and depth of the materials encountered. The information is only included and made available so that bidders may have access to subsurface information obtained by the Department and is not intended to be a substitute for personal investigation, interpretation and judgment of the bidder. The bidder should be cognizant of the possibility that conditions affecting the cost and/or quantities of work to be performed may differ from those indicated herein.

GROUND UI THE RNM EOTECHNO

GEOTECHNICAL REPORT HIGHWAY 82 STRS. AND APPRS.(S) BRIDGE OVER BODCAU CREEK LAFAYETTE COUNTY, ARKANSAS

ARKANSAS DEPARTMENT OF TRANSPORTATION STATE PROJECT NO. 030497

Prepared for:

GARVER, LLC NORTH LITTLE ROCK

Prepared by:

GEOTECHNOLOGY, INC. MEMPHIS, TENNESSEE

Date: August 13, 2020

Geotechnology Project No.: J028499.03A

> SAFETY QUALITY INTEGRITY PARTNERSHIP OPPORTUNITY RESPONSIVENESS

August 13, 2020

Mr. John Ruddell, P.E., S.E. Vice President - Bridge Design Manager Garver, LLC 4701 Northshore Drive North Little Rock 72118

Re: Geotechnical Report Highway 82 Strs. and Apprs.(S) Bridge Over Bodcau Creek Lafayette County, Arkansas Geotechnology Project No. J028499.03A

Dear Mr. Ruddell:

Presented in this report are the results of the geotechnical exploration performed by Geotechnology, Inc. for the referenced project. The report includes our understanding of the project, observed site conditions, conclusions and/or recommendations, and support data as listed in the Table of Contents.

We appreciate the opportunity to provide geotechnical services for this project. If you have any questions regarding this report, or if we can be of any additional service to you, please do not hesitate to contact us.

Respectfully submitted,

GEOTECHNOLOGY, INC.

Dale Monind

Dale M. Smith, P.E. Geotechnical Manager

ALY/JDM/DBA/DMS/ASE:jdm

Copies submitted: Client (email/2 mail)

8/13/20

TABLE OF CONTENTS

CHAPTER 1.	Scope of Services	.3
Topography Drainage	General Information fications	.3 .4 .4
CHAPTER 3.	Geotechnical Exploration	.5
CHAPTER 4.	Laboratory Review and Testing	.6
Subgrade Mat	Subsurface Conditions ment terials	.6 .7
Pavement Des Seismic Consi Approach Eml Global Stabilit	Engineering Evaluation, Analysis, and Recommendations on and Earthwork sign Information iderations bankment Settlement	.8 .9 11 12 13
CHAPTER 7.	Recommended Additional Services1	8
CHAPTER 8.	Limitations1	9
Appendix B – Appendix C – Appendix D – Appendix E – Appendix F – Appendix G –	Important Information about This Geotechnical-Engineering Report Figures Boring Information Laboratory Test Data AASHTO and USCS Classifications Global Stability Analyses Soil Parameters for Synthetic Profiles Nominal Resistance Curves	

LIST OF TABLES

Table 1. Field Tests and Measurements	5
Table 2. Summary of Laboratory Tests and Methods	6
Table 3. Summary of Encountered Pavement Materials and Thicknesses.	7
Table 4. Summary of Groundwater Depths.	8
Table 5. Summary of Compaction and CBR Test Results.	.10
Table 6. CBR Interpolation/Extrapolation.	.10
Table 7. Soil Design Parameter Recommendations for Pavement Design.	.11
Table 8. Seismic Design Parameters (7% Probability of Exceedance in 75 years)	.12
Table 9. Results of Slope Stability Analyses.	.14
Table 10. Resistance Factors for Driven Piles	.15
Table 11. Minimum Hammer Energies	.16
Table 12. Results of pH and Soil Resistivity Testing	.18

GEOTECHNICAL REPORT HIGHWAY 82 STRS. AND APPRS.(S) BRIDGE OVER BODCAU CREEK LAFAYETTE COUNTY, ARKANSAS August 13, 2020 | Geotechnology Project No. J028499.03A

CHAPTER 1. SCOPE OF SERVICES

Presented in this report are the results of the geotechnical exploration and recommendations for design and construction for the proposed improvements to Highway 82 (Hwy 82) in Lafayette County, Arkansas (Station 202+00.00 to Station 223+18.45). The referenced improvements consist of the replacement of Bridge No 02122 over Bodcau Creek. The new six-span bridge (Station 210+79.06 to Station 214+39.39) will be approximately 360-foot-long and constructed in two phases. During phase 1, a portion of the new bridge will be constructed to the south of the existing bridge. Facilitating traffic to the new bridge will be require widening of the existing approaches. In phase 2 traffic will be redirected to the partially completed bridge, and the existing bridge will be demolished and the remaining portion of the bridge completed. When complete, the new bridge will be approximately 78 feet wide. The site location is shown on Figure 1 included in Appendix B.

The recommendations presented in this report are based on the geology, topography, and the results of the geotechnical exploration. Results of the borings, in-situ testing, sampling and laboratory testing are included in the report. A total of 14 borings were drilled at intervals along the proposed Highway 82 bridge over Bodcau Creek as shown in Figure 2. The boring logs, along with field and laboratory test results, are enclosed. The collected data have been analyzed and the physical properties of the in-situ soils summarized. General site conditions are discussed, along with recommendations for subgrade preparation. Important information prepared by the Geotechnical Business Council (GBC) of the Geoprofessional Business Association for studies of this type is presented in Appendix A for your review.

CHAPTER 2. GENERAL INFORMATION

Planned Modifications

It is our understanding the existing bridge over Bodcau Creek will remain in use through the first phase of construction before being demolished and replaced in phase 2. The existing bridge approaches will be widened to facilitate traffic across the widened bridge.

The modifications to the approaches will require widening of the existing bridge approaches; beginning at Station 208+20.00, the existing road-way will be widened to the south to allow for five lanes of traffic (two in the eastbound and west bound directions and one center turn lane). Widening will end at the western bridge abutment at Station 210+79.06. The widening will require

a wedge of fill to be placed on the southern shoulders of the existing road way between Station 208+20.00 and Station 210+79.06 with a maximum fill height of 8 feet at the bridge abutment. The planned side slopes of the western approach are 3 horizontal units for every 1 vertical unit (3H:1V).

The proposed six-span bridge will cross Bodcau Creek. It is our understanding that minimal grade changes will be required at the bent locations. The bridge abutments will require up to 10 feet of fill and 11 feet of cut. A 2H:1V slope is planned for the bridge abutments.

Widening of the eastern bridge approach will extend from the eastern bridge abutment at Station 214+39.39 until the end of project at Station 217+00.00. The proposed widening will require a wedge of fill to be placed in the southern shoulders of the existing road way between Stations 214+39.39 and 217+00.00, with a maximum fill height of 10 feet occurring at the eastern bridge abutment. The planned side slopes of the eastern bridge approach are 3V:1H.

Topography

The proposed Hwy 82 bridge over Bodcau Creek is located in Lafayette County, Arkansas. According to provided plans¹, the elevations at the west and east abutments are El 258.90² and 258.80, respectively, with a maximum of approximately 34 feet of relief across the proposed alignment.

Drainage

The drainage system in the project area consists of the Bodcau Bayou Watershed. The Bodcau Bayou Watershed, in turn, is part of the overall drainage system of the Red River Basin.

Geology

Lafayette County is located in southwestern Arkansas, in the Gulf Coastal Plain. The Gulf Coastal Plain extends across the southern United States and is bounded to the north by the Ouachita Mountains. Approximately 50 million years ago, prior to tectonic uplift, the area was covered by the Gulf of Mexico. The Coastal Plain is characterized by flat to rolling topography.

The geology in the Bodcau Creek area is characterized by an upper layer of alluvium which features predominately alluvial deposits of present streams. Below the alluvium, the geology is generally characterized by the Wilcox and Claiborne Groups which feature mainly non-marine sands, silty sands, clays and gravels. Some thick deposits of lignite are featured within both Groups.

¹ Arkansas Department of Transportation Construction Plans for State Highway Mill & Bodcau Creeks STRS. & Apprs. (S) Miller and Lafayette Counties Route 82 Sections 1& 2, Federal Aid Project NHPP-0046(50) Job 030497. Provided by Garver, dated January 24, 2019.

² Elevations are referenced to NAVD 1988 (NAVD 88) in units of feet.

CHAPTER 3. GEOTECHNICAL EXPLORATION

A total of 14 borings were drilled at selected locations near the bridge approaches and the alignment of the proposed bridge. The borings were drilled to approximate depths ranging from 15 to 100 feet. Six cores were performed through the existing pavement. Proposed Boring B-3 was not drilled during exploration due to the presence of rip rap below the bridge and inability to access the sides of the bents.

The borings were drilled on March 14, 2019 and August 6 through 12, 2019 using a rotary drill rig (CME 55LC and CME 550X), hollow-stem augers and wet rotary methods. Sampling procedures included Standard Penetration Test (SPT) and thin-wall (Shelby) tube methods. SPT's were conducted at 2.5, 5, and 10-foot depth intervals using automatic hammers. Thin-walled Shelby tube samples were collected in cohesive soils at selected depths. Groundwater observations were made during drilling operations.

The collected samples were visually examined by field staff and transported to our laboratory for further evaluation and testing. The samples were examined in the laboratory by a geotechnical professional who prepared descriptive logs of the materials encountered. The boring logs are presented in Appendix C along with an explanation of the terms and symbols used on the boring logs. Included on each boring log are elevation data estimated from the provided plans. Included in Table 1 are in situ tests and measurements made as part of the fieldwork and recorded on the boring logs.

Item	Test Method
Soil Classification	ASTM D 2488/ D 3282
Standard Penetration Test (SPT)	ASTM D 1586/ AASHTO T206
Thin-Walled (Shelby) Tube Sampling	ASTM D 1587/ AASHTO T207

Table 1. Field Tests and Measurements

The boring logs represent conditions observed at the time of exploration and have been edited to incorporate results of the laboratory tests. Unless noted on the boring logs, the lines designating the changes between various strata represent approximate boundaries. The transition between materials could be gradual or occur between recovered samples. The stratification given on the boring logs, or described herein, is for use by Geotechnology in its analyses and should not be used as the basis of design or construction cost estimates without realizing that there can be variation from that shown or described.

The boring logs and related information depict subsurface conditions only at the specific locations and times where sampling was conducted. The passage of time could result in changes in conditions, interpreted to exist, at or between the locations where sampling was conducted.

CHAPTER 4. LABORATORY REVIEW AND TESTING

Laboratory testing was performed on soil samples to assess engineering and index properties. Most of the laboratory test results are presented on the boring logs in Appendix C. The Atterberg limits, grain size analyses, unconsolidated-undrained triaxial compression (UU), direct shear, one-dimensional consolidation, pH, resistivity, standard proctor, and California Bearing Ratio (CBR) test results are also provided in Appendix D. The laboratory tests and corresponding test method standards are presented in Table 2.

Laboratory Test	ASTM	AASHTO
Moisture Content	D 2216	T 265
Atterberg Limits	D 4318	T 98
Grain Size Analysis	D 422	T 88
Percent Finer Than No. 200 Sieve	D 1140	T 11
Unconsolidated-Undrained Triaxial Compression	D 2850	T 296
Direct Shear	D 3080	T 236
One-Dimensional Consolidation	D 2435	T 216
pH of Soil	D 4972	T 289
Soil Electrical Resistivity	G 57	T 288
Moisture-Density (Standard Effort)	D 698	T 99
California Bearing Ratio (CBR)	D 1883	T 193

Table 2. Summary of Laboratory Tests and Methods.

The boring logs were prepared by a project geotechnical engineer from the field logs, visual classification of the soil samples in the laboratory, and laboratory test results. Terms and symbols used on the boring logs are presented on the Boring Log: Terms and Symbols in Appendix C. Stratification lines on the boring logs indicate approximate changes in strata. The transition between strata could be abrupt or gradual.

CHAPTER 5. SUBSURFACE CONDITIONS

Existing Pavement

Borings BC-12 through BC-15 were drilled in the existing pavement at the bridge approaches for the purpose of obtaining pavement thickness and subgrade information beneath the existing road-way. A summary of the pavement materials and thicknesses is provided in Table 3.

	Surface		Base	
Boring No.	Material	Thickness (in.)	Material	Thickness (in.)
BC-12	Asphalt	31⁄2	Sand and Gravel	81⁄2
BC-13	Asphalt	2	Sand and Gravel	10
BC-14	Asphalt	21/2	Silty Sand	91⁄2
BC-15	Asphalt	10	Silty Sand	20

Table 3. Summary of Encountered Pavement Materials and Thicknesses.

*Asphalt Core Only

Subgrade Materials

The borings were drilled in the alignment of the proposed bridge and approaches, and were drilled through either asphalt or approximately 3 inches of topsoil or gravel. Underlying the topsoil, asphalt, or gravel the soils generally consisted of interbedded fine- and coarse-grained soils underlain by predominately coarse-grained soils extending to the 100-foot maximum depth of exploration. The boring logs, with more detailed soil descriptions, are included in Appendix C. The laboratory testing was used to determine the USCS and AASHTO classifications as presented in Appendix E.

The upper, interbedded fine- and coarse-grained soils were classified as high plasticity "fat" clay (CH), AASHTO A-2-7; low plasticity "lean" clay (CL), AASHTO A-6, A-2-7; silt (ML), AASHTO A-4, with sand; clayey sand (SC), AASHTO A-4, A-6; silty sand (SM), AASHTO A-2-4; poorly graded gravel (GP), AASHTO A-1; poorly-graded sand with clay (SP-SC), AASHTO A-1-b; poorly graded sand with silt (SP-SM), AASHTO A-1-b; and poorly graded sand (SP), AASHTO A-3, A-1-b. Coarse-grained soils in the interbedded layer ranged from very loose to medium dense in consistency and fine-grained soils ranged from very soft to medium stiff.

The lower, predominately coarse-grained soils were classified as poorly graded sand (SP), AASHTO A-3, A-1-b; poorly graded sand with silt (SP-SM), AASHTO A-1-b; silty sand (SM), AASHTO A-2-4; and clayey sand (SC), AASHTO A-4, A-6. The coarse-grained soils ranged from medium dense to very dense in consistency.

Groundwater

Groundwater was encountered while drilling in the borings at the depths indicated in Table 4. The presence of groundwater in Borings B-1, B-3 through B-6, B-8, and B-10 may have been masked by the effects of wet rotary drilling which introduces water. Groundwater levels could vary significantly over time due to the effects of seasonal variation in precipitation, recharge, flood levels in Bodcau Creek or other factors not evident at the time of exploration.

Table 4. Summary of Groundwater Depths.

Boring No.	Groundwater Depth (ft.)	Groundwater Elevation (ft.)
BC-2	29	227
BC-7	7	228
BC-9	9	232
BC-11	9	235

CHAPTER 6. ENGINEERING EVALUATION, ANALYSIS, AND RECOMMENDATIONS

Site Preparation and Earthwork

The following procedures are recommended for site preparation in cut and fill areas. These recommendations do not supersede ARDOT standards and specifications. Site preparation and compaction requirements must conform to the latest ARDOT standards.

<u>Site Preparation</u>. In general, cut areas and areas to receive new fill should be stripped of topsoil, vegetation, and other deleterious materials. Topsoil should be placed in landscape areas or disposed of off-site. Vegetation and tree roots should be over-excavated.

The exposed subgrade should be proof-rolled using a tandem axle dump truck loaded to approximately 20,000 pounds per axle (or equivalent proof-rolling equipment). Soft areas that develop should be over-excavated and backfilled with select fill, which is defined as soil conforming to A-4 or better material, and compacted to the unit weights specified in subsequent paragraphs.

<u>Side Slopes</u>. Existing slopes steeper than 4H:1V should be benched prior to placing new fill. Slope ratios of 3H:1V or flatter are recommended for all cut and fill slopes along the proposed alignment. Fill material consists of import cohesive fill as indicated by Garver.

<u>Cut Areas</u>. It is our understanding up to 11 feet of cut will be required to achieve design grade at the existing eastern abutment and up to 4 feet at the western abutment, as indicated on the provided plans. Based on the stratigraphy, excavations will terminate in silty sand, lean clay, fat clay, or silt. After excavation, the top 6 inches of the resulting subgrade should be compacted to a minimum of 95% of the maximum dry unit weight as determined by a standard Proctor test (ASTM D 698/AASTHO T 99). Areas supporting pavement should be compacted to 98% of the maximum unit weight as determined by the standard Proctor test.

<u>Fill Materials</u>. Fill material should consist of natural soils classifying as AASHTO A-6 or better. Soils classifying as AASHTO A-4 or better are considered to be select fill. Fine-grained soils (A-4 through A-6) and coarse-grained soils with fines should have a maximum LL of 45 and a PI between 5 and 20 percent. Such materials should be free from organic matter, debris, or other deleterious materials, and have a maximum particle size of 2 inches.

<u>Fill and Backfill Placement</u>. Fill and backfill should be placed in level lifts, up to 8 inches in loose thickness. For fill and backfill exhibiting a well-defined moisture-density relationship, each lift should be moisture-conditioned to within $\pm 2\%$ of the optimum moisture content and compacted with a sheepsfoot roller of self-propelled compactor to a minimum of 98% of the maximum dry unit weight as determined by the standard Proctor test. Moisture-conditioning can include: aeration and drying of wetter soils; wetting drier soils; and/or mixing wetter and drier soils into a uniform blend. The upper three feet of soil beneath the base of pavement should be compacted to 98% of the maximum unit weight as determined by the standard Proctor test.

For fill and backfill that do not exhibit a well-defined moisture-density relationship, each lift should be compacted to a 70% of the minimum relative density as evaluated from the maximum and minimum index densities measured by ASTM D4253 and D4254, respectively. The upper three feet of soil beneath the base of pavement should be compacted to 75% of the minimum relative density.

<u>Fill Placement on Slopes</u>. Certain areas of the project site will require fill to be placed on slopes. Benching of existing slopes should be performed during placement of new fill. Fill on the sloped areas should begin from the toe of the slope and proceed upward, placing new fill on horizontal benches. Bench shelves should be 8 to 10 feet wide, and bench faces should be 1 to 2 feet in height. Fill lifts should be keyed into the slope to reduce the potential of a slip place between the new fill and existing soils. Fill slopes should be constructed by extending the compacted fill beyond the planned profile of the slope and then trimming the slope to the desired configuration.

<u>Moisture Considerations</u>. Maintaining the moisture content of bearing and subgrade soils within the acceptable range is important during and after construction for the proposed structures. The silty and clayey bearing and subgrade soils should not be allowed to become wet or dry during or after construction, and measures should be taken to hinder water from ponding on these soils and to reduce drying of these soils.

Water from surface runoff, downspouts, and subsurface drains should be collected and discharged through a storm water collection system. Positive drainage should be established around the proposed structures to promote drainage of surface water away from the structures and reduce ponding of water adjacent to these structures.

Pavement Design Information

Composite bulk samples of the auger cuttings were collected from selected borings. Atterberg limits and standard Proctor compaction tests (ASTM D 698/AASHTO T99) were performed on each composite sample. California Bearing Ratio (CBR) tests (ASTM D 1883/ AASHTO T193) were performed on soaked samples remolded in standard CBR molds using compaction efforts of 25 and 56 blows per layer. The test results are summarized in Table 5.

					(%)	X	Proctor	Results		CBR R	esults		(%)
Boring No.	Depth (ft.)	USCS/ AAHSTO	Liquid Limit (?	Plasticity Index	Maximum Dry Unit Weight (pcf)	Optimum Moisture Content (%)	Blows per Layer	Dry Unit Weight (pcf)	Moisture Content (%)	CBR	Percent Compaction (^e		
BC-13	1 – 5	CL A-6(9)	31	17	121.0	10.0	25 56	113.0 119.4	13.0 11.0	3.1 6.6	93.4 98.7		
DC 11	4 5	SC	07	45	400.0	0.5							
BC-14	1 – 5	A-2-6(0)	27	15	132.2	6.5							

The results in the previous table were interpolated/extrapolated to estimate the CBR values at 95 percent compaction, which is typically considered a minimum compaction value to be achieved in the field. The mean and standard deviation of the interpretation were also calculated. The results are presented in Table 6.

Table 6. CBR Interpolation/Extrapolation.

Boring No.	Depth (ft.)	USCS/ AASHTO	CBR at 95% Compaction
BC-13	1 5	CL	4.0
DC-13	1 – 5	A-6(9)	4.2

Based on the test results and the data presented in the previous table and to account for potential variability at the site, a CBR of 4.0 is recommended for design of pavements for this project. A CBR value of this magnitude will result in a relatively thick, expensive pavement structure. We recommend a 3-foot undercut below the base of pavements and backfilling with better (larger CBR) materials. Two materials are considered herein: A-4 (design CBR value of 8.0) and A-3 (design CBR value of 10.0).

The design CBR values mentioned in the previous paragraph were correlated to Resilient Modulus (M_R) and Resistance (R) values. The correlation was performed using a graph provided by ARDOT from AASHTO (1993) and is presented in Table 7.

	Soi	Soil Classification/Source					
	A-6 (In-Situ)	A-4 (Import)	A-3 (Import)				
	CBR = 4	CBR = 8	CBR = 10				
MR (psi)	2,900	4,400	5,000				
Resistance (R) Value	9	20	25				

Table 7. Soil Design Parameter Recommendations for Pavement Design.

Seismic Considerations

<u>Earthquake Risk</u>. The project area is located in the vicinity of the New Madrid Seismic Zone (NMSZ). The NMSZ is located in the northern part of the Mississippi Embayment and trends in a northeast to southwest direction from southern Illinois to northeast Arkansas. In December 1811, a series of large magnitude earthquake occurred, which were centered near New Madrid, Missouri. Three strong earthquakes occurred over the next three months and smaller aftershocks continued until at least 1817. According to researchers, the magnitudes of these three events ranged from 7.5 to 8.0.

<u>Earthquake Forces</u>. It is our understanding the bridge and approaches will be designed in accordance with the AASHTO publication "LRFD Bridge Design Specifications", eighth edition (2017), with 2017 interims.

<u>Seismic Design Parameters</u>. Seismic design parameters based on a seismic hazard with 7% probability of exceedance in 75 years and field and laboratory testing is presented in Table 8.

Table 8. Seismic Design Parameters (7% Probability of Exceedance in 75 years).

Latitude 33.36692°N/Longitude 93.522740°W				
Category/ Parameter	Designation/ Value	Reference		
Seismic Site Class	D	AASHTO LRFD 2017 Table 3.10.3.1-1		
Ss	0.119g			
S ₁	0.047g			
Fa	1.600			
Fv	2.400	Computed using design maps provided by the		
F _{PGA}	1.600	USGS		
ts	0.619	(<u>http://earthquake.usgs.gov/ws/designmaps</u>)		
to	0.124	using the indicated latitude and longitude coordinates of the project site. The USGS tool		
S _{DS}	0.190g	used references AASHTO 2009.		
S _{D1}	0.117g			
PGA	0.051g			
As	0.081g			

<u>Liquefaction and Dynamic Settlement</u>. A study was performed to evaluate the liquefaction and dynamic settlement potential at the site. Both field and laboratory data were used to perform the analysis. The field measurements included the depth of the water table and the SPT N-values. The laboratory data included USCS classification and soil unit weight. An earthquake magnitude (M_W) of 7.7 with a probability of exceedance of 7% in 75 years was considered. A site peak ground acceleration of 0.081g was utilized as obtained from the referenced Seismic Design Maps. Groundwater was assumed to be at approximately El 230.

Subsurface conditions (as characterized by field and laboratory data) and earthquake characteristics were used to estimate the safety factors against liquefaction in each soil layer, as well as the associated dynamic settlement during the design seismic event. Based on the analysis, the potential for liquefaction at the site is relatively low.

Due to the low potential for liquefaction at the site, downdrag on piles supporting project structures has not been considered.

Approach Embankment Settlement

Based on the cross sections provided and the proposed pile cap elevations, up to 10 feet of fill will be required at the proposed abutments to bring the site to grade. Up to 6 inches of settlement is estimated to occur under the weight of new fill placed at the bridge approaches and abutments.

We recommend a settlement monitoring program be implemented and survey data be forwarded to Geotechnology so that construction can commence as soon as settlement is essentially completed.

Settlement Monitoring Program. Settlement plates, or other appropriate methods should be utilized. Settlement plates should be installed approximately 1-foot below the existing ground surface and extend in 5-foot calibrated increments as the height of fill increases. To protect the riser pipes, fill should be hand compacted within a 4-foot radius of each plate. A typical settlement plate detail is presented in Figure 3 in Appendix B. We recommend settlement plates be placed no further than 50-feet apart, with at least one in the deepest areas of fill at both abutments. The project surveyor should be retained to monitor the settlement plate riser pipe. Settlement at the site should be measured twice weekly during fill placement and weekly after filling is completed. Further construction at the abutments should not commence until after the settlement due to the fill placement is practically complete. Provided the fill is placed in accordance with the Site Preparation and Earthwork section of this report, we anticipate fill induced settlement will be practically complete approximately four weeks after the finished grade is achieved.

If the estimated settlement due to placement of the approach embankment is not tolerable, then consideration should be given to ground improvement techniques such as rammed aggregate piers.

Global Stability

Based on plans provided by Garver, the abutment slopes for the existing bridge are covered in rip rap and slope 2H:1V. Geotechnology performed stability analyses for deep-seated, global failure of bridge abutment slopes using the computer program SLIDE. Short-term, long-term, and seismic conditions were considered using the Spencer method to compute factors of safety for the proposed slopes.

Calculated minimum factors of safety are summarized in the following table. A pseudo-static seismic acceleration of 0.041g, corresponding to one-half the peak ground acceleration (per FHWA Publication HI-99-012) was utilized. Fill material consists of cohesive soils as provided by Garver; a water elevation of El 228, as obtained from the borings, and was utilized for the short-term and seismic condition analyses and a water elevation of 249.3, as obtained from the preliminary plans from Graver, was used for the long-term condition analyses. Section profiles with calculated critical failure arcs and utilized soil parameters are presented in Appendix F for the selected analyses. The models did not consider the effect of foundation piles driven at the abutments that would provide additional restraining force to stabilize the slopes.

Table 9. Results of Slope Stability Analyses.

		Slopo	Calcula	ted Factor	of Safety
Location	Description	Slope Height (ft.)	Short- Term Static ^{a,c}	Long- Term Static ^{a,d}	Seismic ^{b,c}
West Abutment	2:1 8' Fill Slope	10	2.450	1.682	1.994
Side Slope Station 210+00	3:1 Fill Slope	10	3.676	1.991	3.073
East Abutment	2:1 Fill Slope	4	2.063	1.674	1.847
Side Slope Station 215+00	3:1 Fill Slope	12	3.398	1.963	2.881

^a Target factor of safety = 1.5, approximately equivalent to a global stability resistance factor = 0.65.

^b Target factor of safety = 1.1, approximately equivalent to a global stability resistance factor = 0.9.

^c Based on a groundwater elevation of El 228 as obtained by the borings.

^d Based on a groundwater elevation of El 249.3 as obtained by the preliminary plans provided by Garver.

Deep Foundations

Foundation design recommendations are provided herein based on the AASHTO LRFD Bridge Design Specifications (2017).

It is our understanding the proposed intermediate bents will be supported using 24- or 30-inch, closed-ended, steel pipe piles and abutments (end bents) will be supported using either HP12x53 or HP14x73 H-piles. Intermediate bents have been designated as Bent 2 through Bent 6 from west to east for the analysis. Geotechnology should be notified if a different foundation type is to be considered. Synthetic profiles have been developed for the intermediate and end bent locations based upon the soil profile encountered in the borings, approximate boring elevations, and the proposed final grade. Nominal resistance curves showing the resistance due to skin friction and the total resistance (skin friction + end bearing) for the abutments and bents are presented in Appendix H. Uplift resistance (tension) may be calculated using the resistance provided by skin friction.

<u>Resistance Factors</u>. Resistance factors should be applied to the nominal resistances provided. In general, a factor of 0.45 may be used for piles in compression and 0.35 in tension. Based on AASHTO LRFD (2017) higher resistance factor may be used in accordance with the level of pile testing performed as indicated in Table 10.

Table 10. Resistance Factors for Driven Piles.

Conditi	on/Resistance Determination Method	Resistance Factor
	Driving criteria established by successful static load test of at least one pile per site condition and dynamic testing of at least two piles per site, but no less than 2% of the production piles*	0.80
Nominal Bearing	Driving criteria established by successful static load test of at least one pile per site condition without dynamic testing	0.75
Resistance of Single Pile –	Driving criteria established by dynamic testing conducted on 100% of production piles*	0.75
Dynamic Analysis and Static Load Test Methods	Driving criteria established by dynamic testing, quality control by dynamic testing of at least two piles per site condition, but no less than 2% of production piles*	0.65
	Wave equation analysis, without pile dynamic measurements or load test but with field confirmation of hammer performance	0.50
	FHWA-modified Gates dynamic pile formula (End of Drive condition only)	0.40
Uplift Resistance of Single Pile	Dynamic test with signal matching	0.50

* Dynamic testing requires signal matching, and estimates of nominal resistance are made from a restrike. Dynamic tests are calibrated to a static load test, when available.

<u>Pile Group Considerations</u>. The settlement of pile groups should be evaluated as per AASHTO LRFD (2017) section 10.7.2.3. Settlement analysis of the pile groups can be performed when the foundation configurations and service loads are available. AASHTO LRFD (2017) section 10.7.3.9 addresses pile group resistance. Group capacity considerations for different pile groups, center-to-center spacings, and other conditions (cap contact with ground, softness of surface soil etc.) are given in AASHTO LRFD (2017) sections 10.7.3.9 and 10.7.3.11.

<u>Driven Pile Construction Considerations</u>. Minimum hammer energies required to drive the piles were evaluated using the computed software WEAP. The recommended minimum hammer energies for each pile type are provided in Table 11.

Table 11. Minimum Hammer Energies.

Pile Size	Location	Embedment Length (feet)	Required Capacity (tons/kips)	Minimum Rated Hammer Energy (kip—feet)
14x73ª	End Bents (Bent Nos. 1 and 7)	74	205 / 410	20
30" ^b	Intermediate Bents (Bent Nos. 2 through 6)	86	425 / 850	59

^a H-Pile.

 $^{\rm b}$ Closed-ended pile with $1\!\!\prime_2\text{-inch}$ thick walls.

<u>Static Pile Load Testing</u>. At least one static pile compression load test should be performed for each bent or abutment location. The testing should be performed in accordance with ASTM D 1143 using the quick loading procedure and AASHTO LRFD (2017) section 10.7.3.8.2. Please refer to the previous Resistance Factors table for additional guidance regarding the minimum number of tests and alternate resistance factors associated with other field methods for determining resistance.

If the piles are to support net uplift loads, at least one tension load test should be performed for each location. The test should be performed in accordance with ASTM D 3689. Piles should be tested to the required nominal uplift resistances.

Load tests are required to verify recommended nominal pile resistance and will not be used to increase the design pile resistance. The piles used in the load tests should not be used for support of any structures. Geotechnology should be consulted regarding the locations of the test piles.

Dynamic Testing of Driven Piles. As an alternative to static pile load testing, high-strain dynamic pile testing can be performed according to AASHTO LRFD (2017)) section 10.7.3.8.3 and the procedures given in ASTM D4945. Different resistance factors correspond to different load testing combinations as illustrated in the previous table. We recommend that the test piles be identified according to AASHTO LRFD (2017) Table 10.5.5.2.3-1 or 2 percent of the production piles, whichever results in a larger number of tests. We recommend that the identified piles be tested at the end of initial drive (EOID) and a restrike performed at a minimum seven days after EOID.

Pile driving monitoring should be performed by an engineer with a minimum three years dynamic pile testing and analysis experience and who has achieved Basic or better certification under the High-Strain Dynamic Pile Testing Examination and Certification process of the Pile Driving Contractors Association and Foundation QA. Pile driving modeling and analyses should be performed by an engineer with a minimum five years dynamic pile testing and analysis experience and who has achieved Advanced or better certification under the High-Strain Dynamic Pile Testing Examination and Certification grocess of the Pile Driving QA.

Dynamic tests are required to monitor hammer and drive system performance, assess driving stresses and structural integrity and to evaluate pile resistance, and should not be used to increase design pile resistance. Dynamic tests should be performed on production piles with the lowest driving resistance. Geotechnology will be available to assist with development of specifications for this program and should be on site to perform or observe the testing and establish the pile driving criteria.

<u>Settlement</u>. Settlement of pile foundations depends on the loads applied and the foundation configuration. In general, settlement of deep foundations designed in accordance with the recommendations provided in this report is expected to be less than 1-inch. However, a calculation of the expected settlement of the pile foundations can be performed when the applied service loads and foundation configuration are available.

<u>Uplift Resistance</u>. Uplift forces can be resisted by the effective weight of the piles and caps, and frictional resistance between the piles and surrounding soil. If the anticipated maximum level of groundwater is higher than the tip of the pile then the buoyant unit weight of the pile must be used in computing uplift resistance for pile lengths extending below the design groundwater level.

<u>Lateral Resistance</u>. The lateral resistance of pile foundations depends on the lengths and dimensions of the foundations and the soil characteristics. The lateral resistance of pile foundations can be computed using the computer program LPILE to model the behavior of a single pile or shaft. Soil parameters are provided in Appendix G for the various strata and soil strengths present at the site. Soil parameters are based on field and laboratory test results and empirical correlations with SPT N-values.

The effects of group interaction must be considered when evaluating pile/shaft group horizontal movement. The lateral resistance for individual piles calculated by LPILE must be reduced by the P-multipliers provided in Section 10.7.2.4 of the AASHTO LRFD (2017) to determine lateral resistance of a pile group. Alternatively, the GROUP software can be used to evaluate the lateral resistance of the pile/shaft groups. The resistance factor for lateral resistance of single pile or pile group is 1.0.

<u>Corrosion Potential</u>. In addition to laboratory soil classification and strength testing, pH and soil resistivity testing was also conducted. The purpose of corrosion and soil resistivity testing is to provide soil data for analysis of any necessary protection to the piling, concrete, reinforcing steel, etc. Corrosion and deterioration protection requirements and guidelines for piling are set forth in Section 10.7.5 of the AASHTO LRFD Bridge Design Specifications. The corrosion and deterioration testing results are summarized below and are included in Appendix D.

		Sample Depth		Soil Resistivity
Boring	Sample No.	(foot)	рН	(ohm-cm)
BC-1	SS-1 – SS-4	1	4.53	7,410
BC-1	ST-6	15	4.05	12,540
BC-1	ST-8	20		8,550
BC-1	SS-9 – SS-12	23.5	7.32	912
BC-1	SS-16 – SS-18	58.5	5.39	2,109
BC-2	ST-5	10	3.77	
BC-2	SS-8 – SS-11	23.5	7.42	627
BC-5	SS-4 – SS-6	18.5	6.25	5,700
BC-5	SS-7 – SS-10	33.5	5.36	855
BC-6	SS-3 – SS-5	18.5	6.40	3,135
BC-7	SS-4 – SS-6	8.5	5.31	1,368
BC-7	SS-12 – SS-14	48.5	4.29	741
BC-8	SS-9 – SS-11	33.5	3.33	1,653
BC-9	SS-8 – SS-9	28.5	5.44	1,710
BC-10	ST-3	5		12,540
BC-10	SS-5 – SS-8	13.5	3.73	9,690
BC-11	SS-5 – SS-6	13.5	3.81	11,970

Based on the results of the pH and soil resistivity testing and the criteria set forth in the AASHTO LRFD Bridge Design Specifications, low pH and resistivity were measured in multiple samples indicating strong corrosion or deterioration potential in the soils at the depths represented by these samples.

CHAPTER 7. RECOMMENDED ADDITIONAL SERVICES

The conclusions and recommendations given in this report are based on: Geotechnology's understanding of the proposed design and construction, as outlined in this report; site observations; interpretation of the exploration data; and our experience. Since the intent of the design recommendations is best understood by Geotechnology, we recommend Geotechnology be included in the final design and construction process, and be retained to review the project plans and specifications to confirm the recommendations given in this report have been correctly implemented. We recommend Geotechnology be retained to participate in pre-bid and preconstruction conferences to reduce the risk of misinterpretation of the conclusions and recommendations in this report relative to the proposed construction of the subject project.

Since actual subsurface conditions between boring locations could vary from those encountered in the borings, our design recommendations are subject to adjustment in the field based on the subsurface conditions encountered during construction. Therefore, we recommend Geotechnology be retained to provide construction observation services as a continuation of the

design process to confirm the recommendations in this report and to revise them accordingly to accommodate differing subsurface conditions. Construction observation is intended to enhance compliance with project plans and specifications. It is not insurance, nor does it constitute a warranty or guarantee of any type. Regardless of construction observation, contractors, suppliers, and others are solely responsible for the quality of their work and for adhering to plans and specifications.

CHAPTER 8. LIMITATIONS

This report has been prepared on behalf of, and for the exclusive use of, the client for specific application to the named project as described herein. If this report is provided to other parties, it should be provided in its entirety with all supplementary information. In addition, the client should make it clear the information is provided for factual data only, and not as a warranty of subsurface conditions presented in this report.

Geotechnology has attempted to conduct the services reported herein in a manner consistent with the level of care and skill ordinarily exercised by members of the profession currently practicing in the same locality and under similar conditions. The recommendations and conclusions contained in this report are professional opinions. The report is not a bidding document and should not be used for that purpose.

Our scope for this phase of the project did not include any environmental assessment or investigation for the presence or absence of wetlands or hazardous or toxic materials in the soil, surface water, groundwater, or air, on or below or around this site. Any statements in this report or on the boring logs regarding odors noted or unusual or suspicious items or conditions observed are strictly for the information of our client. Our scope did not include an assessment of the effects of flooding and erosion of creeks or rivers adjacent to or on the project site.

Our scope did not include: any services to investigate or detect the presence of mold or any other biological contaminants (such as spores, fungus, bacteria, viruses, and the by-products of such organisms) on and around the site; or any services, designed or intended, to prevent or lower the risk of the occurrence of an infestation of mold or other biological contaminants.

The analyses, conclusions, and recommendations contained in this report are based on the data obtained from the geotechnical exploration. The field exploration methods used indicate subsurface conditions only at the specific locations where samples were obtained, only at the time they were obtained, and only to the depths penetrated. Consequently, subsurface conditions could vary gradually, abruptly, and/or nonlinearly between sample locations and/or intervals.

The conclusions or recommendations presented in this report should not be used without Geotechnology's review and assessment if the nature, design, or location of the facilities is changed, if there is a lapse in time between the submittal of this report and the start of work at the site, or if there is a substantial interruption or delay during work at the site. If changes are

contemplated or delays occur, Geotechnology must be allowed to review them to assess their impact on the findings, conclusions, and/or design recommendations given in this report. Geotechnology will not be responsible for any claims, damages, or liability associated with any other party's interpretations of the subsurface data or with reuse of the subsurface data or engineering analyses in this report.

The recommendations included in this report have been based in part on assumptions about variations in site stratigraphy that can be evaluated further during earthwork and foundation construction. Geotechnology should be retained to perform construction observation and continue its geotechnical engineering service using observational methods. Geotechnology cannot assume liability for the adequacy of its recommendations when they are used in the field without Geotechnology being retained to observe construction.

APPENDIX A – IMPORTANT INFORMATION ABOUT THIS GEOTECHNICAL-ENGINEERING REPORT

Important Information about This Geotechnical-Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

The Geoprofessional Business Association (GBA) has prepared this advisory to help you - assumedly a client representative - interpret and apply this geotechnical-engineering report as effectively as possible. In that way, you can benefit from a lowered exposure to problems associated with subsurface conditions at project sites and development of them that, for decades, have been a principal cause of construction delays, cost overruns, claims, and disputes. If you have questions or want more information about any of the issues discussed herein, contact your GBA-member geotechnical engineer. Active engagement in GBA exposes geotechnical engineers to a wide array of risk-confrontation techniques that can be of genuine benefit for everyone involved with a construction project.

Understand the Geotechnical-Engineering Services Provided for this Report

Geotechnical-engineering services typically include the planning, collection, interpretation, and analysis of exploratory data from widely spaced borings and/or test pits. Field data are combined with results from laboratory tests of soil and rock samples obtained from field exploration (if applicable), observations made during site reconnaissance, and historical information to form one or more models of the expected subsurface conditions beneath the site. Local geology and alterations of the site surface and subsurface by previous and proposed construction are also important considerations. Geotechnical engineers apply their engineering training, experience, and judgment to adapt the requirements of the prospective project to the subsurface model(s). Estimates are made of the subsurface conditions that will likely be exposed during construction as well as the expected performance of foundations and other structures being planned and/or affected by construction activities.

The culmination of these geotechnical-engineering services is typically a geotechnical-engineering report providing the data obtained, a discussion of the subsurface model(s), the engineering and geologic engineering assessments and analyses made, and the recommendations developed to satisfy the given requirements of the project. These reports may be titled investigations, explorations, studies, assessments, or evaluations. Regardless of the title used, the geotechnical-engineering report is an engineering interpretation of the subsurface conditions within the context of the project and does not represent a close examination, systematic inquiry, or thorough investigation of all site and subsurface conditions.

Geotechnical-Engineering Services are Performed for Specific Purposes, Persons, and Projects, and At Specific Times

Geotechnical engineers structure their services to meet the specific needs, goals, and risk management preferences of their clients. A geotechnical-engineering study conducted for a given civil engineer will <u>not</u> likely meet the needs of a civil-works constructor or even a different civil engineer. Because each geotechnical-engineering study is unique, each geotechnical-engineering report is unique, prepared *solely* for the client.

Likewise, geotechnical-engineering services are performed for a specific project and purpose. For example, it is unlikely that a geotechnical-engineering study for a refrigerated warehouse will be the same as one prepared for a parking garage; and a few borings drilled during a preliminary study to evaluate site feasibility will <u>not</u> be adequate to develop geotechnical design recommendations for the project.

Do not rely on this report if your geotechnical engineer prepared it:

- for a different client;
- for a different project or purpose;
- for a different site (that may or may not include all or a portion of the original site); or
- before important events occurred at the site or adjacent to it; e.g., man-made events like construction or environmental remediation, or natural events like floods, droughts, earthquakes, or groundwater fluctuations.

Note, too, the reliability of a geotechnical-engineering report can be affected by the passage of time, because of factors like changed subsurface conditions; new or modified codes, standards, or regulations; or new techniques or tools. *If you are the least bit uncertain* about the continued reliability of this report, contact your geotechnical engineer before applying the recommendations in it. A minor amount of additional testing or analysis after the passage of time – if any is required at all – could prevent major problems.

Read this Report in Full

Costly problems have occurred because those relying on a geotechnicalengineering report did not read the report in its entirety. Do <u>not</u> rely on an executive summary. Do <u>not</u> read selective elements only. *Read and refer to the report in full.*

You Need to Inform Your Geotechnical Engineer About Change

Your geotechnical engineer considered unique, project-specific factors when developing the scope of study behind this report and developing the confirmation-dependent recommendations the report conveys. Typical changes that could erode the reliability of this report include those that affect:

- the site's size or shape;
- the elevation, configuration, location, orientation, function or weight of the proposed structure and the desired performance criteria;
- the composition of the design team; or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project or site changes – even minor ones – and request an assessment of their impact. *The geotechnical engineer who prepared this report cannot accept* responsibility or liability for problems that arise because the geotechnical engineer was not informed about developments the engineer otherwise would have considered.

Most of the "Findings" Related in This Report Are Professional Opinions

Before construction begins, geotechnical engineers explore a site's subsurface using various sampling and testing procedures. *Geotechnical engineers can observe actual subsurface conditions only at those specific locations where sampling and testing is performed.* The data derived from that sampling and testing were reviewed by your geotechnical engineer, who then applied professional judgement to form opinions about subsurface conditions may differ – maybe significantly – from those indicated in this report. Confront that risk by retaining your geotechnical engineer to serve on the design team through project completion to obtain informed guidance quickly, whenever needed.

This Report's Recommendations Are Confirmation-Dependent

The recommendations included in this report – including any options or alternatives – are confirmation-dependent. In other words, they are <u>not</u> final, because the geotechnical engineer who developed them relied heavily on judgement and opinion to do so. Your geotechnical engineer can finalize the recommendations *only after observing actual subsurface conditions* exposed during construction. If through observation your geotechnical engineer confirms that the conditions assumed to exist actually do exist, the recommendations can be relied upon, assuming no other changes have occurred. *The geotechnical engineer who prepared this report cannot assume responsibility or liability for confirmation-dependent recommendations if you fail to retain that engineer to perform construction observation.*

This Report Could Be Misinterpreted

Other design professionals' misinterpretation of geotechnicalengineering reports has resulted in costly problems. Confront that risk by having your geotechnical engineer serve as a continuing member of the design team, to:

- confer with other design-team members;
- help develop specifications;
- review pertinent elements of other design professionals' plans and specifications; and
- be available whenever geotechnical-engineering guidance is needed.

You should also confront the risk of constructors misinterpreting this report. Do so by retaining your geotechnical engineer to participate in prebid and preconstruction conferences and to perform constructionphase observations.

Give Constructors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can shift unanticipated-subsurface-conditions liability to constructors by limiting the information they provide for bid preparation. To help prevent the costly, contentious problems this practice has caused, include the complete geotechnical-engineering report, along with any attachments or appendices, with your contract documents, *but be certain to note* conspicuously that you've included the material for information purposes only. To avoid misunderstanding, you may also want to note that "informational purposes" means constructors have no right to rely on the interpretations, opinions, conclusions, or recommendations in the report. Be certain that constructors know they may learn about specific project requirements, including options selected from the report, only from the design drawings and specifications. Remind constructors that they may perform their own studies if they want to, and be sure to allow enough time to permit them to do so. Only then might you be in a position to give constructors the information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions. Conducting prebid and preconstruction conferences can also be valuable in this respect.

Read Responsibility Provisions Closely

Some client representatives, design professionals, and constructors do not realize that geotechnical engineering is far less exact than other engineering disciplines. This happens in part because soil and rock on project sites are typically heterogeneous and not manufactured materials with well-defined engineering properties like steel and concrete. That lack of understanding has nurtured unrealistic expectations that have resulted in disappointments, delays, cost overruns, claims, and disputes. To confront that risk, geotechnical engineers commonly include explanatory provisions in their reports. Sometimes labeled "limitations," many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely*. Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

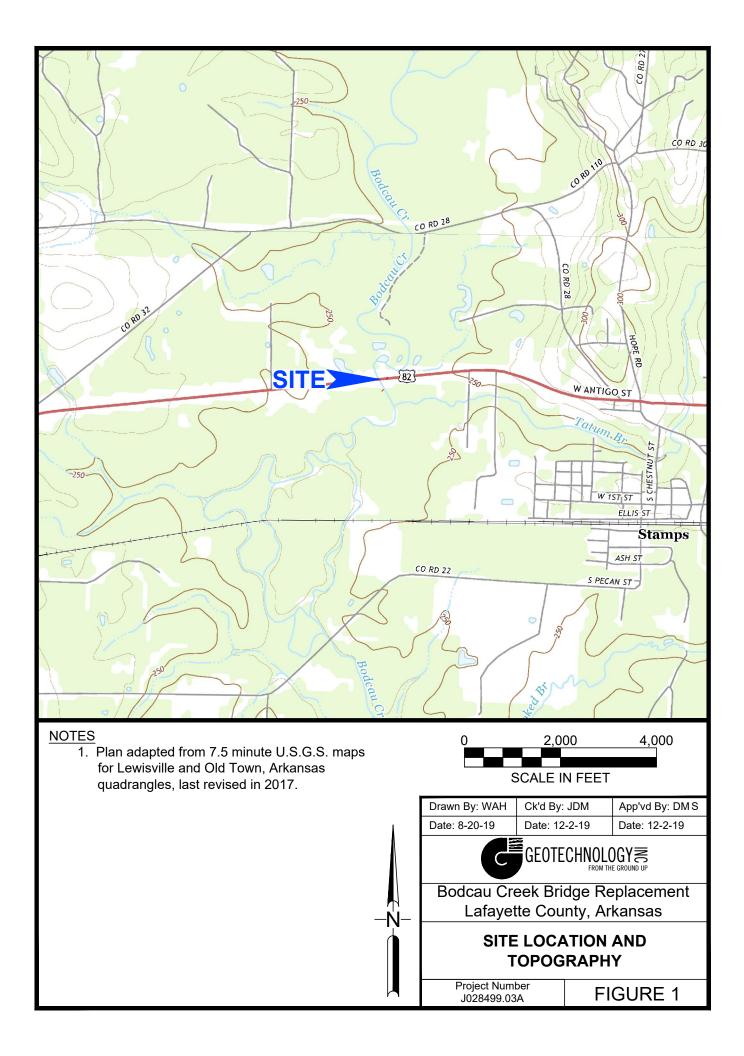
The personnel, equipment, and techniques used to perform an environmental study – e.g., a "phase-one" or "phase-two" environmental site assessment – differ significantly from those used to perform a geotechnical-engineering study. For that reason, a geotechnical-engineering report does not usually provide environmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated subsurface environmental problems have led to project failures.* If you have not obtained your own environmental information about the project site, ask your geotechnical consultant for a recommendation on how to find environmental risk-management guidance.

Obtain Professional Assistance to Deal with Moisture Infiltration and Mold

While your geotechnical engineer may have addressed groundwater, water infiltration, or similar issues in this report, the engineer's services were not designed, conducted, or intended to prevent migration of moisture – including water vapor – from the soil through building slabs and walls and into the building interior, where it can cause mold growth and material-performance deficiencies. Accordingly, proper implementation of the geotechnical engineer's recommendations will <u>not</u> of itself be sufficient to prevent moisture infiltration. Confront the risk of moisture infiltration by including building-envelope or mold specialists on the design team. Geotechnical engineers are <u>not</u> building-envelope or mold specialists.

Telephone: 301/565-2733 e-mail: info@geoprofessional.org www.geoprofessional.org

Copyright 2019 by Geoprofessional Business Association (GBA). Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with GBA's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of GBA, and only for purposes of scholarly research or book review. Only members of GBA may use this document or its wording as a complement to or as an element of a report of any kind. Any other firm, individual, or other entity that so uses this document without being a GBA member could be committing negligent



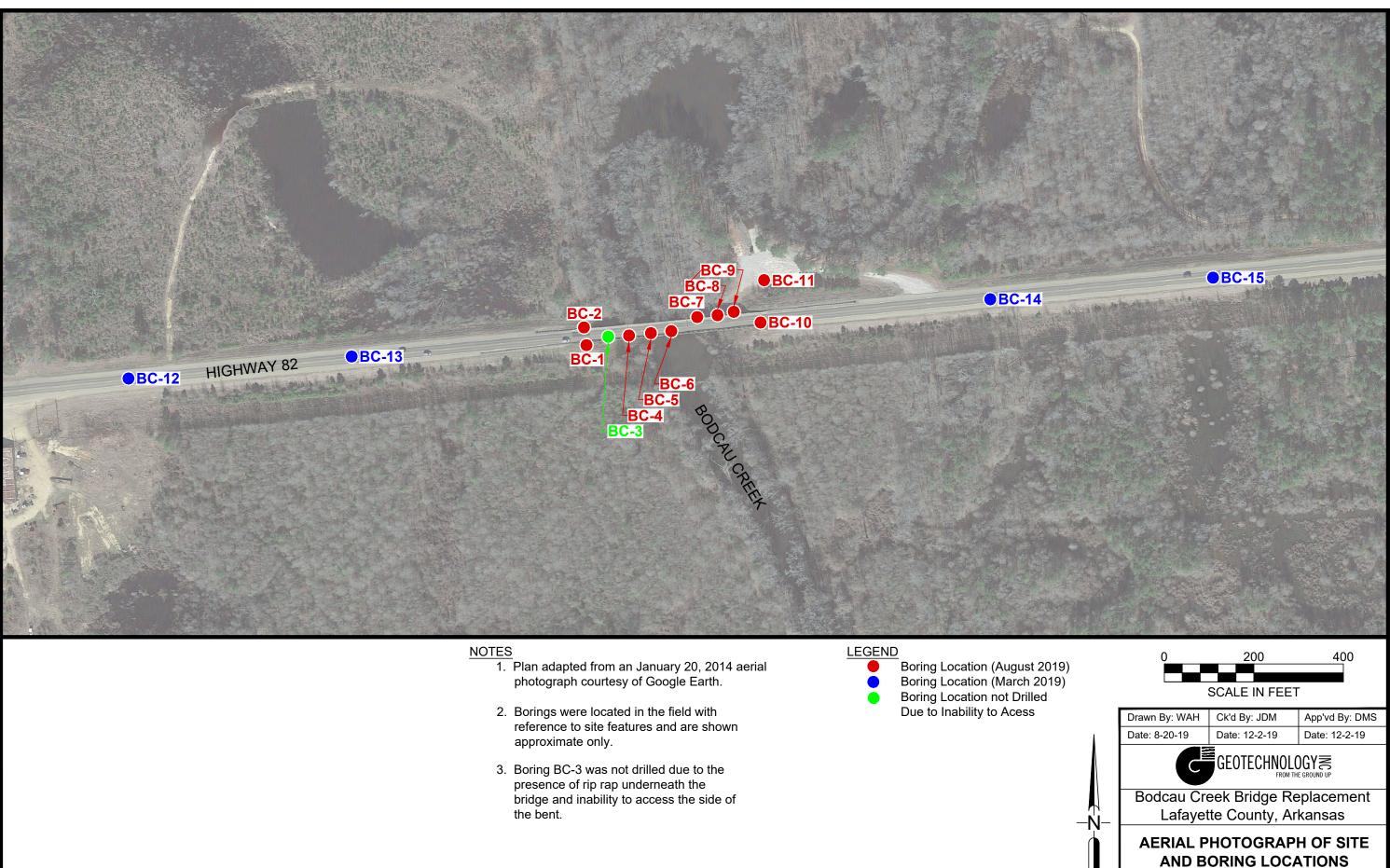
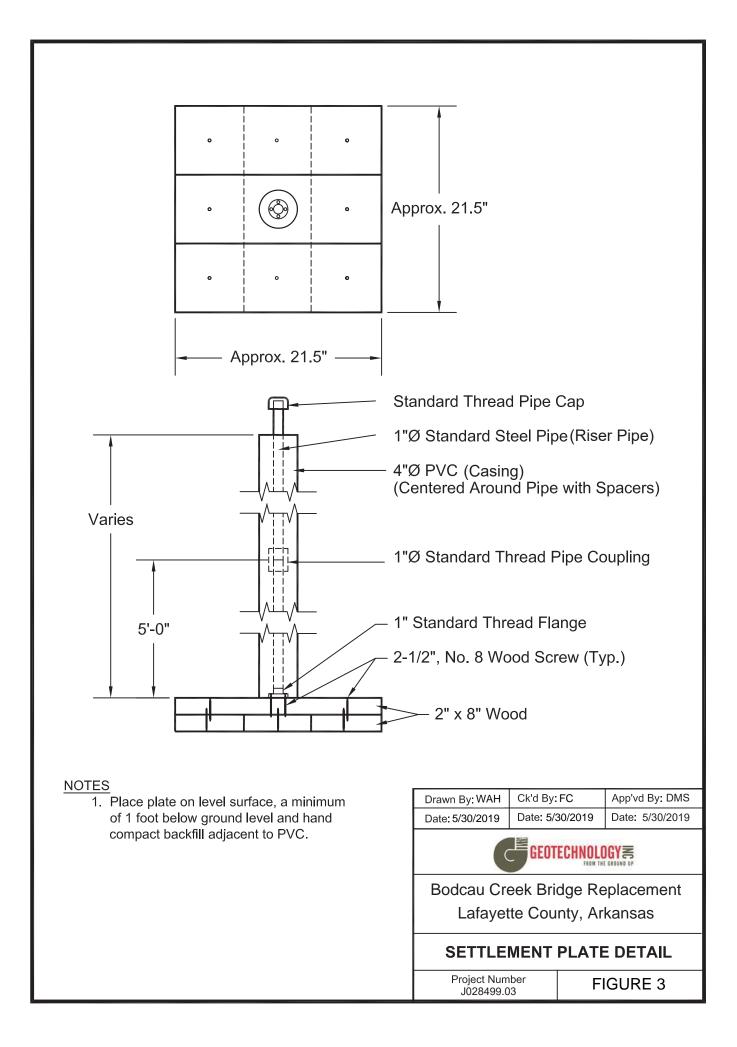

APPENDIX B – FIGURES

Figure 1 – Site Location and Topography

Figure 2 – Aerial Photograph of Site and Boring Locations

Figure 3 – Settlement Plate Detail



Project Number

J028499.03A

FIGURE 2

APPENDIX C – BORING INFORMATION

Boring Logs

Boring Log Terms and Symbols

		ce Elevation: 256	Completion Date: _	8/7/19	00	Y UNIT WEIGHT (pcf) PT BLOW COUNTS RE RECOVERY/RQD	(0)	∆ - UU/2	EAR STRENGT	🗆 - SV				
		Datum <mark>NAVD 8</mark> 8				GRAPHIC LOG UNIT WEIGHT F BLOW COUN		0,5 1,0 1,5 2,0 2,5 STANDARD PENETRATION RESISTANCE (ASTM D 1586)						
	DEPTH IN FEET	DESCR	IPTION OF MAT	ERIAL	GRA	DRY UNIT SPT BL(CORE RE	SAMPLES	▲ N-VALUE (BLOWS PER FOOT) WATER CONTENT, %						
	ΩZ					A S S S S S S S S S S S S S S S S S S S		PLI		40 50 LL				
		Loose to very loose	of grass with brown silt , tan and gray to gray an			5-5-4	SS1 SS2							
	- 5-	SILT - ML 59.2% passing No. 3	200 sieve			0-1-3	SS3	4	•					
	- 10-	little clay little clay				4-5-5	SS4							
	— 15—	Medium stiff to very - (CL)	stiff, brown and gray, sa	andy, LEAN CLAY		<u>3-3-4</u> 113	SS5 ST6							
	— 20—	76.4% passing No.				8-9-9	SS7							
Y.	- 25-	56.0% passing No. 20	00 sieve			2-3-3	ST8 SS9							
S ONL		∑ 51.3% passing No.												
VEEN S	- 30-	Medium stiff to very 58.4% passing No.	v soft, brown and red, FA 200 sieve	T CLAY - (CH)		2-3-3	<u>SS10</u>							
LINES REPRESENT THE APPROXIMATE BOUNDARIES BETWEEN SOIL TYPES MAY BE GRADUAL. GRAPHIC LOG FOR ILLUSTRATION PURPOSES ONLY.	— 35—	>> 99.5% passing No. 3	200 sieve			1-2-2	<u>SS11</u>							
ARIES	- 40-					0-0-0	SS12			87 				
ILLUST	- 45-	little sand				1-2-1	SS13			•				
MATE G FOR		little sand				1-2-2	SS14		•					
PROXII HC LOG	<u> </u>						[]							
HE AP GRAPH	- 55-	Loose to medium de	ense, gray, SILTY SANE) - SM		7-5-3	<u>SS15</u>							
SENT T	- 60 -					7-10-12	SS16							
EPRES	- 65-	Dense, gray SAND,	, some gravel - SP			14-20-16	SS17	•						
INES R AAY BE	— 70—	Loose, gray, SILTY				9-5-4	SS18							
NOIT		28.8% passing No.	200 sieve , gray, CLAYEY SAND -	SC		4-3-3	SS19							
NOTE: STRATIFICAT 06389040.GPUE 7298M91	- 75-	49.0% passing No. 1												
STRA GHE 7	- 80-					4-2-2	<u>SS20</u>							
NOTE: 38 8NP	- 85-	Loose, gray, SILTY	SAND - SM			2-3-5	<u>SS21</u>							
GTINC 06	- 90	Dense to very dense gravel - SP	e, tan and gray to gray S	SAND, some		14-16-17	SS22,	•						
GPJ GT	- 95-	graver - Sr												
CREEK.G						8-20	SS23			70				
	100	Boring terminated a	at 100 feet.			-50/6"	3323			12"				
BODCAU		GROUNDWATER DA	ΔΤΔ	DRILLING I	ΔΤΔ			Drawn by: JDM	Checked by: ASM					
30497 -				AUGER3 3/4_ H		W STFM		Date: 8/14/19	Date: 11/4/19	Date: 11/4/19				
J028499.03 ARDOT 030497	ENC	OUNTERED DURING I		WASHBORING FRO					GEOTECHN					
).03 AR				BMF DRILLER J					ŀ	ROM THE GROUND UP				
028499				<u>CME 550X</u> DF HAMMER TYP					Creek Bridge Re					
				HAMMER EFFICIE				Lafay	rette County, Arl	kansas				
OG OF BORING 2002 WL	REM	MARKS:						LC	g of Boring:	BC- 1				
LOG OF B								Pro	oject No. J028	499.03				

	ce Elevation: Datum <mark>NAVD 8</mark> 8	Completion Date: 8/6/19	5 LOG	EIGHT (pcf) COUNTS VERY/RQD	ILES	∆ - UU/2 0,5	0 1 ₁ 0		H, tsf □ - S [\] 2 ₁ 0 2 ₁ 5 RESISTAN	
DEPTH IN FEET	DESCR	IPTION OF MATERIAL	GRAPHIC LOG	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS CORE RECOVERY/RQD	SAMPLES	▲ N-	(AS VALUE (TM D 1586) BLOWS PE	R FOOT)	
5- 10-	Medium stiff, brown Loose, brown and g Medium stiff to soft, and sand - CH	of grass and brown silt , LEAN CLAY, trace roots - CL ray, CLAYEY SAND, trace gravel - SC brown and gray, FAT CLAY, trace silt brown and gray, LEAN CLAY, trace sand		6-4-3 5-4-4 2-3-2 2-2-1 98	SS1 SS2 SS3 SS4 ST5		•			
<u> </u>	- (CL) 84.2% passing No. :			2-5-6	SS6					
- 25- - 25- - 30-	Loose, gray, CLAYE	Y SAND - SC ny to red, FAT CLAY - (CH)		2-2-3 2-1-1	<u>SS8</u> SS9				•	
32				0-0-0	<u>SS10</u> SS11					85
AT 10 10 10 10 10 10 10 10 10 10 10 10 10	Gray, CLAYEY SAN Soft, gray, sandy, F, Boring terminated a	AT CLAY - CH		0-2-8	<u>SS12</u> SS13					•••• ••••
ON MAY BE GRADUAL. GRAPHIC LOG FOR ILLUSTRATION PURPOSES ONLY. - - 30 -										
150 - 75										
90 - 90 - 90 - 90 - 90 - 90 - 90 - 90 -										
- BODCAU CREE	GROUNDWATER D	ATA DRILLIN				Drawn by: JDI		cked by: ASM		
J028499.03 ARDOT 030497 - BODCAU CREEK	COUNTERED AT <u>29</u> F	AUGER _ <u>3 3/</u>	4_HOLLO FROM JDM_LC	FEET		Date: 8/14/19	GEO	F	Date: 11/4/1	
2 WL	MARKS:	HAMMER FF				Laf	ayette C	Boringe Re County, Arl	kansas	
LOG OF B						Р	roject I	No. J028	499.03	

	007	İ	ĘΟ		SHE	AR STRENGT	ſH, tsf
	Surface Elevation: 237 Completion Date: 8/12/19	0	, (pc /RQI		∆ - UU/2	○ - QU/2	🗆 - SV
	Datum NAVD 88	ΓO	HOOH A	S	0 _, 5 1	0 1,5	2 ₁ 0 2 ₁ 5
		GRAPHIC LOG	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS CORE RECOVERY/RQD	SAMPLES	STANDARD I		RESISTANCE
	모듮	API		SAN		(ASTM D 1586)	
		Ь				LUE (BLOWS P ATER CONTEN	
			COF ST			0 30	40 50 LL
	Medium stiff to very soft, brown and gray to brown, FAT						
	CLAY - (CH)						
			1-1-3	SS1			
			1-2-3	SS2			
	 15		1-2-3	SS3		•	
							60
	20- trace silt		0-0-0	SS4			
YPES LY.	Very loose to medium dense, gray, SILTY SAND with clay -		0-0-1	SS5		•	
S ON	SM 47.1% passing No. 200 sieve		100	000			
S NOSE	little clay		4-6-6	SS6			
PURF	Loose, gray SAND with silt - SP-SM		4-4-3	SS7			
IES BI TION	11.8% passing No. 200 sieve		10.0.10	000			
NDAR STRA	40- Medium dense, gray SAND, trace gravel		10-9-12	SS8			
BOUN	45- Loose, gray, SILTY SAND - SM		6-3-4	SS9			
AATE 5 FOR			4-4-8	SS10			
SOXIN LOG	50 Medium dense, gray, CLAYEY SAND, trace silt - SC		4-4-0	3310			
NOTE: STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARIES BETWEEN SOIL TYPES 06386NPQ 2015 T296NS TIND MAY BE GRADUAL. GRAPHIC LOG FOR ILLUSTRATION PURPOSES ONLY.	Medium dense to very dense, gray, SILTY SAND - SM		9-9-16	SS11			
GR.	Trace clay		14-27	SS12			77
DUAL			-50/5"	3312			11"
EPRE GRA	- 65 -						
IES R AY BE	70		25-50/6"	5513			
NN LIN			20 00/0				6"
CATIC	- 75-						
ATIFI 12964	80 Very dense, gray SAND with silt - SP-SM		28-50/6"	SS14		•	
STR	Boring terminated at 80 feet.						6"
IOTE: 38904	- 85-						: : : : : : : : : : : : : : : : : : :
1C 06:	- 90 -					•	
GTINC							
(.GPJ	95-						
REE						•	
CAU C							
BOD(GROUNDWATER DATA DRILLING				Drawn by: JDM	Checked by: ASM	
J028499.03 ARDOT 030497 - BODCAU CREEK.GPJ					Date: 8/14/19	Date: 11/4/19	Date: 11/4/19
JT 030	X FREE WATER NOTAUGER 33/4 F ENCOUNTERED DURING DRILLINGWASHDODING ED					GENTECHN	NOLOGYZ
ARDC	BMF_DRILLER _J						FROM THE GROUND UP
99.03	<u></u>						
02845	HAMMER TYP				Bodcau C	reek Bridge R	eplacement
	HAMMER EFFICIE				Lafaye	ette County, A	rkansas
2002	REMARKS: Boring drilled through approximately 8-inch asp	bhalt a	nd conci	rete			
RING	bridge deck located approximately 20 feet above ground surf into creek bed.	ace a	na 5 reet		LOO	g of Boring	BC-4
LOG OF BORING 2002 WL							
0 90					Proj	ect No. J028	3499.03
Ĩ							

		007		0/44/40		θ			SHE	EAR S	TRENG	ΓH, ts	f	
	Surfa	ce Elevation: _227_	Completion Date: _	8/11/19	(7)	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS CORE RECOVERY/RQD		۵ - UI	J/2	0	- QU/2		🗆 - S	V
		Datum NAVD 8 8			ĽŐ	ERV ERV ERV	ES	0.5	1	0	1.5	2 _. 0	2,5	
					GRAPHIC LOG		SAMPLES	STANE	DARD I		TRATION		ISTAN	ICE
	포뇨				RAP	REC	SAN		N-\/A	•	⁻ M D 1586) BLOWS F			
	DEPTH IN FEET	DESCR	IPTION OF MAT	TERIAL	Ū	У П П П П П П					CONTEN		501)	
	⊔∠					RNS		PL 10	2	20	30	40	50	- LL
		Soft, brown to gray,	FAT CLAY - CH											
	- 5-					0.1.1	004				<u> </u>	<u> </u>		
	— 10—					0-1-1	SS1 SS2							
	- 15-	little silt				0-1-2	SS3				<u> </u>			
	— 20—	Loose, gray and bro	own to gray, SILTY SAN	ID - SM		3-3-5	SS4							
ES														
- TYP NLY.	- 25-					5-4-5	SS5				<u> </u>			
I SOII	- 30-		oose, tan, gray and blac	k GRAVEL, trace	الن از ال	6-13-16	SS6							
NOTE: STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARIES BETWEEN SOIL TYPES GTINC 063830007404 75940911100 MAY BE GRADUAL. GRAPHIC LOG FOR ILLUSTRATION PURPOSES ONLY.		sand - GP			°0°	240	007							
S BET	- 35-				\circ	3-4-8	SS7							
ARIES	- 40-					1-1-6	SS8		<u> </u>	· · · ·	<u> </u>	· · ·		
DUND LUST		Medium dense to v	ery dense, gray, SILTY	SAND - SM		8-13-17	SS9							
OR IL	- 45-		cry dense, gray, oie r r			0-13-17								70
-OG F	- 50-					17-28-42	<u>SS10</u>					<u> </u>		
PPRC PHIC L	- 55-					22-40	SS11							90
GRAF						-50/6"								12"
ENT 1 UAL.	- 60 -					28-50/5"	<u>SS12</u>				● : : : : : : : : : :		5"	
PRES	- 65-													
S RE														
N MAN	— 70—					27-50/6"	<u>SS13</u>						6"	
BITIO	- 75-								<u> </u>		<u> </u>			
TIFIC TERM						20-50/5"	6614							
STRA GHE	- 80-	trace clay				20-50/5	3314						5"	
OTE: 8800	- 85-										<u> </u>			
C 063	- 90-					34-50/6"	SS15							
GTIN	90						<u> </u>						6"	
(GPJ	- 95-													
REEK		Very dense, gray S	AND with silt - SP-SM			50/6"	SS16							
CAU C		Boring terminated a	at 100 feet.										S-6"	
- BODCAU CREEK.		GROUNDWATER D	ΔΤΔ	DRILLING				Drawn by:	JDM	Checl	ked by: ASI	M App	vd. by:	DMS
								Date: 8/1	4/19	Date:	11/4/19	Dat	e: 11/4/	19
от 03(ENC	<u>X</u> FREE WATER N OUNTERED DURING		AUGER <u>33/4</u> H						GEU.	TECHN	IUI	JUA	
ARDC				WASHBORING FR <u>BMF</u> DRILLER <u>J</u>						~ - V			E GROUNI	
J028499.03 ARDOT 030497				<u></u>										
J0284				HAMMER TYP				Boo	icau C	reek E	Bridge R ounty, A	eplac	ement as	t
				HAMMER EFFICIE					Lalay		ounty, A	a na115	43	
3 2002	REN	MARKS: Boring dri Ige deck located app	lled through appro	ximately 8-inch asp	ohalt a face a	nd conci	rete							
DRING		creek bed.	Si Shimatery JU ieet	above ground sun	aut d				LO	g of e	BORING	: BC-	5	
-OG OF BORING 2002 WL														
LOG									Pro	ject N	lo. J028	8499.	03	

0	20 Elevetter 226	Completion Data 8/10/19		<u>କି</u> ଅ		SH	EAR STRENGT	H, tsf
		Completion Date: 8/10/19	(7)	NTS /RQ		∆ - UU/2	○ - QU/2	🗆 - SV
	Datum NAVD 88		8/10/19 8/10/19 B/		1 _. 0 1 _. 5	2 _. 0 2 <u>.</u> 5		
I					PENETRATION	RESISTANCE		
ェ뇨			API		SAM		(ASTM D 1586)	
DEPTH IN FEET	DESCR	IPTION OF MATERIAL	GR	Р⊢Щ			ALUE (BLOWS PE ATER CONTEN	
<u>n</u>				DRY UN SPT E CORE F		PL	•	·
	Very soft to soft an	ay and brown to gray, FAT CLAY - CH				10 2	20 30	40 50
	· · · , · · · · · · · · , g.	.,						
- 5-								
- 10-				0-0-0	SS1			
	N			0.0.0	000			
- 15-	> sandy			0-0-2	SS2			
- 20-		n stiff, gray, sandy SILT - ML		1-0-0	SS3		•	
	∑ 79.1% passing No.	200 sieve						
- 25-				2-2-4	SS4			
- 30-				2-3-4	SS5		•	
- 35-	Medium dense, gra	y and tan SAND, little gravel - SP		10-12-16	SS6			
- 40-	Loose, gray and tar	GRAVEL, trace sand - GP		2-2-3	SS7			
			000	1				
- 45-	Stiff to very stiff, gra	ay, sandy, FAT CLAY - CH		6-7-9	SS8			
- 50-				8-12-17	SS9		•	
50								7
- 55-	Very dense, gray, S	ILTY SAND - SM		14-26 -50/5"	<u>SS10</u>			1
- 60-					, SS11,			
00-					<u></u>			6"
- 65-								
- 70-				38-50/2"	SS12			
10-								2"
- 75-								
- 80-	Verv dense. arav C	LAYEY SAND, trace gravel - SC		17-27-30	SS13			
- 00	Boring terminated a							
- 85-								
- 90-								
30-								
- 95-								
-100-								
100-								
						Drawn by: JDM	Checked by: ASN	App'vd. by: DMS
	GROUNDWATER D	<u>AIA</u> <u>DRILLII</u>	NG DATA			Date: 8/14/19	Date: 11/4/19	Date: 11/4/19
			4 HOLLO	W STEM			PENTEPIIN	
ENC	OUNTERED DURING	WASHBORING					GEOTECHN	ROM THE GROUND UP
		BMF DRILLER						
		<u>CME 550</u>				Bodcau (Creek Bridge Re	placement
							ette County, Ar	
REN	MARKS Boring dri	HAMMER EFF Iled through approximately 8-inch			rete			
brid	lge deck located ap	proximately 35 feet above ground	surface a	nd	CIC	10	G OF BORING:	BC- 6
арр	roximately 8 feet int	o creek bed.						<u> </u>
							ject No. J028	400.02
						Dro		7 UU 11'S

		ce Elevation: <u>235</u> Datum <mark>NAVD 8</mark> 8	Completion Date: 8/6/19	SRAPHIC LOG	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS CORE RECOVERY/RQD	SAMPLES	∆ - UU/2 0,5 1	PENETRATION	□ - SV 2.0 2,5
DEDTU		DESCR	IPTION OF MATERIAL	GRAP	DRY UNIT SPT BLO CORE REC	SAN	PL W	(ASTM D 1586) ALUE (BLOWS PE ATER CONTENT 20 30 4	
		Gray GRAVEL with	sand - GP		1-1-3	SS1			
E	5-	Very loose, black S	AND and gravel, trace roots - SP		2-2-1	SS1 SS2			
	5			⊻	2-0-1	SS3			
E	10-	Very loose, gray, Cl	AYEY SAND - SC		0-1-1	SS4			
E	15-				0-0-3	SS5			•
E	15						1		
E	20-	Stiff to soft, gray, sa	ndy, FAT CLAY - CH		6-6-7	SS6		• • • • • • • • • • •	
, E	25-				1-1-2	SS7			
	25					, <u> </u>	1		
OSES	30-	Very loose, gray, Cl	AYEY SAND - SC		0-0-1	SS8			
GRAPHIC LOG FOR ILLUSTRATION PURPOSES ONLY.	35-	Loose, gray, SILTY	SAND - SM		3-3-5	SS9			
	00								
TRAT	40-				4-6-4	<u>SS10</u>			
L	45-	Medium dense, grav	/ SAND, trace gravel - SP		14-13-14	SS11			
FOR									
	50-	Very stiff to hard, br CLAY, some sand -	own and gray to gray and brown, FA (CH)	т	9-9-9	<u>SS12</u>			
PHIC	55-		、 ,		8-12-14	SS13		• • • • • • • • • • • • •	
GRA						1			
NAL.	60-				10-12-19	<u>SS14</u>	│ <u></u> │		
MAY BE GRADUAL.	65-								
	70-	Very dense, gray an	d black, SILTY SAND - SM		36-50/6"	<u>SS15</u>			6"
	75-								
N94									
9月1	80-	Boring terminated a	t 80 feet.		28-50/4"	<u>SS16</u>			4"
GTINC 0638909GPUE 7289N911	85-								
0638									
3TINC	90-								
GPJ 0	95-								
Η̈́ Η									
U CR	100-								
ODCA							Drawn by: JDM	Checked by: ASM	App'vd. by: DMS
97 - B		GROUNDWATER D	ATA DR	RILLING DATA			Date: 8/14/19	Date: 11/4/19	Date: 11/4/19
J028499.03 ARDOT 030497 - BODCAU			AUGER	<u>3 3/4</u> HOLLO	W STEM			οεατεοιιν	01007=
RDOT	EN	COUNTERED AT <u>7</u> F		RING FROM <u>10</u>				GEOTECHN	ULULI (STATES)
.03 A				LER JDM LO				•	
2849(<u>550X</u> DRILL R MER TYPE <u>Aut</u>				Creek Bridge Re	
				REFFICIENCY			Lafay	ette County, Arl	kansas
OG OF BORING 2002 WL	REM	IARKS:			/*		LO	g of Boring:	BC- 7
LOG OF							Pro	ject No. J0284	499.03

Surfa	ce Elevation: 237 Completion Date:	8/8/19	s S QD			EAR STRENGTH				
			DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS CORE RECOVERY/RQD	0	∆ - UU/2 0.5 1	○ - QU/2 .0 1.5 2	□ - SV .0 2.5			
	Datum NAVD 88			SAMPLES						
		АРН		AMF		(ASTM D 1586)				
DEPTH IN FEET	DESCRIPTION OF MA			S	▲ N-VALUE (BLOWS PER FOOT)					
ΔN			SOR SP		PL	ATER CONTENT	, % 0 50			
	Gray GRAVEL with sand - GP		1-1-0	SS1	· · · · · · · · · · ·					
— 5—	Very loose to loose, brown and gray to br SAND - SC	own, CLAYEY	0-1-1	SS1			•			
	wood debris		1-2-3	SS3						
- 10-	wood debris trace gravel		1-1-1	SS4						
- 15-	Medium stiff, gray, sandy, LEAN CLAY -	(CL)	1-2-5	SS5	▲ +●					
	Loose, gray, SILTY SAND, some clay - S	M	2-4-5	SS6						
- 20-	Loose, gray, SILTY SAND, some day - S		<u> </u>	, 330						
- 25-			6-4-1	SS7						
- 30-	Very soft, gray, sandy, FAT CLAY, trace s	silt - CH	0-0-0	SS8						
	58.4% passing No. 200 sieve									
— 35—	Loose to very loose, gray, SILTY SAND - 18.3% passing No. 200 sieve	SM	2-3-4	SS9						
- 40-			2-2-2	SS10						
<u> </u>	Medium dense, gray and black to tan and gravel - SP	I gray SAND, little	4-8-21	<u>SS11</u>						
- 50-			6-8-10	SS12						
	Stiff to hard, gray, FAT CLAY - CH		1-6-6	SS13						
- 55-	little silt, sand and gravel									
- 60 -	some silt		10-12-18	<u>SS14</u>						
- 65-										
	Very dense grov SILTY SAND SM		16 50/5"	QQ15						
— 70—	Very dense, gray, SILTY SAND - SM		16-50/5"	3315			5"			
- 75-										
- 80-	Very dense, gray, CLAYEY SAND - SC		21-26-36	SS16			6			
	Boring terminated at 80 feet.									
- 85-										
- 90-										
05										
— 95—										
-100-										
	GROUNDWATER DATA	DRILLING DATA	<u>L</u>		Drawn by: JDM Date: 8/14/19	Checked by: ASM Date: 11/4/19	App'vd. by: DMS Date: 11/4/19			
		AUGER <u>3 3/4</u> HOLLC	W STEM			ορατροιικά				
ENC	OUNTERED DURING DRILLING	WASHBORING FROM <u>10</u>				GEOTECHN	ULUUY S			
		BMF_DRILLER JDM_L								
		<u>CME 550X</u> DRILL R HAMMER TYPE <u>Au</u>				reek Bridge Re				
		HAMMER EFFICIENCY			Lafayo	ette County, Ark	ansas			
REN	MARKS:				LO	g of Boring:	BC- 8			
REM					Bro	ject No. J0284	100 03			

	ce Elevation: <u>241</u> Completion Date: <u>8/8/19</u> Datum <mark>NAVD 8</mark> 8	GRAPHIC LOG	/EIGHT (pcf) / COUNTS DVERY/RQD	SAMPLES	∆ - UU/2 0 _i 5 1	EAR STRENGTH O - QU/2 0 1,5 2 PENETRATION	□ - SV 2.0 2,5				
DEPTH IN FEET	DESCRIPTION OF MATERIAL	GRAPH	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS CORE RECOVERY/RQD	SAMI		(ASTM D 1586) ▲ N-VALUE (BLOWS PER FOOT) WATER CONTENT, %					
	TOPSOIL: 3 inches of grass with brown silt		1-1-1	SS1			40 50				
- 5-	Loose to very loose, gray and brown to orange and gray, SILTY SAND - SM		1-2-3	SS2							
		⊻	3-3-5	SS3							
<u> </u>			<u> - -2</u>	, 334							
- 15-			1-2-1	SS5							
- 20-	Loose, gray, CLAYEY SAND - SC		1-2-3	SS6							
- 25-	Medium dense, gray, SILTY SAND, trace clay - SM		7-8-9	<u>SS7</u>							
- 30-	Soft to very soft, gray, sandy, FAT CLAY - CH		1-2-2	SS8							
			0.0.1	000							
- 35-			0-0-1	SS9							
- 40-	Stiff, gray, sandy, LEAN CLAY - (CL)		1-4-5	SS10							
- 25- - 30- - 35- - 40- - 45- - 50- - 55-	Loose, gray, SILTY SAND - SM		3-3-5	SS11							
- 45-	Loose, gray, SILTT SAND - SW		. 3-3-5	3311							
- 50-	Medium dense, gray SAND with silt, trace gravel - SP-SM		14-16-14	SS12							
	Medium dense, tan and gray SAND, some gravel - SP		10-12-15	SS13							
- 55-			10 12 10								
- 60 -	Hard, gray, silty, FAT CLAY, little sand - CH		12-13-17	<u>SS14</u>							
- 65-											
- 60- - 65- - 70-							75				
— 70—	Very dense, gray, SILTY SAND - SM trace clay		16-25	<u>SS15</u>			11				
, - 75-											
				0040		•	79				
- 75- - 80- - 85- - 90-	Boring terminated at 80 feet.		25-29 -50/4"	<u>SS16</u>			10'				
- 85-											
<u> </u>											
- 95-											
					Drawn by: JDM	Checked by: ASM	App'vd. by: DMS				
	GROUNDWATER DATA DRILLIN				Date: 8/14/19	Date: 11/4/19	Date: 11/4/19				
100						GEOTECHN	UIUGY≅				
EN	COUNTERED AT <u>9</u> FEET ⊻ WASHBORING BMF_DRILLER						ROM THE GROUND UP				
	<u></u>										
	HAMMER 1				Bodcau C	Creek Bridge Re ette County, Arl	placement				
	HAMMER EFFI	CIENCY	<u>92</u> %		Laidy	one county, An					
REN	IARKS:				LO	g of Boring:	BC- 9				
					Pro	ject No. J0284	100 02				

				<u> </u>			;	SHE	AR S	TRENG	STH, 1	sf		
Surfa	ce Elevation: <u>256</u> Completion	n Date: 8/9/19	(ľ)	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS CORE RECOVERY/RQD		Δ-	UU/2		0	- QU/2			- S'	V
	DatumNAVD 88		SRAPHIC LOG	IGH Sour	ß	0	5	1,	0	1.5	2 ₁ 0		2 _. 5	
			НС	ME NO NO	SAMPLES	STA	NDAF	rd P		RATIC		SIS	TAN	ICE
포뇨			RAP	REC	SAI	(ASTM D 1586) ▲ N-VALUE (BLOWS PER FOOT)								
DEPTH IN FEET	DESCRIPTION O	FMATERIAL	G	Γ Π Π Π Π Π						CONTE			• /	
⊔≤				R NO			10	20)	30	40		50	ΗLL
	ASPHALT: 6 inches			10-8-7	SS1	•								
- 5-	Base Material: Brown and gray sil			3-4-6	SS2 ST3			: : 	<u> </u>	<u> </u>				::
	Loose, brown, SILTY, CLAYEY S			2-2-2	SS4		•							
<u> </u>	(SC-SM) 28.8% passing No. 200 sieve													
- 15-	Very loose, brown, gray and orang			3-4-6	SS5				<u> </u>	<u></u>				::
	Loose to very loose, gray and tan SAND - SM	to orange and gray, SILTY		4-3-3	SS6									
- 20-														
- 25-				3-3-3	SS7		<u> </u>	<u> </u>	•	<u></u>				
	little clay			1-1-1	SS8									
- 30-	intio olay													
- 35-	Soft to stiff, orange and gray, san 56.2% passing No. 200 sieve	dy SILT - ML			SS9		<u> </u>	::	•	<u></u>				::
	> b0.2 ∞ passing ino. 200 sievé			2-7-4	SS10									
- 40-					3310									
- 45-				4-5-6	<u>SS11</u>		A			<u></u>				
	Very soft, gray, silty, FAT CLAY -	СН		0-0-0	SS12				•					
- 50-														
- 55-	Loose, gray, CLAYEY SAND - SC			2-2-3	<u>SS13</u>		:::	::		<u>: : : :</u>			: : : : : :	::
	Very loose, gray, SILTY SAND, tr	ace clay - SM		2-1-2	SS14									
- 60-	38.5% passing No. 200 sieve													
- 65-	Very dense to medium dense, tan gravel - SP	and gray SAND, little		24-28-22	<u>SS15</u>		<u> </u>							<u> </u>
- 70-				7-10-10	SS16									
	Boring terminated at 70 feet.													
- 75-														
- 80-							<u> </u>		<u> </u>	<u> </u>				<u> </u>
- 85-														
- 90-							<u> </u>			<u></u>				
- 95-														
-100-						<u> </u>	<u> </u>	:::	<u> </u>	<u> </u>			<u> </u>	
	GROUNDWATER DATA	DRILLING DA	ΑΤΑ			Drawn	-		-	ed by: A		vp'vd	-	
	X FREE WATER NOT	AUGER <u>3 3/4</u> HO				Date: 8	5/14/19		1	11/4/19)ate: 1		
ENC	OUNTERED DURING DRILLING	WASHBORING FROM					Hے		ieo1	FECH	NO	LOC	Y	
		<u>BMF</u> DRILLER <u>JDI</u>					Ŭ		-			THE G		
		 CME 550X_DRII							_		_			
		HAMMER TYPE	Auto	<u>)</u>		B	odca	u Cr fave	eek E	Bridge bunty, /	Repla Arkaı	acen	nent	
		HAMMER EFFICIEN	ICY <u></u>	<u>92_</u> %			Lu			, y , 1	anal	.543		
REN	IARKS:						I	_OG	OF E	ORING	6: B(C-10		
							F	Proje	ect N	o. J02	2849	9.03		

	- 1 244	Completion Date: 8/6/19		<u></u>			SHEAR	STRENG	TH, ts	sf		
Surfa	ce Elevation: _ 244 _	Completion Date: <u>8/6/19</u>	g	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS CORE RECOVERY/RQD		∆ - UU/2		0 - QU/2		🗆 - SV		
	Datum <mark>NAVD 8</mark> 8		GRAPHIC LOG	É COL	SAMPLES	0.5 STANDAF		1 ₁ 5 FTRATIO	2 ₁ 0 N RE	2,5 SISTANCE		
- - -			APHI	EC0 €	AMF	STANDARD PENETRATION RESISTANCE (ASTM D 1586)						
DEPTH IN FEET	DESCR	IPTION OF MATERIAL	GR		S	▲ N-VALUE (BLOWS PER FOOT) WATER CONTENT, %						
ΠN				DRY COR		PL 10	20		40	، 50 ا ل		
		e and gray gravel and sand		3-4-3	SS1							
- 5-	Loose, gray GRAVE			2-2-3	SS2			<u> </u>				
		ense, gray and tan, SILTY SAND - SM		3-5-5	SS3							
<u> </u>				2-0-0	004							
- 15-	Soft to very soft, ora 12.4% passing No. 2	nge and gray, sandy SILT, little clay - ML		1-1-2	SS5				: :			
- 20-	12.470 passing No. 1			0-0-1	SS6			•				
- 25-	Very soft, gray, sand	dy, FAT CLAY - CH		0-1-0	SS7				: :			
- 30-	Medium dense, gray	/ SAND - SP		6-9-8	SS8				: :			
			7/77									
— 35—	Very soft to soft, gra	y, sandy, LEAN CLAY - (CL)		1-0-1	SS9							
- 40-				0-1-2	SS10							
	Loose, gray SAND v	with clav - SP-SC		6-6-4	SS11							
- 45-	LOUGE, gray OAND			0-0-4								
- 50-	Dense, gray SAND Boring terminated a			15-17-18	SS12				: : : :			
- 55-	Boring terminated a	l 50 leel.										
- 60 -									: :			
- 65-								<u> </u>		<u> </u>		
— 70—												
— 75—								<u> </u>	: :	<u> </u>		
- 80-									: :			
- 85-									: : : :			
- 90-												
— 95 —												
-100-								<u> </u>		· · · · · · · ·		
	GROUNDWATER D	ATA DRILLIN	G DATA			Drawn by: JD		ecked by: AS		p'vd. by: DMS		
		AUGER <u>3 3/</u> 4		W STFM		Date: 8/14/19		te: 11/4/19		ate: 11/4/19		
EN	ICOUNTERED AT <u>9</u> F						GE	OTECH		.OGYZ		
	—	BMF_DRILLER								THE GROUND UP		
		<u>CME 550X</u>	DRILL R	IG		Dodoo		k Bridge F	Donla	comon ^t		
		HAMMER 1				La	fayette	County, A	rkan	Sas		
REN	MARKS:	HAMMER EFFI	CIENCY _	<u>92_</u> %								
						1	_OG OF	BORING	: BC	-11		
						F	Proiect	No. J02	8499	03		

Surface Elevation:		te: 3/14/19	DG	HT (pcf) UNTS {Y/RQD	~	∆ - UU/2	C - QU/2	🗆 - SV
Datum <mark>NAVD</mark> : 王 ं			GRAPHIC LOG	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS CORE RECOVERY/RQD	SAMPLES	STANDARD	0 1,5 2 PENETRATION (ASTM D 1586) LUE (BLOWS PE	
DEPTH IN FEET	ESCRIPTION OF N	IATERIAL	0	SPT I SPT I CORE		PI W		
ASPHALT				10-6-18	SS1			
	ial: 8.5 inches of black san medium stiff, gray SILT - N			8-3-4	SS2			
trace grav				2-0-1	SS3 SS4			
trace roots								
	nd white SILT, trace clay - inated at 15 feet.	ML		3-4-8	SS5			
- 20-								
- 25-								
- 35-								
- 40-								
- 45-								
- 50-								
- 55-								
- 60-								
- 65-								
— 70—								
- 75-								
- 80-								
- 85-								
- 90-								
- 95-								
<u> 100 </u>								
GROUNDW		DRILLING I				Drawn by: JDM	Checked by: ASM	
<u>X</u> FREE W		AUGER <u>33/4</u> H		W STFM		Date: 3/18/19	Date: 11/4/19	Date: 11/4/19
ENCOUNTERED		WASHBORING FRO					GEOTECHN	
		<u>BF</u> DRILLER <u>JD</u>					F	ROM THE GROUND UP
		<u>CME 55</u> DRI HAMMER TYP				Bodcau C	reek Bridge Re	placement
		HAMMER EFFICIE				Lafay	ette County, Arl	kansas
REMARKS:					LOG OF BORING: BO			BC-12
						Due	ject No. J0284	

Surfa	ce Elevation: _256 _	Completion Date:	(J)	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS CORE RECOVERY/RQD		S⊓ ∆ - UU/2	EAR STRENGTH O - QU/2	l, tst □ - SV
	Datum NAVD 8 8		GRAPHIC LOG	ER 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ES	0 _. 5 1	1 _. 0 1 <u>.</u> 5 2	0 2.5
			9		SAMPLES	STANDARD	PENETRATION	RESISTANCE
ェ뉴			(AP)		SAN		(ASTM D 1586)	
DEPTH IN FEET	DESCR	PTION OF MATERIAL	5				ALUE (BLOWS PE	KF001)
Ξz				COR		PI	•	, 70 0 50 LI
	ASPHALT: 2 inches			2-3-3	SS1			
— 5—		ches of black sand, trace gravel		1-3-4	SS2			
	Medium stiff, brown	and gray, sandy, LEAN CLAY, trace		2-2-2	SS3	A		
- 10-	68.7% passing No.			1-2-3	SS4			
		gray, CLAYEY SAND, little silt - SC gray and tan SILT - ML	_/	2-2-4	SS5			
- 15-	trace clay	gray and tan SIET - ME			335			
- 20-	Boring terminated a	15 feet.						
— 25—								
— 30—								
— 35—								
40								
- 45-								
<u> </u>								
- 55-								
- 60 -								
- 65-								
— 70—								
— 75—								
- 80-								
- 85-								
— 90—								
90								
— 95—								
400								
-100-								
						Drawn by: JDM	Checked by: ASM	App'vd. by: DMS
	GROUNDWATER DA	ATA DRILL	ING DATA			Date: 3/18/19	Date: 11/4/19	Date: 11/4/19
	X FREE WATER N		<u>3/4</u> HOLLO	W STEM			οΓοτεοιιν	
ENC	OUNTERED DURING I	ORILLING WASHBORIN	IG FROM	FEET			GEOTECHN	
		<u>BF</u> DRILLEF	R <u>JDM</u> LC	GGER			FK	OM THE GROUND UP
			5_DRILL RIG			Bodoou	creek Bridge Re	alacomont
			R TYPE <u>Au</u>			Lafay	ette County, Ark	ansas
REM	MARKS:	HAMMER EF	FICIENCY	<u>90_</u> %				
				LOG OF BORING: BC-13			BC-13	
							ject No. J0284	

Surfac	ce Elevation: _ 256 _	Completion Date:3/14/19		(pcf) TS RQD		Δ	- UU/			Strenc	STH,		- SV	,
1	Datum NAVD 8 8		GRAPHIC LOG	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS CORE RECOVERY/RQD	ES		0 _. 5	1	0	1,5	2,0		2 _. 5	
			HIC		SAMPLES	ST	ANDA	ARD I				ESIS	TANC	Э
E []	55005		RAF	BLO	SAI			N-VA		TM D 158 (BLOWS		FOO	T)	
DEPTH IN FEET	DESCR	PTION OF MATERIAL	0	SPT SPT ORE		PL				CONTE				
	ASPHALT: 2.5 inche			δŬ			10	2	20	30	40)	50	
		ches of black sand with silt, trace gravel		7-7-6	SS1 SS2					H				
- 5-	Medium dense, brow	vn and gray, CLAYEY SAND, little gravel		2-2-5	SS2 SS3									
- 10-	23.5% passing No. 2			1-1-2	SS4		:::: ::::					· · · ·		<u>: :</u> : :
- 15-	Loose to very loose,	r, SILTY SAND - SM / gray and brown to gray, CLAYEY SAND /		2-3-2	SS5		<u> </u>					<u> </u>		
	Loose, gray, SILTY	SAND - SM												
- 20-	Boring terminated at													
- 25-							<u> </u>					<u> </u>		<u> </u>
- 30-														
- 35-														
- 40-												<u> </u>		<u> </u>
- 45-							<u> </u>					<u> </u>		
- 50-														
- 55-							<u> </u>					<u> </u>		
- 60 -							<u> </u>					<u> </u>		
- 65-														
- 70-							:::: ::::					:::: ::::		::
- 75-							<u> </u>							<u> </u>
- 80-														
- 85-							<u> </u>	<u> </u>				<u> </u>		: : : :
- 90-							<u> </u>					<u> </u>		<u> </u>
- 95-														
95-														
-100-							:::: ::::					<u> </u>		::
						Draw	n by: 、			cked by: A	5 I SM	App'vd	by: D	<u></u>
	GROUNDWATER DA	ATA DRILLING	DATA				3/18/		_	e: 11/4/19		App vu Date: 1		
FNCC	X FREE WATER NO								նես	TECH	NU	ו ה ו	;y≥	E
		WASHBORING F							uLU			M THE G		
		<u></u>						-						
		HAMMER TY								Bridge County,				
		HAMMER EFFIC	IENCY _	<u>90_</u> %						· ···· · ,				
KEN	IARKS:				LOG OF BORING: BC-14									
										No. J0				

	e Elevation: <u>256</u> Datum <mark>NAVD 8</mark> 8	Completion Date:3/14/19	GRAPHIC LOG	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS CORE RECOVERY/RQD	SAMPLES	∆ - UU/2 0 _. 5	2 1 ₁		H, tsf □ - SV 2 ₁ 0 2 ₁ 5 RESISTANCE
DEPTH IN FEET	DESCR	IPTION OF MATERIAL	GRAPI	SPT BLOV	SAM	PL I	WA	(ASTM D 1586) UE (BLOWS PE	T, %
	ASPHALT: 10 inche	S				10	2	0 30 · · · · · · · · · ·	40 50
		sand, trace gravel and silt		3-4-7 2-2-3	SS1 SS2				
— 5—	· · · · · · · · · · · · · · · · · · ·	wn, CLAYEY SAND - SC		2-2-3	SS2 SS3				
- 10-	Soft, gray, sandy, LE Soft, gray SILT - ML			2-1-3	SS4				
10									
- 15-		LTY SAND, trace clay - SM		1-2-2	SS5		::		
	Boring terminated a	t 15 feet.							
_ 20-									
- 25-									
20									
— 30—							::	<u> </u>	
— 35—									
— 40—								<u></u>	
40-									
- 45-									
-25- -30- -40- -45- -55- -60- -65- -70-									
- 50-							::		
- 55-									
- 60-									
- 65-							::		
— 70—									
— 75—									
- 80-									
- 75- - 80- - 85-							::		
- 90-									
- 95-							::		
-100									
9	GROUNDWATER D	ATA DRILI	ING DATA			Drawn by: JE Date: 3/18/1		Checked by: ASM Date: 11/4/19	App'vd. by: DMS Date: 11/4/19
	X FREE WATER N	OT AUGER	3/4 HOLLO	W STEM				1	
ENCC								GEOTECHN	ULUGY롱
		BF_DRILLEF							ROM THE GROUND UP
			5 DRILL RIC						
ENCC			R TYPE Aut			Bodca	au Ci	reek Bridge Re	placement
		HAMMER EI				La	naye	tte County, Ar	ndiisds
REM	IARKS:		-				LOG	OF BORING:	BC-15
							Proi	ect No. J028	499 03

	B	ORING	LOG:	TER	MS AN	D SYMBOL	S				
	LEGE	END				Plasticity Ch	art				
CS	Continuous	Sampler			80 %						
GB	Grab Samp	le			70 %						
NQ	NQ Rock C	ore			60 %		UTU "Ane a				
PST	Three-Inch	Diameter Pi	ston Tube \$	Sample	50 %		СН				
SS		n Sample (St					CH CH Subject CH CH Subject CH Subject CH CH Subject CH				
ST		Diameter Sh		Sample	30 %		- HM				
*	Sample No	t Recovered			20 %						
PL		it (ASTM D4	,		10 %						
LL		: (ASTM D43	,		0%	10 % 20 % 30 % 40 % 50 % 60 % Liquid Limit	% 70 % 80 % 90 % 100 % 110 %				
SV		ngth from Fie	•		,						
UU		-				ompression Test (ASTI	M D2850)				
QU	Shear Stree	ngth from Ur				/I D2166)					
			ę	SOIL GRA	IN SIZE						
				US STANDA	RD SIEVE						
	12	2" 3	3, 3,	/4" 4	1 10) 40 20	00				
BOULD	JEBS	COBBLES		AVEL		SAND	SILT CLAY				
DOOLL			COARSE		COARSE						
	30	10 76			76 2.0		74 0.005				
					N MILLIMETER						
			FIED SO	1	IFICATIO	N SYSTEM					
	Major Di			Symbol		Description					
00%	Gravel	Clean C		GW		Gravel, Gravel- Sand Mi					
าec า 5 r . 2 .	and	Little or r		GP	-	Poorly-Graded Gravel, Gravel-Sand Mixture					
air'air' har No ze	Gravelly	Grave		GM		Gravel-Sand-Silt Mixture					
barse-Grain (More than er than No. Sieve Size)	Soil	Apprecial		GC	Clayey-Grav	el, Gravel-Sand-Clay Mix	ture				
se lor th: eve	Sand and	Clean		SW		Sand, Gravelly Sand					
Coarse-Grained Soils (More than 50% Larger than No. 200 Sieve Size)	Sand and Sandy	Little or r	no Fines	SP	Poorly-Grade	ed Sand, Gravelly Sand					
C. C.	-	Soils Sands With		SM Silty Sand, Sand-Silt Mixture							
	00115	Apprecial	ole Fines	SC	Clayey-Sand	I, Sand-Clay Mixture					
ls	Silts and	Liquid	Limit	ML	Silt, Sandy S	Silt, Clayey Silt, Slight Pla	sticity				
Soi Nc Ze	Clays	Less T		CL	Lean Clay, S	Sandy Clay, Silty Clay, Lo	w to Medium Plasticity				
ed n 5 an Si	Clays	Less II	1411 30	OL	Organic Silts	or Lean Clays, Low Plas	ticity				
aine tha eve		ا من بنام	Lineit	MH	Silt, High Pla	asticity					
Gra Si Ile	Silts and	Liquid Greater		СН	Fat Clay, Hig	h Plasticity					
-ər Mo 1ma	Clays	Greater	man 50	OH	Organic Clay	/, Medium to High Plastic	ity				
Fine-Grained Soils (More than 50% Smaller than No. 200 Sieve Size)	High	nly Organic S	Soils	PT	Peat, Humus	s, Swamp Soil					
	STRENG	TH OF CO	OHESIVE	SOILS	-	DENSITY OF GF	ANULAR SOILS				
		Undraine			ed Comp.		Approximate				
Consis	tency	Streng			, th (tsf)	Descriptive Term	N ₆₀ -Value Range				
Very	Soft	less tha			en 0.25	Very Loose	0 to 4				
So		0.125 t	o 0.25	0.25	to 0.5	Loose	5 to 10				
Mediun	n Stiff	0.25 t	o 0.5	0.5 1	o 1.0	Medium Dense	11 to 30				
Sti	ff	0.5 to	o 1.0	1.01	io 2.0	Dense	31 to 50				
Very	Stiff	1.0 to	o 2.0	2.01	o 3.0	Very Dense	>50				
Hai	rd	greater t	han 2.0	greater	than 4.0						
						N = 7 + 9 = 16). Value	es are shown as a				
summation o	n the grid pl	ot and show	n in the Un	it Dry Weigh	nt/SPT colum	าท.					
REL	ATIVE CO	OMPOSITI	ON			OTHER TERMS					
Trac	ce	0 to	10%	Layer - Inc	lusion greate	er than 3 inches thick.					
Litt	le	10 to				ich to 3 inches thick					
Son	ne	20 to		-		than 1/8-inch thick					
An	d	35 to	50%	Pocket - In	clusion of m	aterial that is smaller th	nan sample diameter				
	EOTECHNOI From		visual descri	otions and are		only. If laboratory tests we	designations are based on re performed to classify the				

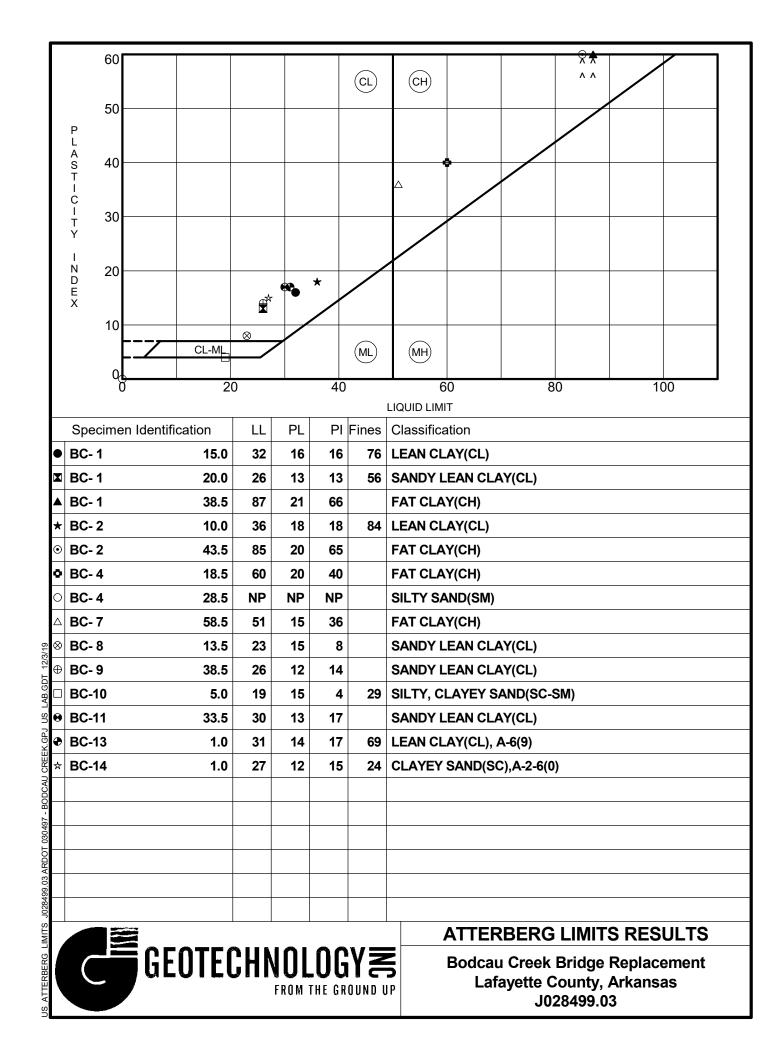
APPENDIX D – LABORATORY TEST DATA

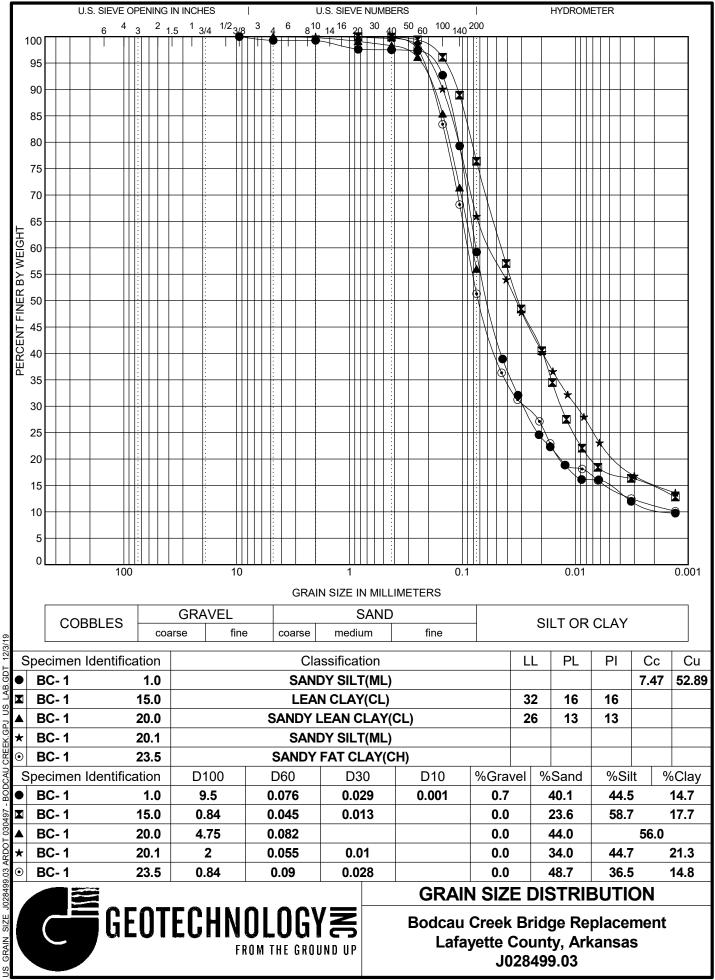
Atterberg Limits

Grain Size Distributions

Unconsolidated-Undrained Triaxial Compression

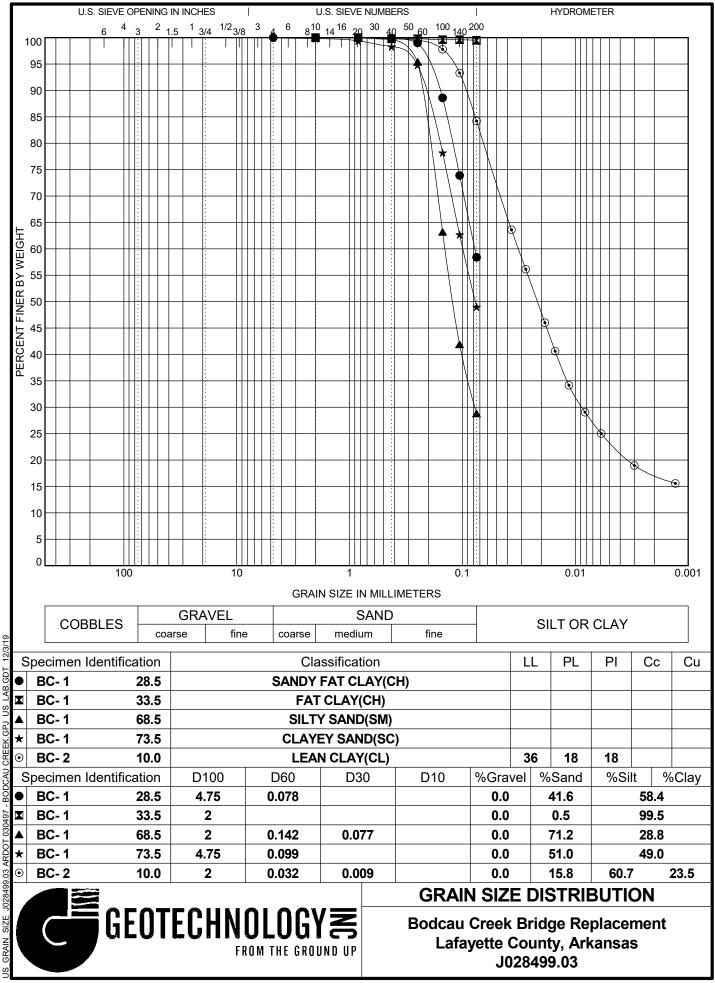
One-Dimensional Consolidation

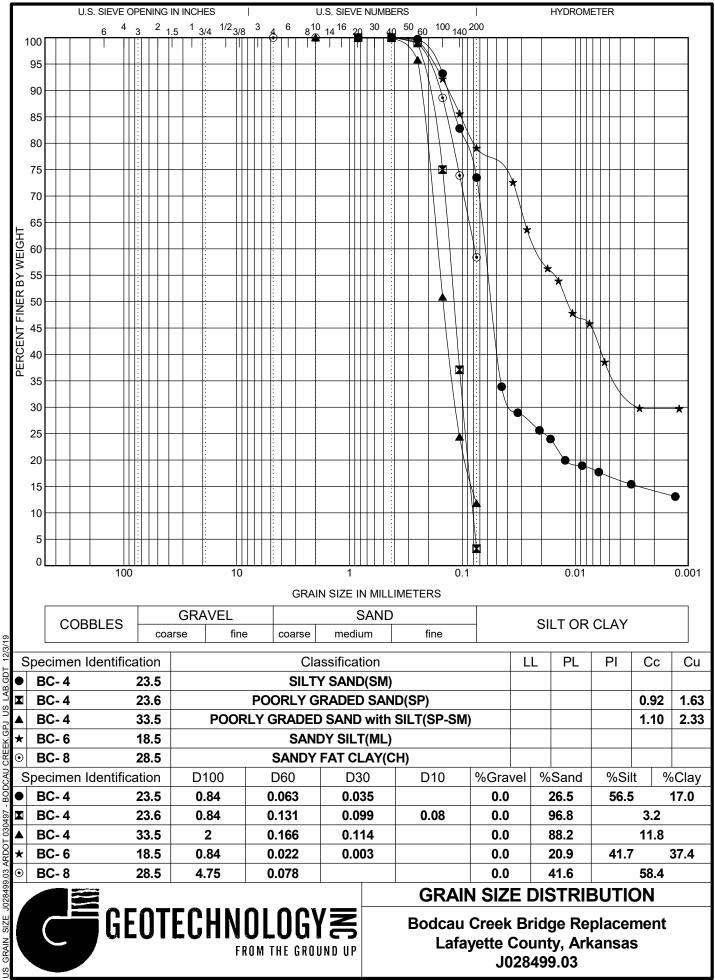

Direct Shear


Resistivity

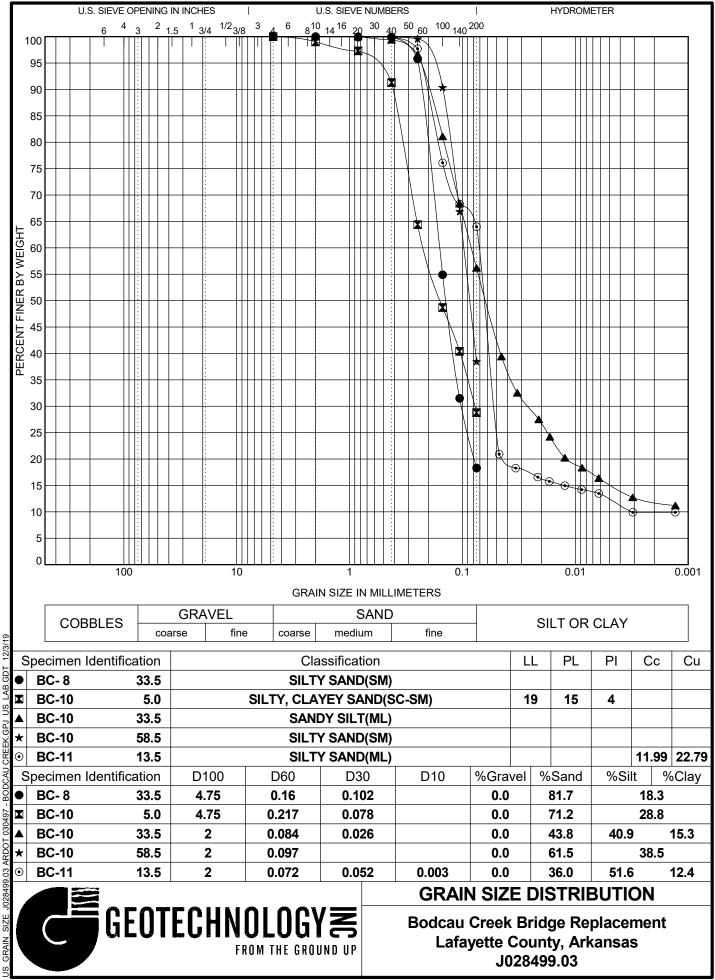
pН

Standard Proctor Curves

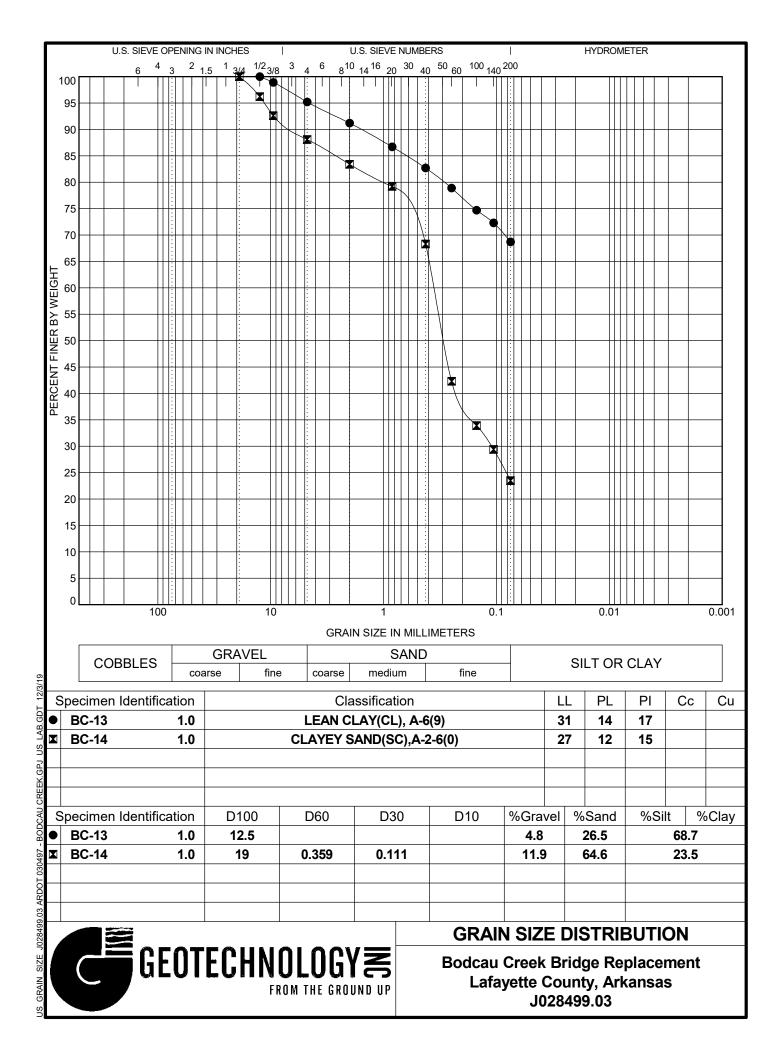

CBR Results

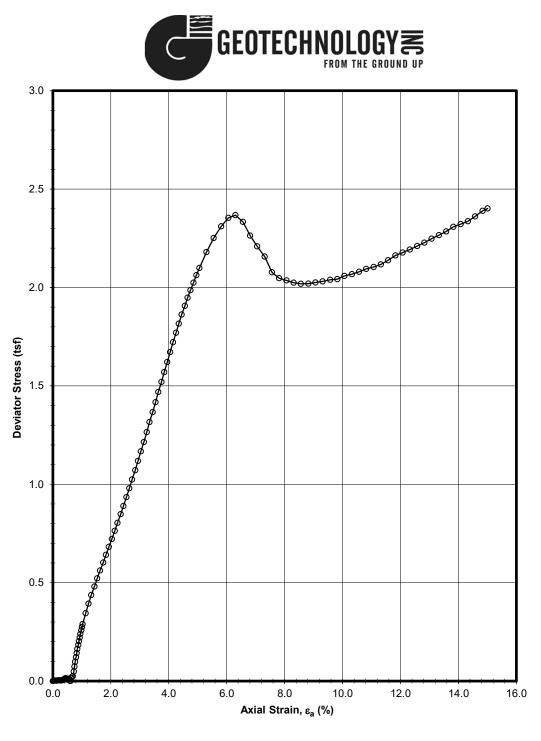

AR GDT ġ d C **XTTR** RODCALI 130497 **ARDO** ĉ 028499 SIZE

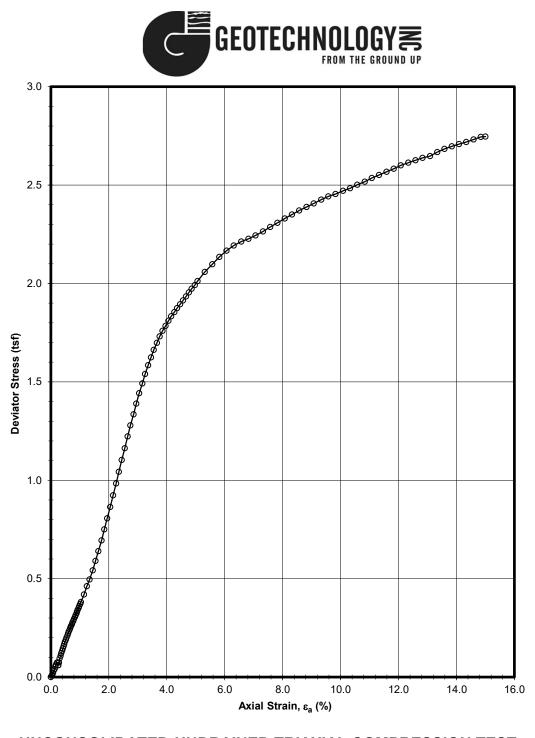
GRAIN


AR GDT ġ d C C **XTTR** RODCALI 130497 **ARDO** ĉ 028499

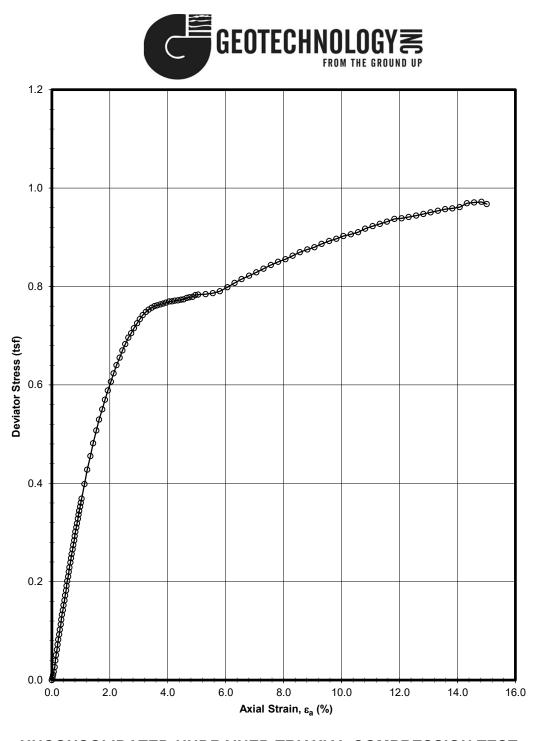
SIZE GRAIN


L L L L 2 C R F F K 30497 **ARDO** ĉ 028499

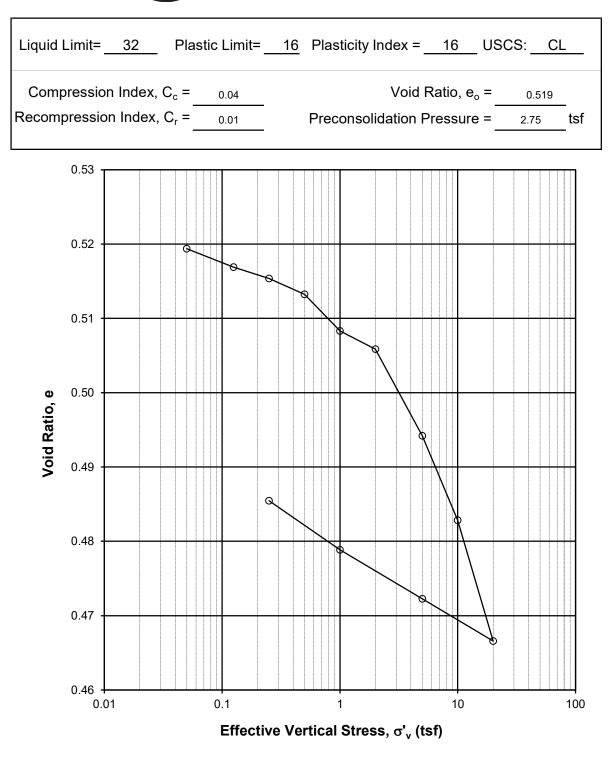

SIZE GRAIN


AR GDT ġ **XTTR** RODCALI 130497 **ARDO** ĉ 028499 SIZE

GRAIN

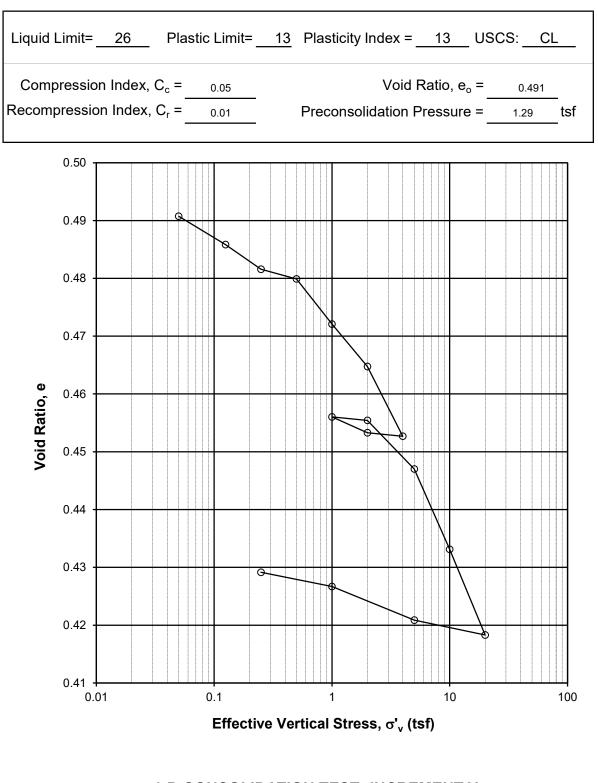


UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST ASTM D 2850 Project No.: J028499.03 Boring: BC-1 Sample: ST-6 - Depth: 15 ft.



UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST ASTM D 2850 Project No.: J028499.03 Boring: BC-1 Sample: ST-8 - Depth: 20 ft.

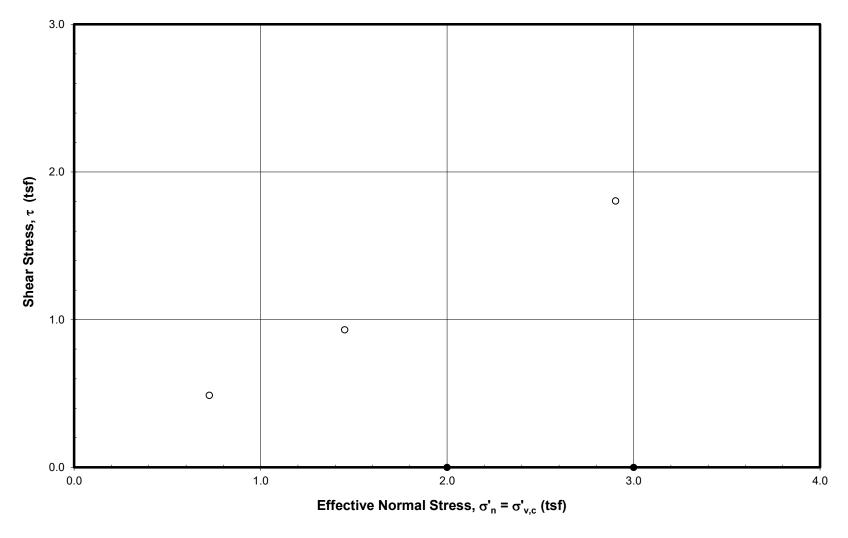
UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST ASTM D 2850 Project No.: J028499.03 Boring: BC-2 Sample: ST-5 - Depth: 10 ft.



1-D CONSOLIDATION TEST: INCREMENTAL

ASTM D 2435 Project No.: J028499.03 Boring: BC-1 Sample: ST-6 - Depth: 15.0

J028499.03_BC-1_ST-6Inc@2Results.xls, VoidPlot, 12/6/2019



1-D CONSOLIDATION TEST: INCREMENTAL

ASTM D 2435 Project No.: J028499.03 Boring: BC-1 Sample: ST-8 - Depth: 20.0

J028499.03_BC-1_ST-8Inc@4Results.xls, VoidPlot, 12/3/2019

DRAINED DIRECT SHEAR TEST ASTM D 3080 Boring: BC-2 Sample: ST-5 -Depth: 10.0ft

Project No.:	J028499.03	January 6, 2020
Project Name:	ARDOT 030497 Bridge Replacement over Bodcau Creek	Page 1 of 1
Boring Number:	BC-1	
Sample ID:	SS- 1-4	
Depth (ft):	1.0'	

MINIMUM LABORATORY SOIL RESISTIVITY AASHTO T288

<u>Reading</u>	Resistance Measurement	Soil Box Factor (cm)	Soil Resistivity (ohms-cm)	Moisture Content (%)
#1	20,000	0.57	11,400.00	11.0
#2	13,000	0.57	7,410.00	17.7
#3	14,000	0.57	7,980.00	22.8

Minimum Soil Resistivity 7,410.00

FROM THE GROUND UP

TEST REPORT

Prepared For: Garver USA 4701 Northshore Drive North Little Rock, Arkansas 72118

Project No.:	J028499.03	October 17, 2019
Project Name:	ARDOT 030497 Bridge Replacement over Bodcau Creek	Page 1 of 1
Boring Number:	BC-1	
Sample ID:	ST-6	
Depth (ft):	15	

MINIMUM LABORATORY SOIL RESISTIVITY AASHTO T288

<u>Reading</u>	Resistance Measurement	Soil Box Factor (cm)	Soil Resistivity (ohms-cm)	Moisture Content (%)
#1	49,000	0.57	27,930.00	10.6
#2	24,000	0.57	13,680.00	17.6
#3	22,000	0.57	12,540.00	25.3
#4	23,000	0.57	13,110.00	28.2

Minimum Soil Resistivity <u>12,540.00</u>

TEST REPORT

Prepared For: Garver USA 4701 Northshore Drive North Little Rock, Arkansas 72118

Project No.:	J028499.03	October 2, 2019
Project Name:	ARDOT 030497 Bridge Replacement over Bodcau Creek	Page 1 of 1
Boring Number:	BC-1	
Sample ID:	ST-8	
Depth (ft):	20	

MINIMUM LABORATORY SOIL RESISTIVITY AASHTO T288

<u>Reading</u>	Resistance Measurement	Soil Box Factor (cm)	Soil Resistivity (ohms-cm)	Moisture Content (%)
#1	16,000	0.57	9,120.00	10.7
#2	15,000	0.57	8,550.00	18.4
#3	16,000	0.57	9,120.00	25.2

Minimum Soil Resistivity 8,550.00

Project No.:	J028499.03	January 6, 2020
Project Name:	ARDOT 030497 Bridge Replacement over Bodcau Creek	Page 1 of 1
Boring Number:	BC-1	
Sample ID:	SS- 9-12	
Depth (ft):	23.5'	

MINIMUM LABORATORY SOIL RESISTIVITY AASHTO T288

<u>Reading</u>	Resistance Measurement	Soil Box Factor (cm)	Soil Resistivity (ohms-cm)	Moisture Content (%)
#1	2,600	0.57	1,482.00	12.0
#2	1,600	0.57	912.00	19.5
#3	1,700	0.57	969.00	25.2

Minimum Soil Resistivity 912.00

= FROM THE GROUND UP ====

TEST REPORT

Prepared For: Garver USA 4701 Northshore Drive North Little Rock, Arkansas 72118

Project No.:	J028499.03	January 3, 2020
Project Name:	ARDOT 030497 Bridge Replacement over Bodcau Creek	Page 1 of 1
Boring Number:	BC-1	
Sample ID:	SS-16-18	
Depth (ft):	58.5	

MINIMUM LABORATORY SOIL RESISTIVITY AASHTO T288

Reading	Resistance <u>Measurement</u>	Soil Box Factor (cm)	Soil Resistivity (ohms-cm)	Moisture Content (%)
#1	7,200	0.57	4,104.00	10.2
#2	4,100	0.57	2,337.00	16.5
#3	3,700	0.57	2,109.00	23.0
#4	3,800	0.57	2,166.00	30.4
	Minimum Soil	Resistivity	<u>2,109.00</u>	

Project No.:	J028499.03	January 6, 2020
Project Name:	ARDOT 030497 Bridge Replacement over Bodcau Creek	Page 1 of 1
Boring Number:	BC-2	
Sample ID:	SS- 8-11	
Depth (ft):	23.5'	

MINIMUM LABORATORY SOIL RESISTIVITY AASHTO T288

<u>Reading</u>	Resistance <u>Measurement</u>	Soil Box Factor (cm)	Soil Resistivity (ohms-cm)	Moisture Content (%)
#1	2,400	0.57	1,368.00	13.1
#2	1,200	0.57	684.00	21.8
#3	1,100	0.57	627.00	27.7
#4	1,200	0.57	684.00	35.4

Minimum Soil Resistivity <u>627.00</u>

TEST REPORT

Prepared For: Garver USA 4701 Northshore Drive North Little Rock, Arkansas 72118

Project No.:	J028499.03	January 6, 2020
Project Name:	ARDOT 030497 Bridge Replacement over Bodcau Creek	Page 1 of 1
Boring Number:	BC-5	
Sample ID:	SS- 4-6	
Depth (ft):	18.5'	

MINIMUM LABORATORY SOIL RESISTIVITY AASHTO T288

<u>Reading</u>	Resistance Measurement	Soil Box Factor (cm)	Soil Resistivity (ohms-cm)	Moisture Content (%)
#1	18,000	0.57	10,260.00	10.0
#2	11,000	0.57	6,270.00	16.7
#3	10,000	0.57	5,700.00	23.2
#4	11,000	0.57	6,270.00	31.0

Minimum Soil Resistivity 5,700.00

Project No.:	J028499.03	January 8, 2020
Project Name:	ARDOT 030497 Bridge Replacement over Bodcau Creek	Page 1 of 1
Boring Number:	BC-5	
Sample ID:	SS- 7-10	
Depth (ft):	33.5'	

MINIMUM LABORATORY SOIL RESISTIVITY AASHTO T288

<u>Reading</u>	Resistance <u>Measurement</u>	Soil Box Factor (cm)	Soil Resistivity (ohms-cm)	Moisture Content (%)
#1	5,600	0.57	3,192.00	12.0
#2	2,300	0.57	1,311.00	18.2
#3	1,800	0.57	1,026.00	25.2
#4	1,500	0.57	855.00	33.4
#5	1,600	0.57	912.00	44.6

Minimum Soil Resistivity 855.00

Project No.:	J028499.03	January 8, 2020
Project Name:	ARDOT 030497 Bridge Replacement over Bodcau Creek	Page 1 of 1
Boring Number:	BC-6	
Sample ID:	SS- 3-5	
Depth (ft):	18.5'	

MINIMUM LABORATORY SOIL RESISTIVITY AASHTO T288

<u>Reading</u>	Resistance <u>Measurement</u>	Soil Box Factor (cm)	Soil Resistivity (ohms-cm)	Moisture Content (%)
#1	16,000	0.57	9,120.00	10.3
#2	6,500	0.57	3,705.00	19.0
#3	5,500	0.57	3,135.00	26.1
#4	5,900	0.57	3,363.00	35.8

Minimum Soil Resistivity <u>3,135.00</u>

Project No.:	J028499.03	January 9, 2020
Project Name:	ARDOT 030497 Bridge Replacement over Bodcau Creek	Page 1 of 1
Boring Number:	BC-7	
Sample ID:	SS- 4-6	
Depth (ft):	8.5'	

MINIMUM LABORATORY SOIL RESISTIVITY AASHTO T288

<u>Reading</u>	Resistance Measurement	Soil Box Factor (cm)	Soil Resistivity (ohms-cm)	Moisture Content (%)
#1	7,700	0.57	4,389.00	10.3
#2	2,600	0.57	1,482.00	19.0
#3	2,400	0.57	1,368.00	26.1
#4	2,500	0.57	1,425.00	35.8

Minimum Soil Resistivity <u>1,368.00</u>

FROM THE GROUND UP

Project No.:	J028499.03	January 10, 2020
Project Name:	ARDOT 030497 Bridge Replacement over Bodcau Creek	Page 1 of 1
Boring Number:	BC-7	
Sample ID:	SS- 12-14	
Depth (ft):	48.5'	

MINIMUM LABORATORY SOIL RESISTIVITY AASHTO T288

<u>Reading</u>	Resistance Measurement	Soil Box Factor (cm)	Soil Resistivity (ohms-cm)	Moisture Content (%)
#1	5,300	0.57	3,021.00	13.0
#2	1,600	0.57	912.00	18.3
#3	1,300	0.57	741.00	24.6
#4	1,400	0.57	798.00	33.7

Minimum Soil Resistivity 741.00

= FROM THE GROUND UP ====

Project No.:	J028499.03	January 10, 2020
Project Name:	ARDOT 030497 Bridge Replacement over Bodcau Creek	Page 1 of 1
Boring Number:	BC-8	
Sample ID:	SS- 9-11	
Depth (ft):	33.5'	

MINIMUM LABORATORY SOIL RESISTIVITY AASHTO T288

Reading	Resistance <u>Measurement</u>	Soil Box Factor (cm)	Soil Resistivity (ohms-cm)	Moisture Content (%)
#1	8,600	0.57	4,902.00	10.1
#2	5,000	0.57	2,850.00	17.2
#3	2,900	0.57	1,653.00	25.5
#4	2,900	0.57	1,653.00	31.7
#5	3,100	0.57	1,767.00	37.1

Minimum Soil Resistivity <u>1,653.00</u>

Project No.:	J028499.03	January 10, 2020
Project Name:	ARDOT 030497 Bridge Replacement over Bodcau Creek	Page 1 of 1
Boring Number:	BC-9	
Sample ID:	SS- 8-9	
Depth (ft):	28.5'	

MINIMUM LABORATORY SOIL RESISTIVITY AASHTO T288

<u>Reading</u>	Resistance <u>Measurement</u>	Soil Box Factor (cm)	Soil Resistivity (ohms-cm)	Moisture Content (%)
#1	5,900	0.57	3,363.00	11.0
#2	3,000	0.57	1,710.00	18.1
#3	3,300	0.57	1,881.00	24.5

Minimum Soil Resistivity

<u>1,710.00</u>

TEST REPORT

Prepared For: Garver USA 4701 Northshore Drive North Little Rock, Arkansas 72118

Project No.:	J028499.03	October 2, 2019
Project Name:	ARDOT 030497 Bridge Replacement over Bodcau Creek	Page 1 of 1
Boring Number:	BC-10	
Sample ID:	ST-3	
Depth (ft):	5	

MINIMUM LABORATORY SOIL RESISTIVITY AASHTO T288

Reading	Resistance Measurement	Soil Box Factor (cm)	Soil Resistivity (ohms-cm)	Moisture Content (%)
#1	26,000	0.57	14,820.00	10.9
#2	22,000	0.57	12,540.00	17.9
#3	25,000	0.57	14,250.00	24.2

Minimum Soil Resistivity <u>12,540.00</u>

TEST REPORT Prepared For: Garver USA 4701 Northshore Drive North Little Rock, Arkansas 72118

Project No.:	J028499.03	January 10, 2020
Project Name:	ARDOT 030497 Bridge Replacement over Bodcau Creek	Page 1 of 1
Boring Number:	BC-10	
Sample ID:	SS- 5-8	
Depth (ft):	13.5'	

MINIMUM LABORATORY SOIL RESISTIVITY AASHTO T288

Reading	Resistance <u>Measurement</u>	Soil Box Factor (cm)	Soil Resistivity (ohms-cm)	Moisture Content (%)
#1	40,000	0.57	22,800.00	10.4
#2	21,000	0.57	11,970.00	17.1
#3	20,000	0.57	11,400.00	24.8
#4	17,000	0.57	9,690.00	32.5
#5	19,000	0.57	10,830.00	46.0

Minimum Soil Resistivity <u>9,690.00</u>

TEST REPORT Prepared For: Garver USA **4701 Northshore Drive** North Little Rock, Arkansas 72118

Project No.:	J028499.03	January 10, 2020
Project Name:	ARDOT 030497 Bridge Replacement over Bodcau Creek	Page 1 of 1
Boring Number:	BC-11	
Sample ID:	SS- 5-6	
Depth (ft):	13.5'	

MINIMUM LABORATORY SOIL RESISTIVITY AASHTO T288

<u>Reading</u>	Resistance Measurement	Soil Box Factor (cm)	Soil Resistivity (ohms-cm)	Moisture Content (%)
#1	36,000	0.57	20,520.00	12.2
#2	21,000	0.57	11,970.00	19.6
#3	24,000	0.57	13,680.00	27.2

Minimum Soil Resistivity <u>11,970.00</u>

pH TESTS (ASTM D 4972 or AASHTO T-289)

DATE 10/16/20		PROJECT NAME Bod	lcau Creek	PR NC	OJECT). J0284	99.03		
General T			boldt Ph Testr H-4371 or					
Informatio			required pH=5.5 to 7.5 Measured value:					
	So	il/Water Rati	o: Typically 1/1 or 1/2, but 1/5 for lime stabili	zed soils				
				Soil : Water		- N		
Boring	Sample	Depth	Visual Identification	Ratio	Solution	Tare No.	Jar	Remarks
No.	No.	(ft)	(Color, Group Name & Symbol)	(g/g) or	(Meter/	Air	Number	
				(g/mL)	Paper) ¹ 4.05	Drying		
BC-1	ST-6	15.00		1/1	4.05			
DC-1	31-0	15.00		- '''	20.9			
					20.9			
				_				
				_				
					3.77			
BC-2	ST-5	10.00		1/1				
				-	21.2			
				_				
				_				
				_				
				_				
				-				
				-				
				-				
				-				
				-				
				_				
				_				
				_				
				_				
				_				
				-				
				-				
<u> </u>	1							
				1				

¹pH by Meter is Method A; pH by Paper is Method B

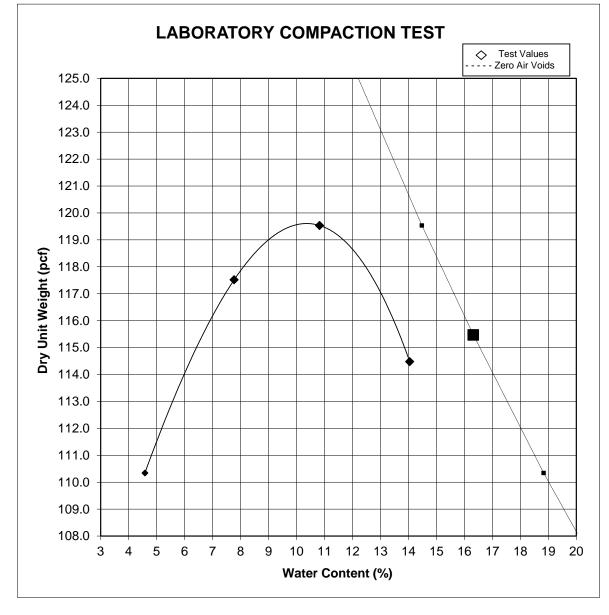
Tested By: LG Date: 10/16/19 Calculated By: AIM Date: 10/16/19 Checked By: JDM Date: 12/04/19

pH TESTS (ASTM D 4972 or AASHTO T-289)

DATE		PROJECT			ROJECT			
1/9/202		NAME Boo		NC	D. J0284	99.03		
General T			boldt Ph Testr H-4371 or					
Informatio			required pH=5.5 to 7.5 Measured value:		-			
	50	I/Water Rati	o: Typically 1/1 or 1/2, but 1/5 for lime stabil		h nll of	<u> </u>		
Danima	Comunic	Denth	Viewel Identification	Soil : Wate		Tana Nia	lan	Demente
Boring	Sample	Depth	Visual Identification	Ratio	Solution	Tare No.	Jar	Remarks
No.	No.	(ft)	(Color, Group Name & Symbol)	(g/g) or	(Meter/	Air	Number	
				(g/mL)	Paper) ¹	Drying		
	0044	41.401			4.53			
BC-1	SS 1-4	1'-10'		1/1				
					22.7			
	00.0.40	00 EL 401		1/0	7.32			
BC-1	SS 9-12	23.5'-40'		1/2				
					22.5			
DO 4	00.40.40				5.39			
BC-1	SS 16-18	58.5'-70'		1/1				
					22.4			
		~~ ~			7.42			
BC-2	SS 8-11	23.5'-40'		1/2				
					22.4			
					6.25			
BC-5	SS 4-6	18.5'-30'		1/1				
					22.4			
					5.36			
BC-5	SS 7-10	33.5'-50'		1/1				
					22.3			
					6.4			
BC-6	SS 3-5	18.5'-30'		1/1				
					22.4			
					5.31			
BC-7	SS 4-6	8.5'-20'		1/1				
					19.9			
					4.29			
BC-7	SS 12-14	48.5'-60'		1/2				
					19.7			
					3.33			
B-8	SS 9-11	33.5'-45'		1/1				
					19.8			
					5.44			
BC-9	SS 8-9	28.5'-35'		1/2				
					20.5			
					3.73			
BC-10	SS 5-8	13.5'-30'		1/1				
					20.5			
					3.81			
BC-11	SS 5-6	13.5'-20'		1/1				
					20.6			
				_				
				_				
L								

¹pH by Meter is Method A; pH by Paper is Method B

Tested By: TH Date: 01/09/20 Calculated By: AIM Date: 01/10/20 Checked By: _____JDM Date: ____03/09/20 3312 Winbrook Dr Memphis, TN 38116 Ph: 901-353-1981 Fax: 901-353-2248



Project: ARDOT 030497 - Bodcau Creek Bridge

Client: Garver USA

Sample Source: BC-13, 1-5'

Supplier:

Test Information					
Project No.:	J028499.03				
Test Date:	03/26/19				
Proctor No.:	BC-13				
-					
Test Method:	ASTM D 698	Method B			
Rammer Type:	Mechanical				
Prep. Method:	Dry				

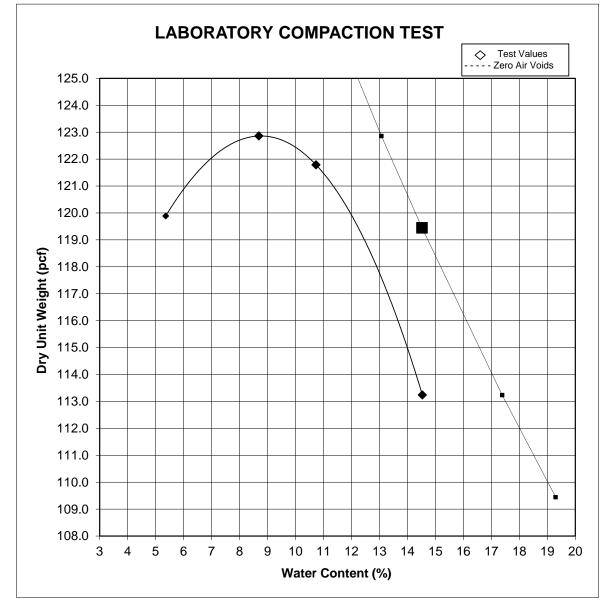
Sample Description			
Brown Sandy Lean Clay			

Sample Properties					
Moisture Content	NA	_			
Liquid Limit	31	_			
Plastic Limit	14	_			
Plasticity Index	17	_			
Specific Gravity:	2.650	Estimated			
Classification	CL				

Test Results:	
Maximum Dry Unit Weight (pcf):	119.6
Optimum Water Content (%):	10.4
Oversize Correction Values: Maximum Dry Unit Weight (pcf): Optimum Water Content (%):	121.0 10.0
Optimum water Content (%).	10.0
T	

Tested By:	TA	Input By:	ALY
Date:	03/26/19	Date:	03/28/19
Checked By:	HP		
Date:	03/28/19		

3312 Winbrook Dr Memphis, TN 38116 Ph: 901-353-1981 Fax: 901-353-2248

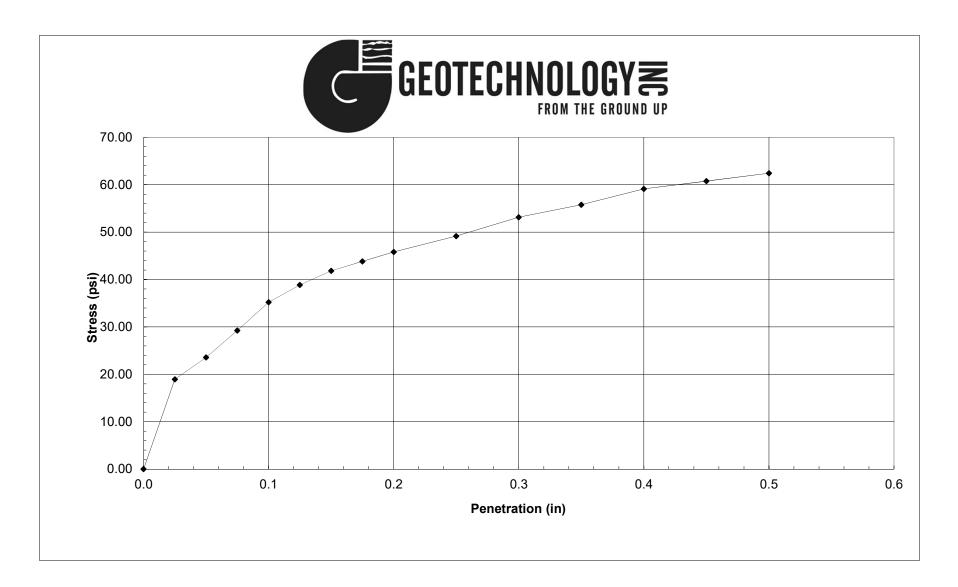


Project: ARDOT 030497 - Bodcau Creek Bridge

Client: Garver USA

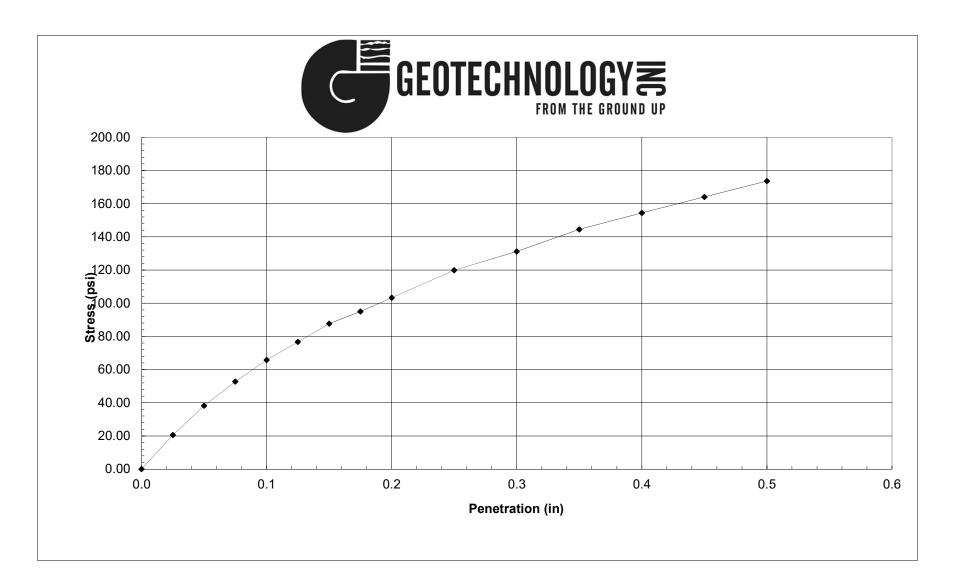
Sample Source: BC-14, 1-5'

Supplier:


Test InformationProject No.:J028499.03Test Date:03/27/19Proctor No.:BC-14Test Method:ASTM D 698Rammer Type:MechanicalPrep. Method:Dry

Sample Description
Brown Clayey Sand with Gravel and Asphalt

Samp	le Prope	rties
Moisture Content	NA	
Liquid Limit	27	
Plastic Limit	12	
Plasticity Index	15	
Specific Gravity:	2.650	Estimated
Classification	SC	


Test Results:	
Maximum Dry Unit Weight (pcf):	122.9
Optimum Water Content (%):	8.8
Oversize Correction Values: Maximum Dry Unit Weight (pcf):	132.2
Optimum Water Content (%):	6.5
· · · · -	

Tested By:	MP	Input By:	ALY
Date:	03/27/19	Date:	03/28/19
Checked By:	HP		
Date:	03/28/19		

CALIFORNIA BEARING RATIO (CBR) TEST

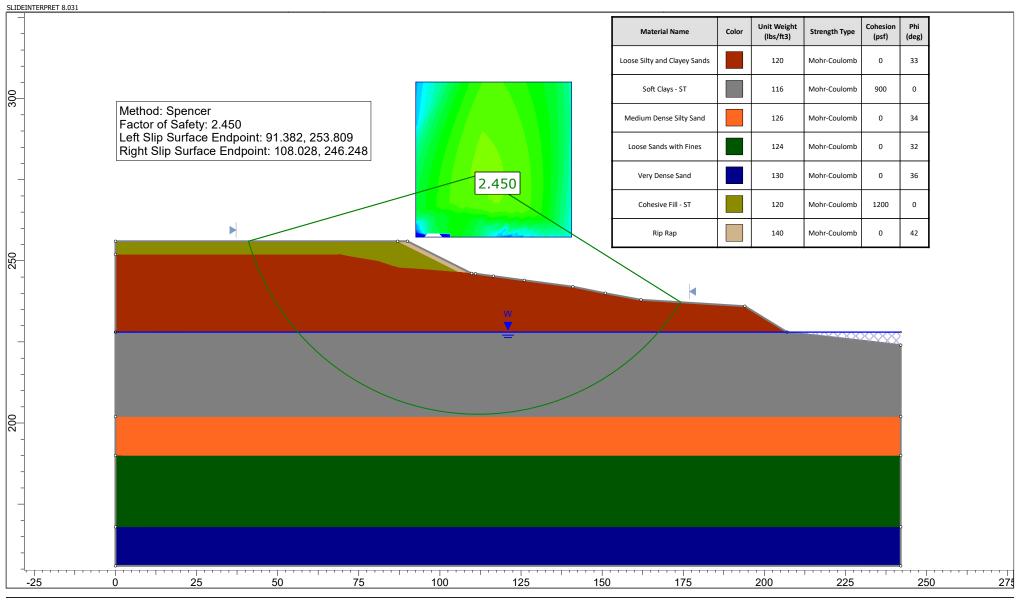
ASTM D 1883 Project No.: J028499.02 Boring: BC-13 Sample: 25 Blows - Depth: 0 ft.

CALIFORNIA BEARING RATIO (CBR) TEST

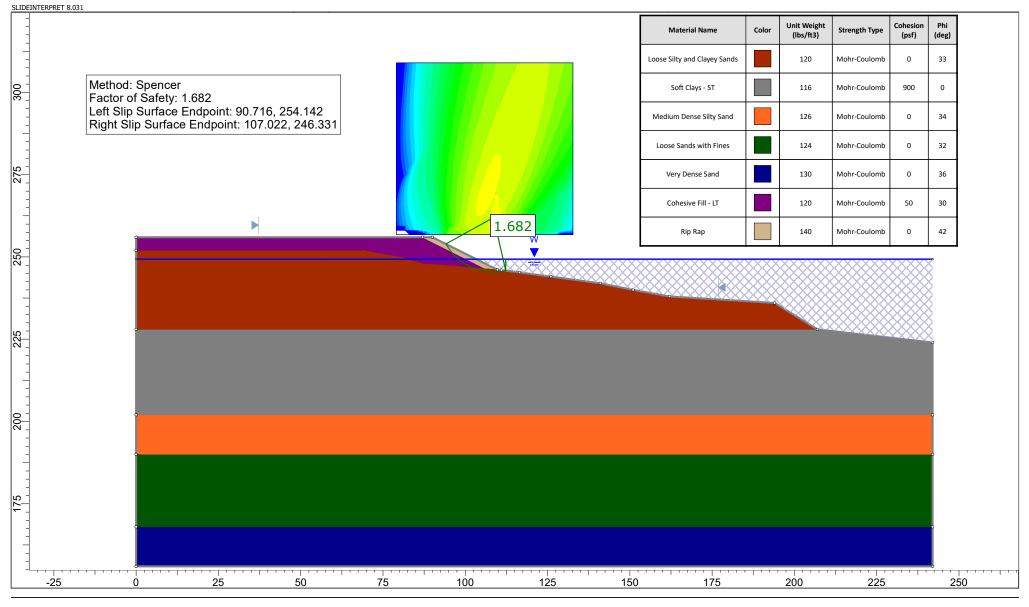
ASTM D 1883 Project No.: J028499.02 Boring: BC-13 Sample: 56 Blows - Depth: 0 ft.

APPENDIX E – AASHTO AND USCS CLASSIFICATIONS

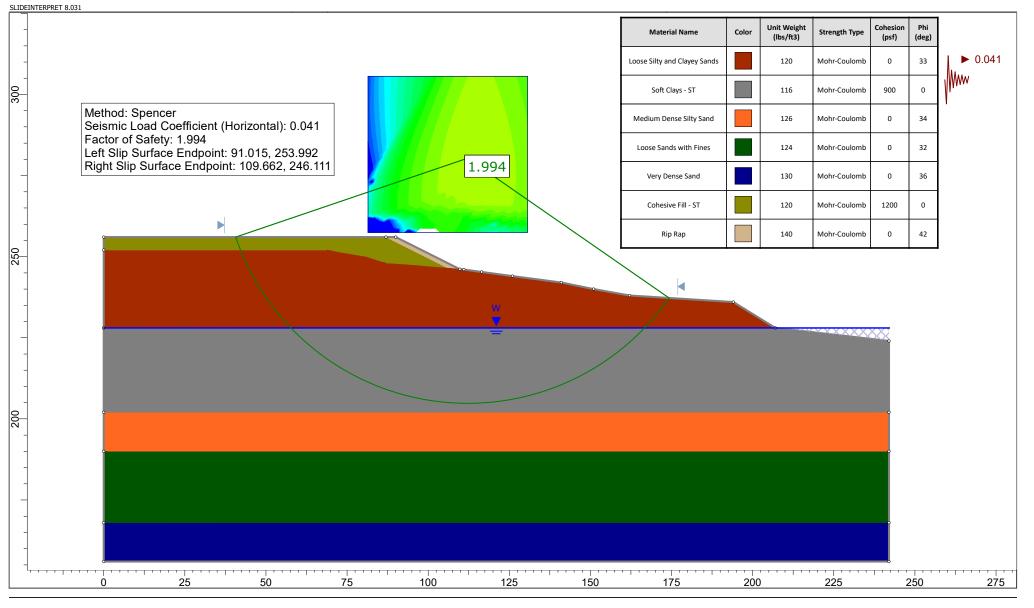
SUMMARY OF CLASSIFICATION RESULTS Highway 82 Strs. & Apprs. (S): Bodcau Creek Bridge Lafayette County: Arkansas ARDOT 030497


Doring	Depth	Limit (LL) (%)	Limit (PL) (%)	Index (PI) 6)				Sieve Ar Percent F					GI	AASHTO	USCS
Boring	(feet)	Liquid L (%	Plastic L (%	Plasticity In (%)	2 in.	1 in.	3/4 in.	3/8 in.	#4	#10	#40	#200	G	CLASS.	CLASS.
BC-1	1	-			100.0	100.0	100.0	100.0	99.3	99.3	97.5	59.2	0	A-4	ML
BC-1	15	32	16	16	100.0	100.0	100.0	100.0	100.0	100.0	99.9	76.4	10	A-6	CL
BC-1	20	26	13	13	100.0	100.0	100.0	100.0	100.0	99.8	98.3	56.0	4	A-6	CL
BC-1	23.5	-			100.0	100.0	100.0	100.0	100.0	100.0	99.9	51.3	0	A-4	ML
BC-1	28.5	1			100.0	100.0	100.0	100.0	100.0	100.0	99.9	58.4	0	A-4	ML
BC-1	33.5	1	-		100.0	100.0	100.0	100.0	100.0	100.0	99.8	99.5	0	A-2-7	СН
BC-1	38.5	87	21	66									0	A-2-7	СН
BC-1	68.5				100.0	100.0	100.0	100.0	100.0	100.0	99.7	28.8	0	A-2-4	SM
BC-1	73.5				100.0	100.0	100.0	100.0	100.0	99.8	98.3	49.0	0	A-4	SM
BC-2	10	36	18	18	100.0	100.0	100.0	100.0	100.0	100.0	99.8	84.2	14	A-6	CL
BC-2	43.5	85	20	65									0	A-2-7	СН
BC-4	18.5	60	20	40									0	A-2-7	СН
BC-4	23.5				100.0	100.0	100.0	100.0	100.0	100.0	100.0	73.5	0	A-4	ML
BC-4	28.5	0	0	0									0	A-1-a	ML
BC-4	33.5				100.0	100.0	100.0	100.0	100.0	100.0	99.9	11.8	0	A-2-4	SP-SM
BC-6	18.5				100.0	100.0	100.0	100.0	100.0	100.0	100.0	79.1	0	A-4	ML
BC-7	58.5	51	15	36									0	A-2-7	СН
BC-8	13.5	23	15	8									0	A-2-4	CL
BC-8	28.5	-			100.0	100.0	100.0	100.0	100.0	100.0	99.9	58.4	0	A-4	ML
BC-8	33.5				100.0	100.0	100.0	100.0	100.0	100.0	99.9	18.3	0	A-2-4	SM
BC-9	38.5	26	12	14									0	A-2-6	CL
BC-10	5	19	15	4	100.0	100.0	100.0	100.0	100.0	99.7	93.2	20.4	0	A-2-4	SC-SM
BC-10	33.5	-			100.0	100.0	100.0	100.0	100.0	100.0	99.4	56.2	0	A-4	ML
BC-10	58.5		-		100.0	100.0	100.0	100.0	100.0	100.0	99.9	38.5	0	A-4	SM
BC-11	13.5				100.0	100.0	100.0	100.0	100.0	100.0	99.9	64.0	0	A-4	ML
BC-11	33.5	30	13	17									0	A-2-6	CL
BC-13	1	31	14	17	100.0	100.0	100.0	98.9	95.2	91.2	82.7	68.7	9	A-6	CL
BC-14	1	27	12	15	100.0	100.0	100.0	92.6	88.1	83.4	68.3	23.5	0	A-2-6	SC

APPENDIX F – GLOBAL STABILITY ANALYSES



File Name: West Abutment.slmd Name: Group 1 Description: Short Term Conditions Method: Spencer Project Number: J028499.03 Client: Garver Project: ArDOT 030497 - Hwy 82 Bodcau Creek - West Abutment Date: 3/9/2020



File Name: West Abutment.slmd Name: Group 1 Description: Long Term Conditions Method: Spencer Project Number: J028499.03 Client: Garver Project: ArDOT 030497 - Hwy 82 Bodcau Creek - West Abutment Date: 3/9/2020

File Name: West Abutment.slmd Name: Group 1 Description: Seismic Conditions Method: Spencer Project Number: J028499.03 Client: Garver Project: ArDOT 030497 - Hwy 82 Bodcau Creek - West Abutment Date: 3/9/2020

280

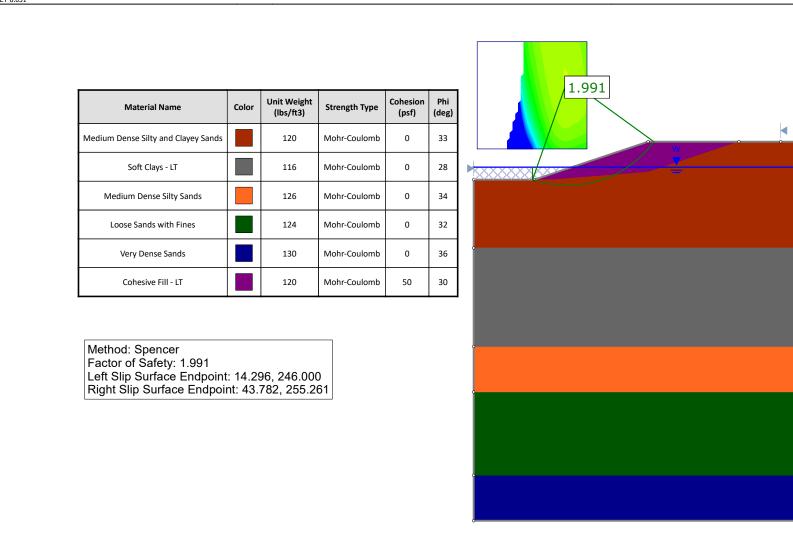
260

240

220

200

180


160

File Name: South Slope.slmd Name: Group 1 Description: Short Term Conditions Method: Spencer Project Number: J028499.03 Client: Garver Project: ArDOT 030497 - Hwy 82 Bodcau Creek - STA 210+00 Southern Side Slope Date: 3/9/2020

						3.676
Material Name	Color	Unit Weight (Ibs/ft3)	Strength Type	Cohesion (psf)	Phi (deg)	
Medium Dense Silty and Clayey Sands		120	Mohr-Coulomb	0	33	
Soft Clays - ST		116	Mohr-Coulomb	900	0	
Medium Dense Silty Sands		126	Mohr-Coulomb	0	34	
Loose Sands with Fines		124	Mohr-Coulomb	0	32	w
Very Dense Sands		130	Mohr-Coulomb	0	36	
Cohesive Fill - ST		120	Mohr-Coulomb	1200	0	
Method: Spencer Factor of Safety: 3.676 Left Slip Surface Endpoin Right Slip Surface Endpo	ıt: 13.93 int: 43.9	32, 246.000 005, 255.00))22			
						ð

File Name: South Slope.slmd Name: Group 1 Description: Long Term Conditions Method: Spencer Project Number: J028499.03 Client: Garver Project: ArDOT 030497 - Hwy 82 Bodcau Creek - STA 210+00 Southern Side Slope Date: 3/9/2020

-20

- - -

0

20

- - - - -

40

60

80

. . .

100

120

-

-60

- - -

-40

SLIDEINTERPRET 8.031

280

260

240

220

200

80

09

-120

-100

-80

SLIDEINTERPRET 8.031

-

280

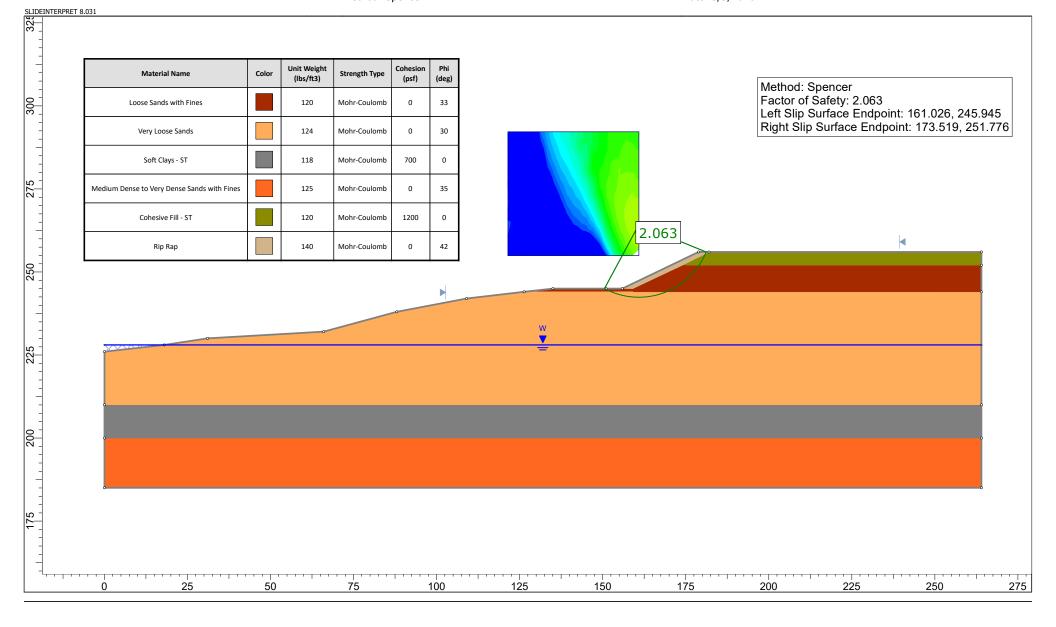
260

240

220

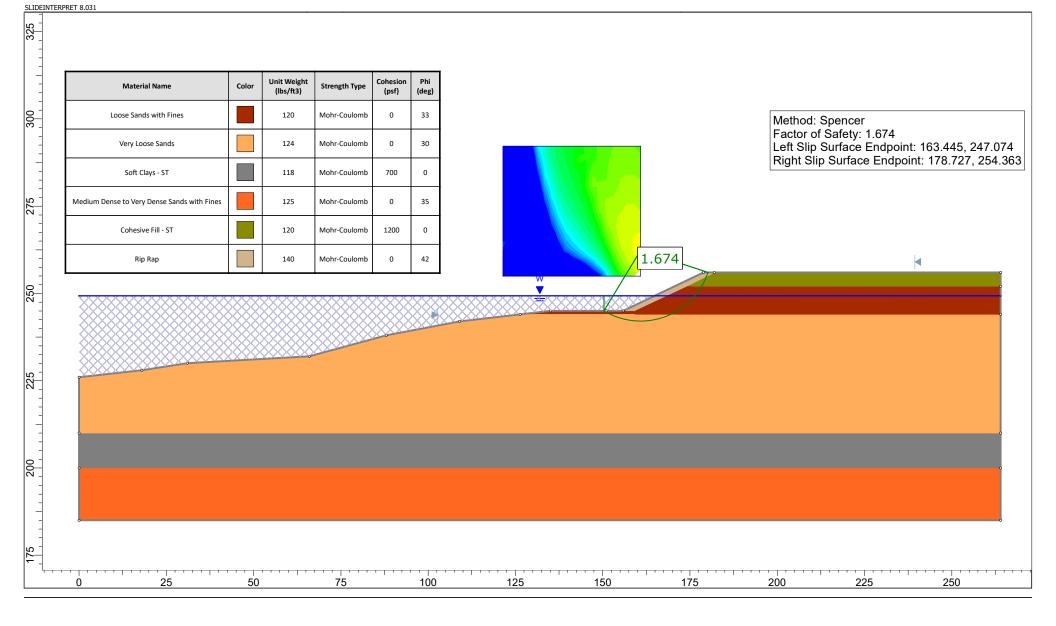
200

180

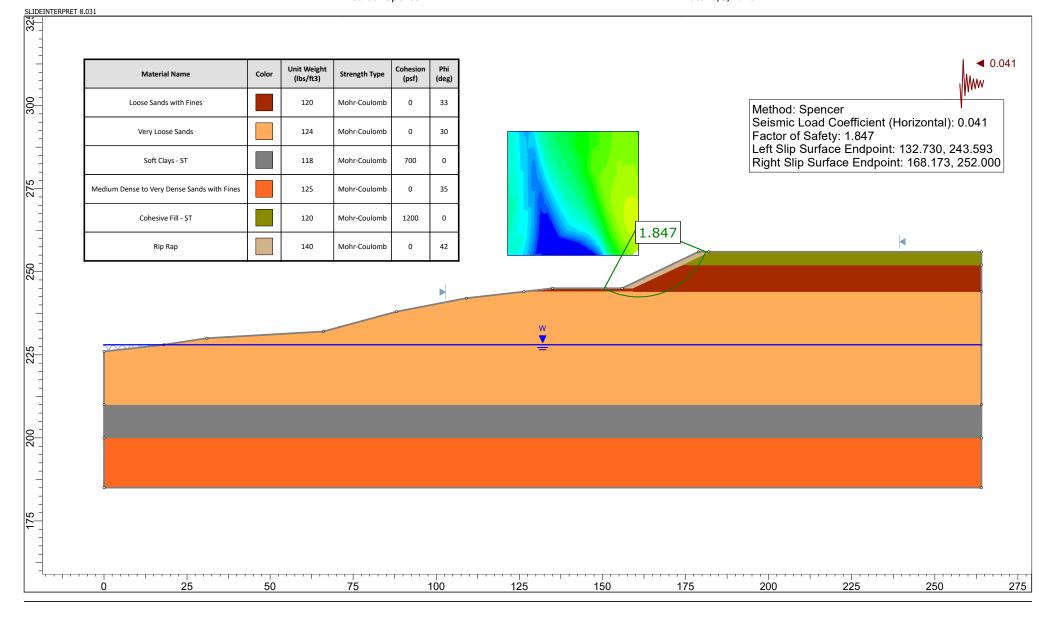

60

File Name: South Slope.slmd Name: Group 1 Description: Seismic Conditions Method: Spencer Project Number: J028499.03 Client: Garver Project: ArDOT 030497 - Hwy 82 Bodcau Creek - STA 210+00 Southern Side Slope Date: 3/9/2020

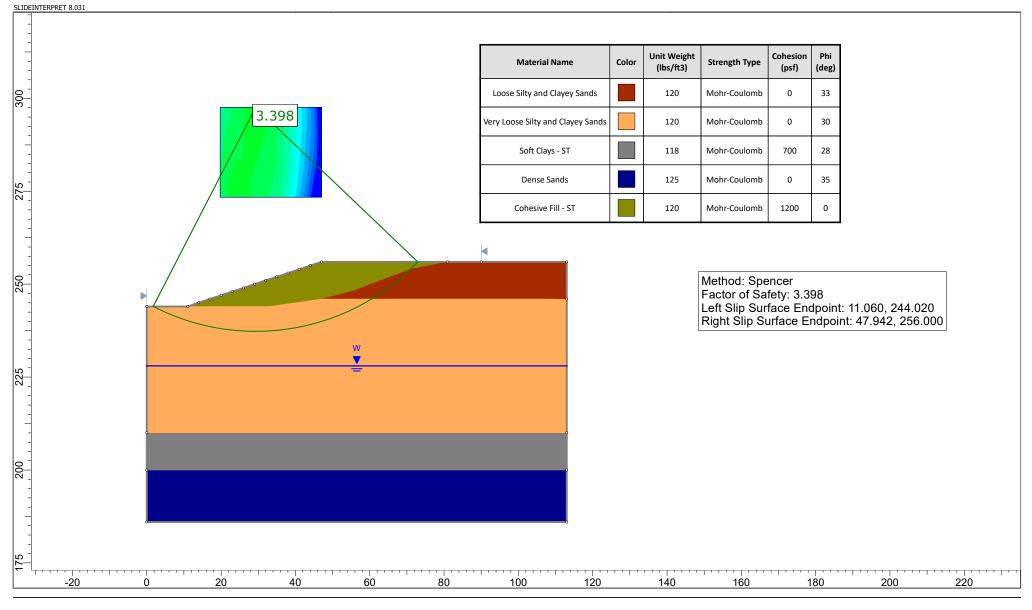
						3.073	< 0.04₩
Material Name	Color	Unit Weight (Ibs/ft3)	Strength Type	Cohesion (psf)	Phi (deg)		
Medium Dense Silty and Clayey Sands		120	Mohr-Coulomb	0	33		
Soft Clays - ST		116	Mohr-Coulomb	900	0		
Medium Dense Silty Sands		126	Mohr-Coulomb	0	34		
Loose Sands with Fines		124	Mohr-Coulomb	0	32	w state in the second	
Very Dense Sands		130	Mohr-Coulomb	0	36		
Cohesive Fill - ST		120	Mohr-Coulomb	1200	0		
Method: Spencer Seismic Load Coefficient (Factor of Safety: 3.073 Left Slip Surface Endpoint Right Slip Surface Endpoir	: 14.183	3, 246.000					



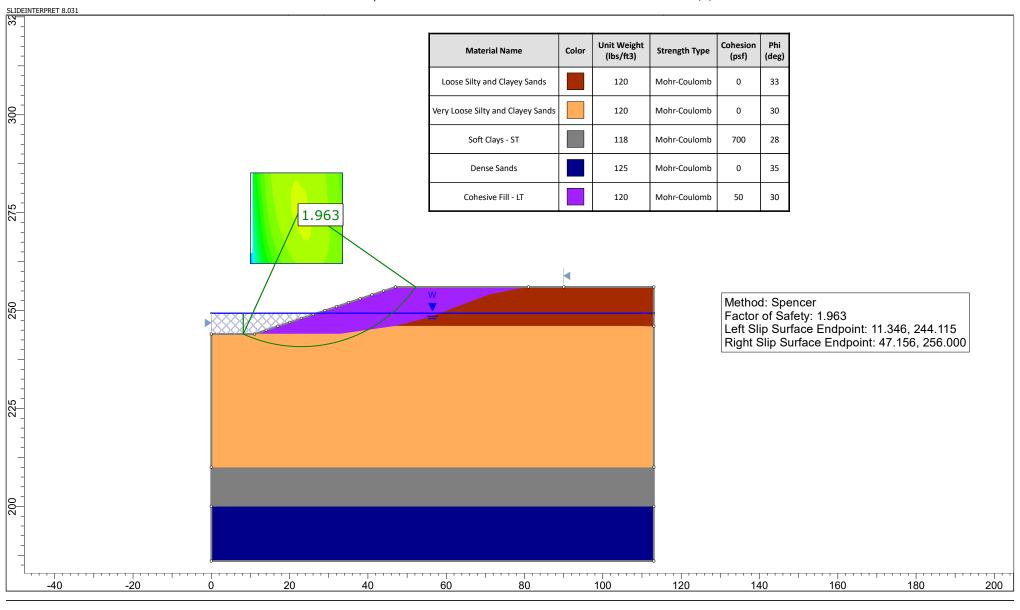
File Name: East Abutment.slmd Name: Group 1 Description: Short Term Conditions Method: Spencer Project Number: J028499.03 Client: Garver Project: ArDOT 030497 - Hwy 82 Bodcau Creek - East Abutment Date: 3/9/2020



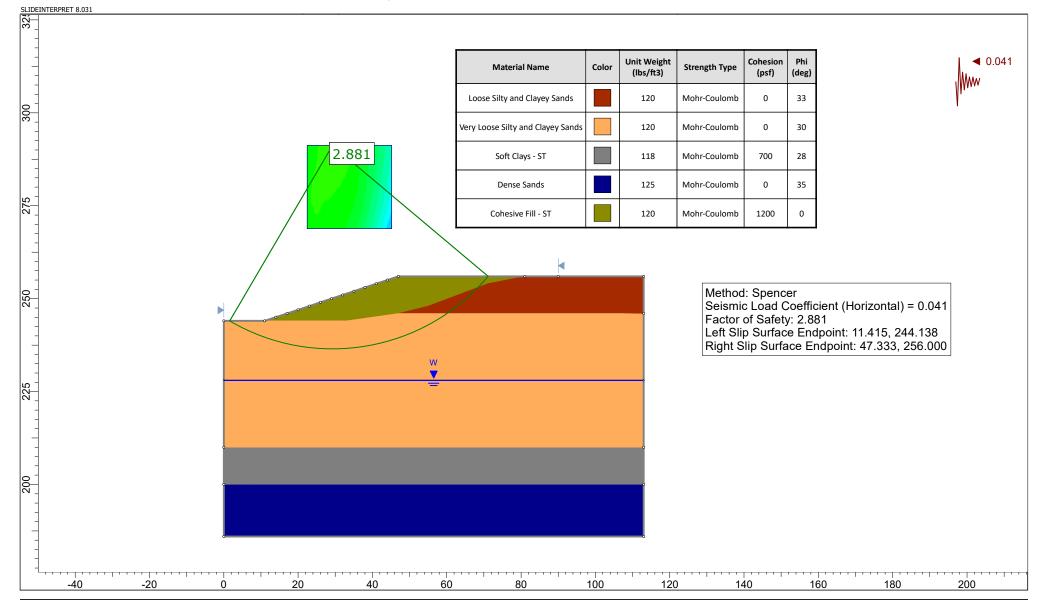
File Name: East Abutment.slmd Name: Group 1 Description: Long Term Conditions Method: Spencer Project Number: J028499.03 Client: Garver Project: ArDOT 030497 - Hwy 82 Bodcau Creek - East Abutment Date: 3/9/2020



File Name: East Abutment.slmd Name: Group 1 Description: Seismic Conditions Method: Spencer Project Number: J028499.03 Client: Garver Project: ArDOT 030497 - Hwy 82 Bodcau Creek - East Abutment Date: 3/9/2020



File Name: South Slope.slmd Name: Group 1 Description: Short Term Conditions Method: Spencer Project Number: J028499.03 Client: Garver Project: ArDOT 030497 - Hwy 82 Bodcau Creek - STA 215+00 Southern Side Slope Date: 3/9/2020



File Name: South Slope.slmd Name: Group 1 Description: Long Term Conditions Method: Spencer Project Number: J028499.03 Client: Garver Project: ArDOT 030497 - Hwy 82 Bodcau Creek - STA 215+00 Southern Side Slope Date: 3/9/2020

File Name: South Slope.slmd Name: Group 1 Description: Seismic Conditions Method: Spencer Project Number: J028499.03 Client: Garver Project: ArDOT 030497 - Hwy 82 Bodcau Creek - STA 215+00 Southern Side Slope Date: 3/9/2020

APPENDIX G – SOIL PARAMETERS FOR SYNTHETIC PROFILES

	BODCAU CREEK BRIDGE INTERNAL BENTS 2, 3, & 4 – BORINGS BC- 4 THROUGH BC-6												
	ASSUMED PILE CUTOFF ELEVATION: EL 230												
					SHEAF	R STRENG	TH PARAMETE	ERS	LATERAL LOAD ^b PARAMETERS				
ZONE SOIL TYPES / LPILE SOIL ^b	DEPTH (ELEVATION)		WET UNIT WEIGHT		UNDRAINED (SHORT TERM)		DRAINED (LONG TERM)		STATIC SOIL				
		FROM	(PCF) TO		COHESION (PSF)	Ф (DEGREE)	EFFECTIVE COHESION (PSF)	Ф' (DEGREE)	STRAIN, E ₅₀	MODULUS (PCI) ^a			
1	Soft Clays / Soft Clay (Matlock)	230	210	117	500			28	0.01	100			
2	Loose/Medium Dense Sands with Silt / Sand (Reese)	210	183	124		32		32		20			
3	Very Stiff/Hard Clays / Stiff Clay w/ Free Water (Reese)	183	173	119	4,000			30	0.005	1,500			
4	Very Dense Sands with Silt / Sand (Reese)	173	130	130		36		36		125			

^a Pounds per cubic inch. ^b For lateral load analysis only.

Assumed groundwater at El 228.

	BODCAU CREEK BRIDGE INTERNAL BENTS 5 & 6 – BORINGS BC- 7 THROUGH BC-9												
			ASS	UMED PILE	CUTOFF ELE	VATION: E	L 230						
		DEPTH (ELEVATION)		WET UNIT WEIGHT	SHEAF	R STRENG	RS	LATERAL LOAD [♭] PARAMETERS					
	SOIL TYPES / LPILE SOIL⁵				UNDRAI (SHORT 1		DRAIN (LONG T		SOIL STRAIN,	STATIC SOIL			
		FROM	то	(PCF)	COHESION (PSF)	Ф (DEGREE)	EFFECTIVE COHESION (PSF)	Φ' (DEGREE)	E ₅₀	MODULUS (PCI)ª			
1	Very Loose/Loose Sands / Sand (Reese)	230	218	120		28		28		10			
2	Soft Clays / Stiff Clay w/ Free Water (Reese)	218	203	117	800			28	0.01	30			
3	Loose/Medium Dense Sands / Sand (Reese)	203	187	124		34		34		60			
4	Very Stiff/Hard Clays / Stiff Clay w/ Free Water (Reese)	187	167	120	4,000			30	0.004	1,500			
5	Very Dense Sands with Silt	167	140	130		36		36		125			

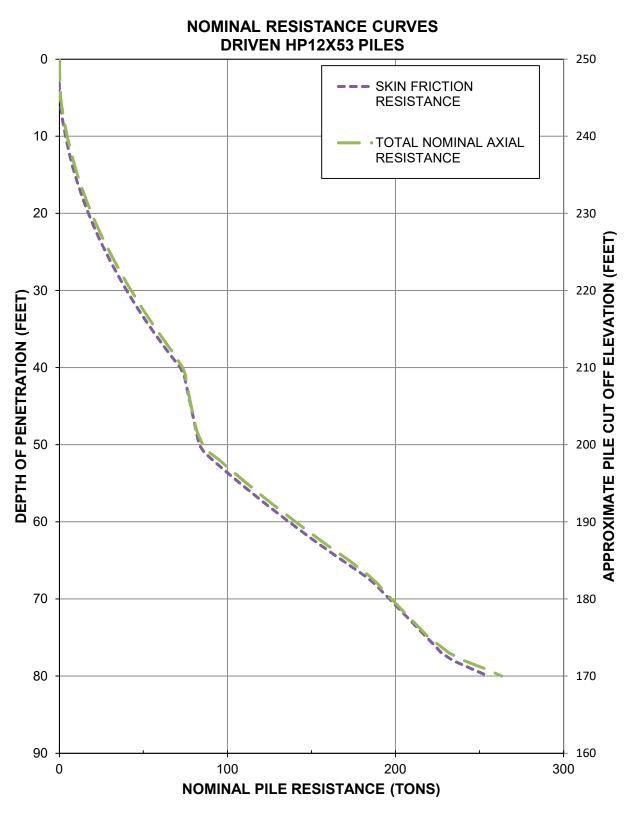
^a Pounds per cubic inch. ^b For lateral load analysis only.

Assumed groundwater at EI 228.

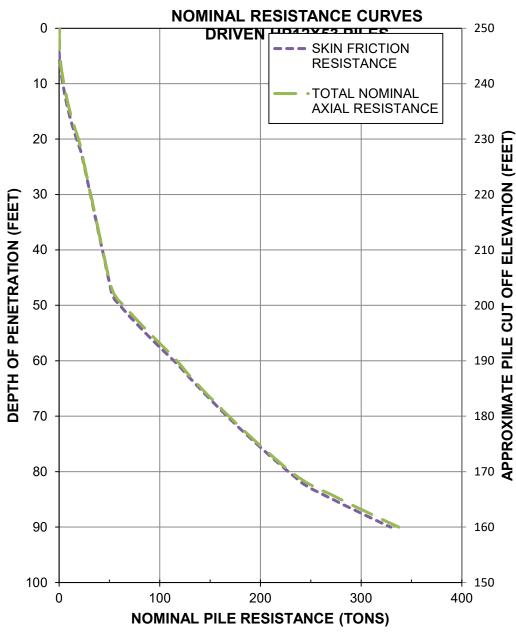
	BODCAU CREEK BRIDGE WEST ABUTMENT – BORINGS BC-1 & BC-2												
	ASSUMED PILE CUTOFF ELEVATION: EL 250												
					SHEAR	STRENG	TH PARAMETE	RS	LATERAL LOAD [♭] PARAMETERS				
ZONE SOIL TYPES / LPILE SOIL ^b	DEPTH (ELEVATION)		WET UNIT WEIGHT		UNDRAINED (SHORT TERM)		ED ERM)	SOIL	STATIC SOIL				
		FROM	то	(PCF)	COHESION (PSF)	Ф (DEGREE)	EFFECTIVE COHESION (PSF)	Ф ' (DEGREE)	STRAIN, E ₅₀	MODULUS (PCI)ª			
1	Loose Sands with Fines / Sand (Reese)	250	228	120		33		33		20			
2	Soft/Very Soft Clays / Stiff Clay w/ Free Water (Reese)	228	202	116	900			28	0.02	30			
3	Medium Dense Sands with Silt / Sand (Reese)	202	190	126		34		34		60			
4	Loose Sands with Fines / Sand (Reese)	190	168	124		32		32		15			
5	Very Dense Sands / Sand (Reese)	168	156	130		36		36		125			

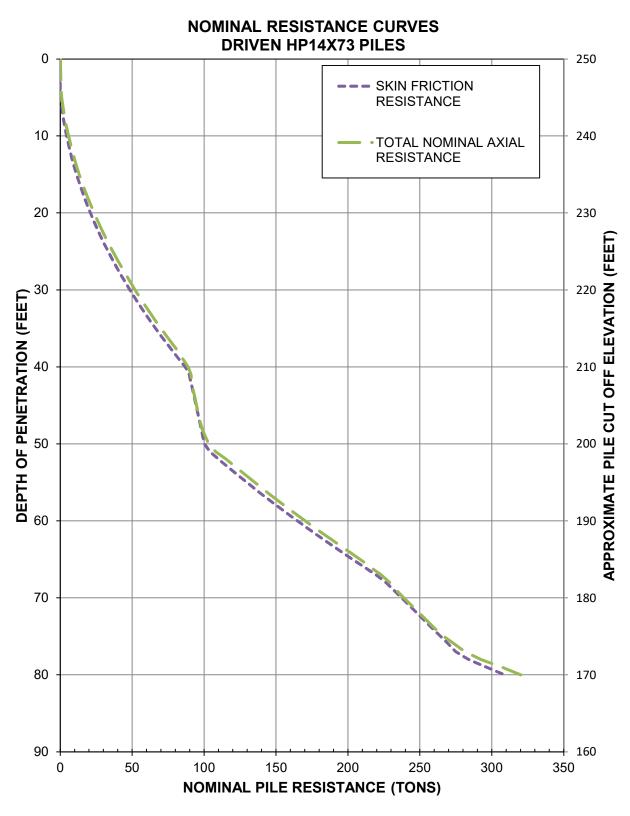
^a Pounds per cubic inch. ^b For lateral load analysis only.

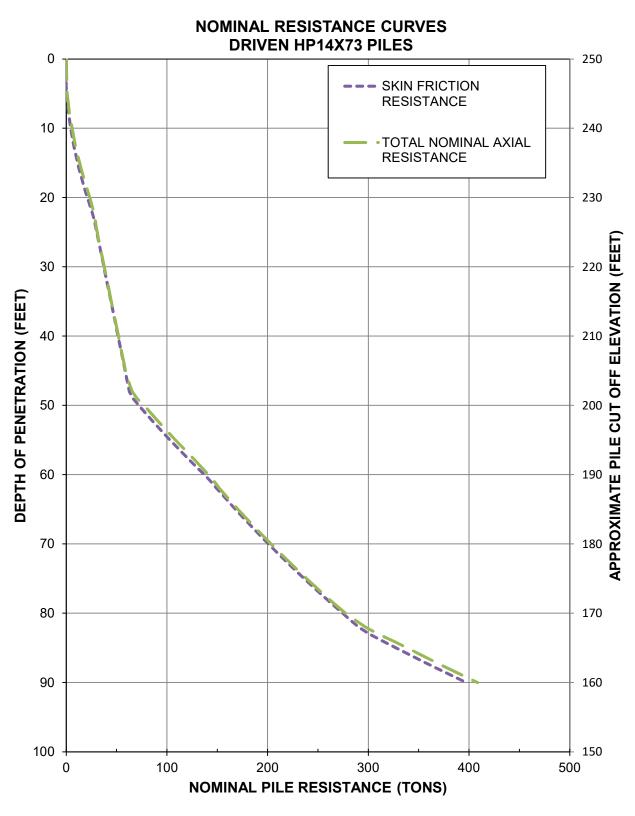
Assumed groundwater at El 228.

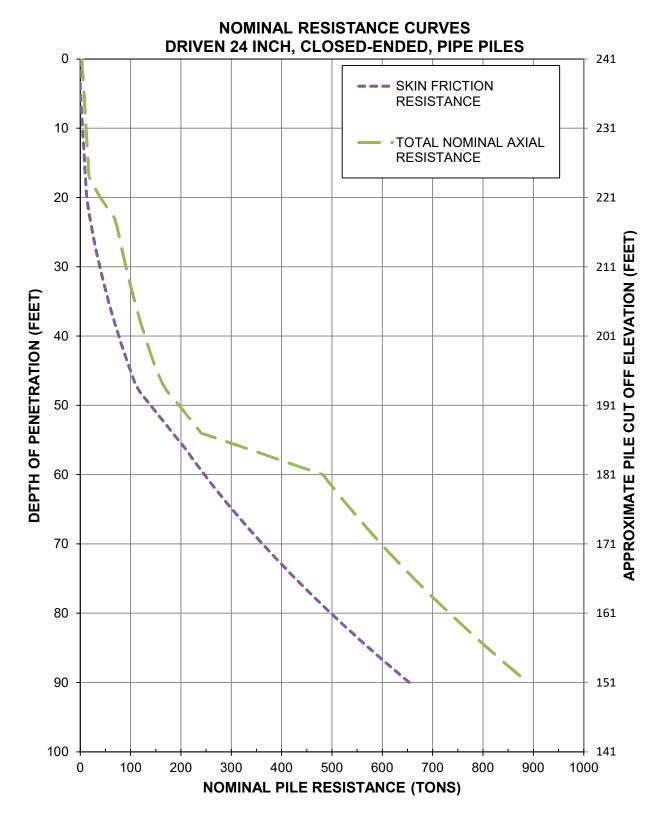

	BODCAU CREEK EAST ABUTMENT – BORINGS BC-9 THROUGH BC-11												
	ASSUMED PILE CUTOFF ELEVATION: EL 250												
			тц		SHEAR	R STRENG	TH PARAMETE	ERS	LATERAL LOAD ^b PARAMETERS				
ZONE SOIL TYPES / LPILE SOIL ^b	DEPTH (ELEVATION)		WET UNIT WEIGHT		UNDRAINED (SHORT TERM)		ED ERM)	SOIL	STATIC SOIL				
		FROM	то	(PCF)	COHESION (PSF)	Ф (DEGREE)	EFFECTIVE COHESION (PSF)	Ф' (DEGREE)	STRAIN, E ₅₀	MODULUS (PCI)ª			
1	Loose/Very Loose Sands with Fines / Sand (Reese)	250	210	120		33		33		20			
2	Soft Clays / Stiff Clay w/ Free Water (Reese)	210	200	118	500			28	0.01	100			
3	Medium Dense Sand / Sand (Reese)	200	183	124		34		34		60			
4	Hard Clays / Stiff Clay w/ Free Water (Reese)	183	173	120	2,400			30	0.005	750			
5	Very Dense Sands / Sand (Reese)	173	160	130		36		36		125			

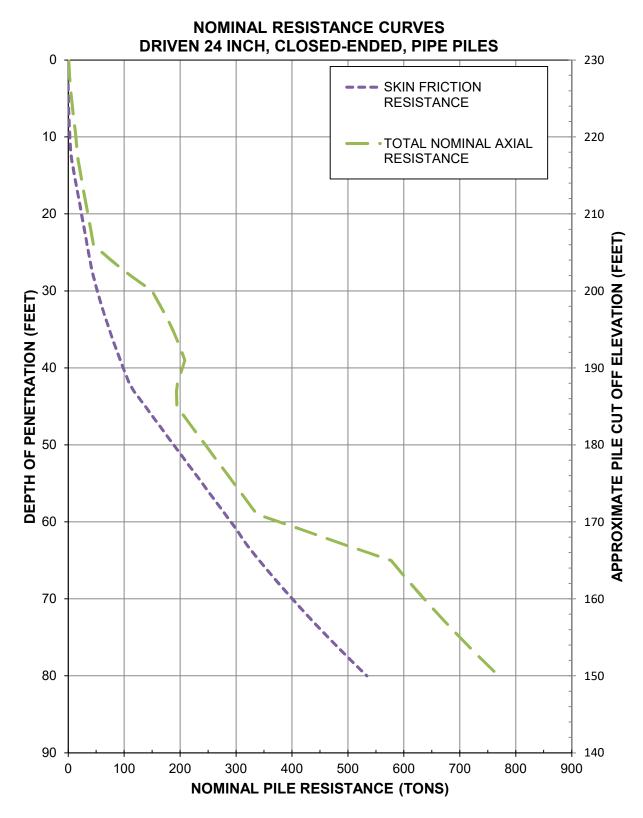
^a Pounds per cubic inch. ^b For lateral load analysis.

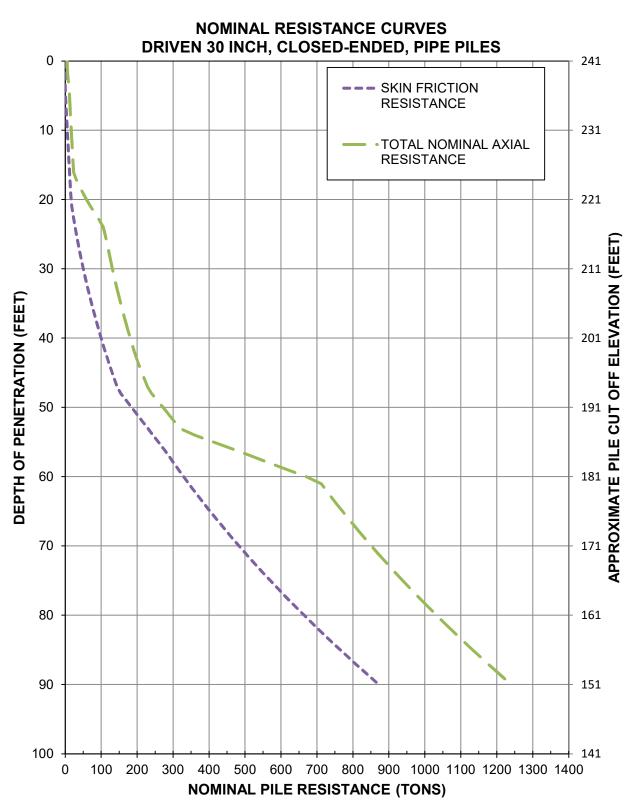

Assumed groundwater at El 228.

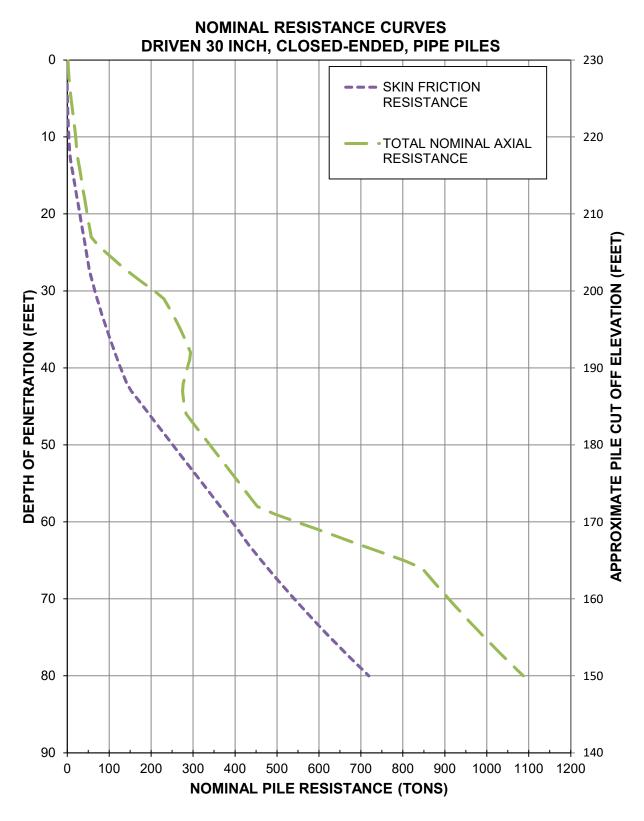

APPENDIX H – NOMINAL RESISTANCE CURVES


BODCAU CREEK BRIDGE EAST END BENT ARDOT 030497 HWY 82


BODCAU CREEK BRIDGE WEST END BENT ARDOT 030497 HWY 82


BODCAU CREEK BRIDGE EAST END BENT ARDOT 030497 HWY 82


BODCAU CREEK BRIDGE WEST END BENT ARDOT 030497 HWY 82


BODCAU CREEK BRIDGE INTERMEDIATE BENTS 2, 3, 4 ARDOT 030497 HWY 82

BODCAU CREEK BRIDGE INTERMEDIATE BENTS 5 & 6 ARDOT 030497 HWY 82

BODCAU CREEK BRIDGE INTERMEDIATE BENTS 3 & 4 ARDOT 030497 HWY 82

BODCAU CREEK BRIDGE INTERMEDIATE BENT 5 ARDOT 030497 HWY 82

GEOTECHNOLOGY PROJECT NUMBER J028499.03

GROUND UP ΞH ROM EOTECHNO

GEOTECHNICAL EXPLORATION HIGHWAY 82 STRS. & APPRS. (S) BRIDGE OVER MILL CREEK MILLER COUNTY, ARKANSAS

ARKANSAS DEPARTMENT OF TRANSPORTATION STATE PROJECT NO. 030497

Prepared for:

GARVER, LLC NORTH LITTLE ROCK

Prepared by:

GEOTECHNOLOGY, INC. MEMPHIS, TENNESSEE

Date: AUGUST 13, 2020

Geotechnology Project No.: J028499.03B

SAFETY QUALITY INTEGRITY PARTNERSHIP OPPORTUNITY RESPONSIVENESS

August 13, 2020

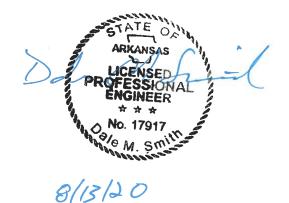
Mr. John Ruddell, P.E., S.E. Vice President - Bridge Design Manager Garver, LLC 4701 Northshore Drive North Little Rock 72118

Re: Geotechnical Exploration Highway 82 Strs. & Apprs. (S) Bridge Over Mill Creek Miller County, Arkansas Geotechnology Project No. J028499.03B

Dear Mr. Ruddell:

Presented in this report are the results of the geotechnical exploration performed by Geotechnology, Inc. for the referenced project. The report includes our understanding of the project, observed site conditions, conclusions and/or recommendations, and support data as listed in the Table of Contents.

We appreciate the opportunity to provide geotechnical services for this project. If you have any questions regarding this report, or if we can be of any additional service to you, please do not hesitate to contact us.


Respectfully submitted, **GEOTECHNOLOGY, INC.**

5 1

Dale M. Smith, P.E. Geotechnical Manager

ALY/JDM/DBA/DMS/ASE:jdm

Copies submitted: Client (email/2 mail)

TABLE OF CONTENTS

CHAPTER 1.	Scope of Services	3
Topography Drainage	General Information	3 4 4
CHAPTER 3.	Geotechnical Exploration	5
CHAPTER 4.	Laboratory Review and Testing	6
Subgrade Mat	Subsurface Conditions nent erials	6 7
Pavement Des Seismic Consi Approach Emb Global Stabilit	Engineering Evaluation, Analysis, and Recommendations on and Earthwork sign Information derations bankment Settlement y ions	8 9 11 12 13
CHAPTER 7.	Recommended Additional Services	18
CHAPTER 8.	Limitations	19
Appendix B – F Appendix C – F Appendix D – F Appendix E – A Appendix F – C Appendix G – S	mportant Information About This Geotechnical-Engineering Report Figures Boring Information Laboratory Test Data AASHTO and USCS Classifications Biobal Stability Analyses Soil Parameters for Synthetic Profiles Nominal Resistance Curves	

LIST OF TABLES

Table 1. Field Tests and Measurements	5
Table 2. Summary of Laboratory Tests and Methods	6
Table 3. Summary of Encountered Pavement Materials and Thicknesses.	7
Table 4. Summary of Compaction and CBR Test Results.	.10
Table 5. CBR Interpolation/Extrapolation.	.10
Table 6. Soil Design Parameter Recommendations for Pavement Design.	.11
Table 7. Seismic Design Parameters (7% Probability of Exceedance in 75 years)	.12
Table 8. Results of Slope Stability Analyses.	.14
Table 9. Resistance Factors for Driven Piles	.15
Table 10. Minimum Hammer Energies	.16
Table 11. Results of pH and Soil Resistivity Testing	.18

GEOTECHNICAL EXPLORATION HIGHWAY 82 STRS. & APPRS. (S) BRIDGE OVER MILL CREEK MILLER COUNTY, ARKANSAS August 13, 2020 | Geotechnology Project No. J028499.03B

CHAPTER 1. SCOPE OF SERVICES

Presented in this report are the results of the geotechnical exploration and recommendations for design and construction, and other related features for the proposed improvements to Highway 82 (Hwy 82) in Miller County, Arkansas (Station 102+00.00 to Station 120+93.46). The referenced improvements consist of the replacement of Bridge No 02549 over Mill Creek. The new three-span bridge (Station 110+71.66 to Station 112+14.33) will be approximately 143-foot-long and constructed in two phases. During phase 1, a portion of the new bridge will be constructed to the south of the existing bridge. Facilitating traffic to the new bridge will require widening of the existing approaches. In phase 2 the existing bridge will be demolished; traffic will be redirected to the partially completed bridge, and the existing bridge will be demolished and the remaining portion of the bridge completed. When complete, the new bridge will be approximately 75 feet wide. The site location is shown on Figure 1 included in Appendix B.

The recommendations presented in this report are based on the geology, topography, and the results of the geotechnical exploration. Results of borings, in-situ testing, sampling and laboratory testing are included in the report. A total of 10 borings were drilled at intervals along the proposed Highway 82 bridge over Mill Creek as shown in Figure 2. The boring logs, along with field and laboratory test results, are enclosed. The collected data have been analyzed and the physical properties of the in-situ soils summarized. General site conditions are discussed, along with recommendations for subgrade preparation. Important information prepared by the Geotechnical Business Council (GBC) of the Geoprofessional Business Association for studies of this type is presented in Appendix A for your review.

CHAPTER 2. GENERAL INFORMATION

Planned Modifications

It is our understanding the existing bridge over Mill Creek will remain in use through the first phase of construction before being demolished and replaced in phase 2. The existing bridge approaches will be widened to facilitate traffic across the widened bridge.

The modifications to the approaches will require widening of the existing bridge approaches; beginning at Station 108+00.00, the existing road-way will be widened to the south to allow for five lanes of traffic (two in the eastbound and west-bound directions and one center turn lane).

Widening will end at the western bridge abutment at Station 110+71.66. The widening will require a wedge of fill to be placed on the southern shoulders of the existing road way between Station 108+00.00 and Station 110+71.66 with a maximum fill height of 10 feet at the bridge abutment. The planned side slopes of the western approach are 3 horizontal units for every 1 vertical unit (3H:1V) to the north and 2H:1V to the south.

The proposed bridge over Mill Creek will consist of an approximately 143-foot long, three-span bridge from Station 110+71.66 to 112+14.33. It is our understanding that minimal grade changes will be required at the bent locations. The bridge abutments will require up to 10 feet of fill and no cut. A 2H:1V slope is planned at the bridge abutment locations.

Widening of the eastern bridge approach will extend from the eastern bridge abutment at Station 112+14.33 to Station 114+92. The proposed widening will require a wedge of fill to be placed in the southern shoulder of the existing road way between Stations 112+14.33 and 114+92, with a maximum fill height of 10 feet occurring at the eastern bridge abutment. The planned side slopes of the eastern bridge approach are 3V:1H.

Topography

The proposed Hwy 82 bridge over Mill Creek is located in Miller County, Arkansas. According to the provided plans¹, the elevations at the west and east abutments are El 262.94² and 262.97, respectively with a maximum of approximately 19 feet of relief across the proposed alignment.

Drainage

The drainage system in the project area consists of the McKinney-Posten Bayous Watershed. The McKinney-Posten Bayous Watershed, in turn, is part of the overall drainage system of the Red River Basin.

Geology

Miller County is located in southwestern Arkansas, in the Gulf Coastal Plain. The Gulf Coastal Plain extends across the southern United States and is bounded to the north by the Ouachita Mountains. Approximately 50 million years ago, prior to tectonic uplift, the area was covered by the Gulf of Mexico. The Coastal Plain is characterized by flat to rolling topography.

The geology in the Mill Creek area is characterized by an upper layer of alluvium which features predominately alluvial deposits of present streams. Below the alluvium, the geology is generally

¹ Arkansas Department of Transportation Construction Plans for State Highway Mill & Bodcau Creeks STRS. & Apprs. (S) Miller and Lafayette Counties Route 82 Sections 1 & 2, Federal Aid Proj. NHPP-0046(50) Job 030497. Provided by Garver on March 7, 2020.

² Elevations are referenced to NAVD 1988 (NAVD 88) in units of feet.

characterized by the Wilcox and Claiborne Groups which feature mainly non-marine sands, silty sands, clays and gravels. Some thick deposits of lignite are featured within both Groups.

CHAPTER 3. GEOTECHNICAL EXPLORATION

A total of ten borings were drilled at selected locations near the bridge approaches and the alignment of the proposed bridge. An additional boring, MC-11b, was drilled approximately 40 feet east from MC-11 due to split-spoon and auger refusal at 5 feet. The borings were drilled to approximate depths of 5 to 100 feet. Seven cores were performed through the existing pavement. Proposed Borings MC-4 and MC-5 were not drilled during exploration due to the presence of rip rap below the bridge and inability to access the sides of the bents.

The borings were drilled March 14, August 13, and August 20 through 22, 2019 using a rotary drill rig (CME 55 and CME 550X), hollow-stem augers and wet-rotary methods. Sampling procedures included Standard Penetration Test (SPT) and thin-wall (Shelby) tube methods. SPT's were conducted at 2.5-, 5-, and 10-foot depth intervals using automatic hammers. Thin-walled Shelby tube samples were collected in cohesive soils at selected depths. Groundwater observations were made during drilling operations.

The collected samples were visually examined by field staff and transported to our laboratory for further evaluation and testing. The samples were examined in the laboratory by a geotechnical professional who prepared descriptive logs of the materials encountered. The boring logs are presented in Appendix C along with an explanation of the terms and symbols used on the boring logs. Included on each boring log is the elevation estimated from the provided plans. Included in Table 1 are in situ tests and measurements made as part of the fieldwork and recorded on the boring logs.

Table 1. Field Tests and Measurements

Item	Test Method
Soil Classification	ASTM D 2488/ D 3282
Standard Penetration Test (SPT)	ASTM D 1586/ AASHTO T206
Thin-Walled (Shelby) Tube Sampling	ASTM D 1587/ AASHTO T207

The boring logs represent conditions observed at the time of exploration and have been edited to incorporate results of the laboratory tests. Unless noted on the boring logs, the lines designating the changes between various strata represent approximate boundaries. The transition between materials could be gradual or could occur between recovered samples. The stratification given on the boring logs, or described herein, is for use by Geotechnology in its analyses and should not be used as the basis of design or construction cost estimates without realizing that there can be variation from that shown or described.

The boring logs and related information depict subsurface conditions only at the specific locations and times where sampling was conducted. The passage of time could result in changes in conditions, interpreted to exist, at or between the locations where sampling was conducted.

CHAPTER 4. LABORATORY REVIEW AND TESTING

Laboratory testing was performed on soil samples to assess engineering and index properties. Most of the laboratory test results are presented on the boring logs in Appendix C. The Atterberg limits, grain size analyses, unconsolidated-undrained triaxial compression (UU), pH, resistivity, standard proctor, and California Bearing Ratio (CBR) test results are also provided in Appendix D. The laboratory tests and corresponding test method standards are presented in Table 2.

Laboratory Test	ASTM	AASHTO
Moisture Content	D 2216	T 265
Atterberg Limits	D 4318	T 98
Grain Size Analysis	D 422	T 88
Unconsolidated-Undrained Triaxial Compression	D 2850	T 296
Direct Shear	D 3080	T 236
pH of Soil	D 4972	T 289
Soil Electrical Resistivity	G 57	T 288
Moisture-Density (Standard Effort)	D 698	T 99
California Bearing Ratio (CBR)	D 1883	T 193

Table 2. Summary of Laboratory Tests and Methods.

The boring logs were prepared by a project geotechnical engineer from the field logs, visual classification of the soil samples in the laboratory, and laboratory test results. Terms and symbols used on the boring logs are presented on the Boring Log: Terms and Symbols in Appendix C. Stratification lines on the boring logs indicate approximate changes in strata. The transition between strata could be abrupt or gradual.

CHAPTER 5. SUBSURFACE CONDITIONS

Existing Pavement

Borings MC-1, and MC-6 through MC-11 were drilled in the existing bridge approaches for the purpose of obtaining pavement thickness and subgrade information beneath the existing road way. A summary of the pavement materials and thicknesses is provided in Table 3.

	Sur	face	Base		
Boring No.	Material	Thickness (in.)	Material	Thickness (in.)	
MC-1	Asphalt	6	Sand and Gravel	6	
MC-6	Asphalt	9	Silty Sand	3	
MC-7	Asphalt	9	Sandy Silt	3	
MC-8	Asphalt	6	Sand and Gravel	6	
MC-9	Asphalt	81⁄2	Sand and Gravel	31⁄2	
MC-10	Asphalt	4	Sand and Gravel	8	
MC-11	Asphalt	8	Sand and Gravel	4	

Table 3. Summary of Encountered Pavement Materials and Thicknesses.

Subgrade Materials

The borings were drilled in the alignment of the proposed bridge and approaches, and were drilled through asphalt and approximately 3 to 6 inches of topsoil. Underlying the topsoil or pavement, the soils generally consisted of coarse-grained, predominately sandy soil underlain by layers of fine-grained soil which in turn was underlain by coarse-grained soils extending to the 100-foot maximum depth of exploration. The borings logs, with more detailed soil descriptions are included in Appendix C. The laboratory testing used to determine AASHTO and USCS classifications is presented in Appendix E.

The upper, interbedded coarse- and fine-grained soils were classified as poorly graded sand (SP), AASHTO A-3, A-1-b, high plasticity "fat" clay (CH), AASHTO A-2-7, and silt (ML) AASHTO A-4, with sand, clayey sand (SC) AASHTO A-4, A-6, and silty sand (SM) AASHTO A-2-4. Coarse-grained soils in the upper soils ranged from very loose to loose in consistency and fine-grained soils ranged from very soft to medium dense.

The upper sandy soils were underlain by fine-grained, predominately clay soils classified as low plasticity, "lean", clay (CL), AASHTO A-6, A-2-7, silt (ML), AASHTO A-4, and high plasticity "fat" clay (CH), AASHTO A-2-7. Apparent very hard lignite was encountered at a depth of approximately 48.5 feet within the fine-grained soils in Boring MC-6. The fine-grained soils ranged in consistency from very soft to hard.

The fine-grained soils were underlain by coarse-grained soil classified as poorly-graded sand with silt (SP-SM), AASHTO A-1-b, A-3, A-2-4, and silty sand (SM), AASHTO A-2-4. Based on field test results, the coarse-grained soils were very dense in consistency.

Groundwater

Groundwater was encountered in Boring MC-3 at a depth of approximately 9 feet (EI 241) while drilling and was not encountered in the other borings. Groundwater may have been masked by mud-rotary drilling operations. Groundwater levels could vary significantly over time due to the effects of seasonal variation in precipitation, recharge, flood levels in Mill Creek or other factors not evident at the time of exploration.

CHAPTER 6. ENGINEERING EVALUATION, ANALYSIS, AND RECOMMENDATIONS

Site Preparation and Earthwork

The following procedures are recommended for site preparation in cut and fill areas. These recommendations do not supersede ARDOT standards and specifications. Site preparation and compaction requirements must conform to the latest ARDOT standards.

<u>Site Preparation</u>. In general, cut areas and areas to receive new fill should be stripped of topsoil, vegetation, and other deleterious materials. Topsoil should be placed in landscape areas or disposed of off-site. Vegetation and tree roots should be over-excavated.

The exposed subgrade should be proof-rolled using a tandem axle dump truck loaded to approximately 20,000 pounds per axle (or equivalent proof-rolling equipment). Soft areas that develop should be over-excavated and backfilled with select fill, which is defined as soil conforming to A-4 or better material, and compacted to the unit weights specified in subsequent paragraphs.

<u>Side Slopes</u>. Existing slopes steeper than 1V:4H should be benched prior to placing new fill. Slope ratios of 1V:3H or flatter are recommended for all cut and fill slopes along the proposed alignment. Fill material consists of cohesive soil as indicated by Garver.

<u>Cut Areas</u>. It is our understanding up to 8 feet of cut will be required to achieve design grade at the existing eastern abutment. Based on the stratigraphy, excavations will terminate in silty sand, lean clay, fat clay, or silt. After excavation, the top 6 inches of the resulting subgrade should be compacted to a minimum of 95% of the maximum dry unit weight as determined by a standard Proctor test (ASTM D 698/AASHTO T 99). Areas supporting pavement should be compacted to 98% of the maximum unit weight as determined by the standard Proctor test.

<u>Fill Materials</u>. Fill material should consist of natural soils classifying as AASHTO A-6 or better. Soils classifying as AASHTO A-4 or better are considered to be select fill. Fine-grained soils (A-4 through A-6) and coarse-grained soils with fines should have a maximum LL of 45 and a PI between 5 and 20 percent. Such materials should be free from organic matter, debris, or other deleterious materials, and have a maximum particle size of 2 inches.

<u>Fill and Backfill Placement</u>. Fill and backfill should be placed in level lifts, up to 8 inches in loose thickness. For fill and backfill exhibiting a well-defined moisture-density relationship, each lift should be moisture-conditioned to within $\pm 2\%$ of the optimum moisture content and compacted with a sheepsfoot roller of self-propelled compactor to a minimum of 98% of the maximum dry unit weight as determined by the standard Proctor test. Moisture-conditioning can include: aeration and drying of wetter soils; wetting drier soils; and/or mixing wetter and drier soils into a uniform blend. The upper three feet of soil beneath the base of pavement should be compacted to 98% of the maximum unit weight as determined by the standard Proctor test.

For fill and backfill that do not exhibit a well-defined moisture-density relationship, each lift should be compacted to 70% of the minimum relatively density as evaluated from the maximum and minimum index densities measured by ASTM D4253 and D4254, respectively. The upper 3 feet of soil beneath the base of pavement should be compacted to 75% of the minimum relatively density.

<u>Fill Placement on Slopes</u>. Certain areas of the project site will require fill to be placed on slopes. Benching of existing slopes should be performed during placement of new fill. Fill on the sloped areas should begin from the toe of the slope and proceed upward, placing new fill on horizontal benches. Bench shelves should be 8 to 10 feet wide, and bench faces should be 1 to 2 feet in height. Fill lifts should be keyed into the slope to reduce the potential of a slip plane between the new fill and existing soils. Fill slopes should be constructed by extending the compacted fill beyond the planned profile of the slope and then trimming the slope to the desired configuration.

<u>Moisture Considerations</u>. Maintaining the moisture content of bearing and subgrade soils within the acceptable range is important during and after construction for the proposed structures. The silty and clayey bearing and subgrade soils should not be allowed to become wet or dry during or after construction, and measures should be taken to hinder water from ponding on these soils and to reduce drying of these soils.

Water from surface runoff, downspouts, and subsurface drains should be collected and discharged through a storm water collection system. Positive drainage should be established around the proposed structures to promote drainage of surface water away from the structures and reduce ponding of water adjacent to these structures.

Pavement Design Information

Composite bulk samples of the auger cuttings were collected from selected borings. Atterberg limits and standard Proctor compaction tests (ASTM D 698/AASHTO T99) were performed on each composite sample. California Bearing Ratio (CBR) tests (ASTM D 1883/ AASHTO T193) were conducted on soaked samples remolded in standard CBR molds using compaction efforts of 25 and 56 blows per layer. The test results are summarized in Table 4.

	(%)		(%)		Image: Second system Image: Second system Image: Second system Image: Second system		sults CBR Results			(%)	
Boring No.	Depth (ft.)	USCS/ AAHSTO	Liquid Limit (°	Plastic Limit (Maximum Dry Unit Weight (pcf)	Optimum Moisture Content (%)	Blows per Layer	Dry Unit Weight (pcf)	Moisture Content (%)	CBR	Percent Compaction (°
MC-9	1-5	CL A-6(6)	34	20	117.3	12.4	25 56	109.3 116.2	15.2 12.8	3.1 8.5	93.2 99.1
MC-10	1-5	CL	36	21	127.1	10.4	25	113.9	13.3	6.5	89.6
10-10	1-5	A-6(12)	50	21	121.1	10.4	56	120.1	11.2	17.4	94.5

The results in the previous table were interpolated/extrapolated to estimate the CBR values at 95 percent compaction, which is typically considered a minimum compaction value to be achieved in the field. The mean and standard deviation of the interpretation were also calculated. The results are presented in Table 5.

Table 5. CBR Interpolation/Extrapolation.

Boring No.	Depth (ft.)	USCS/ AASHTO	CBR at 95% Compaction
MC-9	1 – 5	CL A-6(6)	4.9
MC-10	1 – 5	CL A-6(12)	18.5

Based on the test results and the data presented in the previous table, a CBR of 4.0 is recommended for design of pavements for this project. A CBR value of this magnitude will result in a relatively thick, expensive pavement structure. We recommend a 3-foot undercut below the base of pavements and backfilling with better (larger CBR) materials. Two materials are considered herein: A-4 (design CBR value of 8.0) and A-3 (design CBR value of 10.0).

The design CBR values mentioned in the previous paragraph were correlated to Resilient Modulus (M_R) and Resistance (R) values. The correlation was performed using a graph provided by ARDOT from AASHTO (1993) and is presented in Table 6.

	Soi	Soil Classification/Source				
	A-7-6 A-4 A-3 (In-Situ) (Import) (Import)					
	CBR = 4	CBR = 8	CBR = 10			
MR (psi)	2,900	4,400	5,00			
Resistance (R) Value	9	20	25			

Table 6. Soil Design Parameter Recommendations for Pavement Design.

Seismic Considerations

<u>Earthquake Risk</u>. The project area is located in the vicinity of the New Madrid Seismic Zone (NMSZ). The NMSZ is located in the northern part of the Mississippi Embayment and trends in a northeast to southwest direction from southern Illinois to northeast Arkansas. In December 1811, a series of large magnitude earthquakes occurred, which were centered near New Madrid, Missouri. Three strong earthquakes occurred over the next three months and smaller aftershocks continued until at least 1817. According to researchers, the magnitudes of these three events ranged from 7.5 to 8.0.

<u>Earthquake Forces</u>. It is our understanding the bridge and approaches will be designed in accordance with the AASHTO publication "LRFD Bridge Design Specifications", eighth edition (2017), with 2017 interims.

<u>Seismic Design Parameters</u>. Seismic design parameters based on a seismic hazard with 7% probability of exceedance in 75 years and field and laboratory testing is presented in Table 7.

Table 7. Seismic Design Parameters (7% Probability of Exceedance in 75 years).

Latitude 33.42894°N/Longitude 93.900380°W				
Category/ Parameter	Designation/ Value	Reference		
Seismic Site Class	D	AASHTO LRFD 2017 Table 3.10.3.1-1		
S₅	0.110g			
S ₁	0.047g			
Fa	1.600			
Fv	2.400	Computed using design maps provided by the		
F _{PGA}	1.600	USGS		
ts	0.635	(<u>http://earthquake.usgs.gov/ws/designmaps</u>)		
to	0.127	using the indicated latitude and longitude coordinates of the project site. The USGS tool		
S _{DS}	0.177g	used references AASHTO 2009.		
S _{D1}	0.112g	used references AASI ITO 2009.		
PGA	0.047g			
As	0.076g			

<u>Liquefaction and Dynamic Settlement</u>. A study was performed to evaluate the liquefaction and dynamic settlement potential at the site. Both field and laboratory data were used to perform the analysis. The field measurements included the depth of the water table and the SPT N-values. The laboratory data included USCS classification and soil unit weight. An earthquake magnitude (Mw) of 7.7 with a probability of exceedance of 7% in 75 years was considered. A site-adjusted peak ground acceleration, A_s, of 0.076g was utilized as obtained from the referenced Seismic Design Maps. Groundwater was assumed to be at approximately El 241.

Subsurface conditions (as characterized by field and laboratory data) and earthquake characteristics were used to estimate the safety factors against liquefaction in each soil layer, as well as the associated dynamic settlement during the design seismic event. Based on the analysis, the potential for liquefaction at the site is relatively low.

Due to the low potential for liquefaction at the site, downdrag on piles supporting project structures has not been considered.

Approach Embankment Settlement

Based on the cross sections provided and the proposed pile cap elevations, up to 10 feet of fill will be required at the proposed abutments to bring the site to grade. Up to 6 inches of settlement is estimated to occur under the weight of new fill placed at the bridge approaches and abutments.

We recommend a settlement monitoring program be implemented and survey data be forwarded to Geotechnology so that construction can commence as soon as settlement is essentially completed.

<u>Settlement Monitoring Program</u>. Settlement plates, or other appropriate methods should be utilized. Settlement plates should be installed approximately 1-foot below the existing ground surface and extended in 5-foot calibrated increments as the height of fill increases. To protect the riser pipes, fill should be hand compacted within a 4-foot radius of each plate. A typical settlement plate detail is presented on Figure 3 in Appendix B. We recommend settlement plates be placed no further than 50-feet apart, with at least one in the deepest areas of fill at both abutments. The project surveyor should be retained to monitor the settlement plate riser pipe. Settlement at the site should be measured twice weekly during fill placement and weekly after filling is completed. Further construction at the abutments should not commence until after the settlement due to the fill placement is practically complete. Provided the fill is placed in accordance with the Site Preparation and Earthwork section of this report, we anticipate fill induced settlement will be practically complete approximately four weeks after the finished grade is achieved.

If the estimated settlement due to placement of the approach embankment is not tolerable, then consideration should be given to ground improvement techniques such as rammed aggregate piers.

Global Stability

Based on plans provided by Garver, the abutment slopes for the existing bridge are covered in rip rap and slope 1V:2H. Geotechnology performed stability analyses for deep-seated, global failure of bridge abutment slopes using the computer program SLIDE. Short-term, long-term, and seismic conditions were considered using the Spencer method to compute factors of safety for the proposed slopes.

Calculated minimum factors of safety are summarized in the following table. A pseudo-static seismic acceleration of 0.038g, corresponding to one-half the peak ground acceleration (per FHWA Publication HI-99-012) was utilized. Fill material consists of cohesive soils as provided by Garver; a water elevation of El 241, as obtained from the borings, was utilized for the short-term and seismic condition analyses and a water elevation of El 255.3, as obtained from the preliminary plans from Garver, was used for the long-term condition analyses. Section profiles with calculated critical failure arcs and utilized soil parameters are presented in Appendix F for the selected analyses. The models did not consider the effect of foundation piles driven at the abutments that would provide additional restraining force to stabilize the slopes.

Table 8. Results of Slope Stability Analyses.

		Slope	Calculated Factor of Safety			
Location	Description	Height (ft.)	Short- Term Static ^{a,c}	Long- Term Static ^{a,d}	Seismic ^{b,c}	
West Abutment	1V:2H Fill Slope	10	3.307	1.748	2.988	
South Side Slope Station 110+00	1V:3H Fill Slope	10	3.872	1.703	3.271	
East Abutment	1V:2H Fill Slope	10	3.129	2.732	2.839	
Side Slope Station 112+50	1V:3H Fill Slope	8	3.734	1.625	3.371	

^a Target factor of safety = 1.5, approximately equivalent to a global stability resistance factor = 0.65.

^b Target factor of safety = 1.1, approximately equivalent to a global stability resistance factor = 0.9.

^c Based on a groundwater elevation of El 241 as obtained in the borings.

^d Based on a groundwater elevation of El 255.3 as obtained by the preliminary plans provided by Garver.

Deep Foundations

Foundation design recommendations are provided herein based on the AASHTO LRFD Bridge Design Specifications (2017).

It is our understanding the proposed intermediate bents will be supported using 20-inch, closed-end, steel pipe piles and abutments (end bents) will be supported using either HP12x53 or HP14x73 H-piles. Intermediate bents have been designated as Bent 2 for the western bent and Bent 3 for the eastern bent for the analysis. Geotechnology should be notified if a different foundation type is to be considered. Synthetic profiles have been developed for the intermediate and end bents locations based upon the soil profile encountered in the borings, approximate boring elevations, and the proposed final grade. Nominal resistance curves showing the resistance due to skin friction and the total resistance (skin friction + end bearing) for the end and intermediate bents are presented in Appendix H. Uplift resistance (tension) may be calculated using the resistance provided by skin friction.

<u>Resistance Factors</u>. Resistance factors should be applied to the nominal resistances provided. In general, a factor of 0.45 may be used for piles in compression and 0.35 in tension. Based on AASHTO LRFD (2017) higher resistance factor may be used in accordance with the level of pile testing performed as indicated in Table 9.

Table 9. Resistance Factors for Driven Piles

Condit	Resistance Factor	
	Driving criteria established by successful static load test of at least one pile per site condition and dynamic testing of at least two piles per site, but no less than 2% of the production piles*	0.80
Nominal Bearing	Driving criteria established by successful static load test of at least one pile per site condition without dynamic testing	0.75
Resistance of Single Pile – Dynamic Analysis and Static Load Test Methods	Driving criteria established by dynamic testing conducted on 100% of production piles*	0.75
	Driving criteria established by dynamic testing, quality control by dynamic testing of at least two piles per site condition, but no less than 2% of production piles*	0.65
	Wave equation analysis, without pile dynamic measurements or load test but with field confirmation of hammer performance	0.50
	FHWA-modified Gates dynamic pile formula (End of Drive condition only)	0.40
Uplift Resistance of Single Pile	Dynamic test with signal matching	0.50

* Dynamic testing requires signal matching, and estimates of nominal resistance are made from a restrike. Dynamic tests are calibrated to a static load test, when available.

<u>Pile Group Considerations</u>. The settlement of pile groups should be evaluated as per AASHTO LRFD (2017) section 10.7.2.3. Settlement analysis of the pile groups can be performed when the foundation configurations and service loads are available. AASHTO LRFD (2017) section 10.7.3.9 addresses pile group resistance. Group capacity considerations for different pile groups, center-to-center spacings, and other conditions (cap contact with ground, softness of surface soil etc.) are given in AASHTO LRFD (2017) sections 10.7.3.9 and 10.7.3.11.

<u>Driven Pile Construction Considerations</u>. Minimum hammer energies required to drive the piles were evaluated using the computer software WEAP. The recommended minimum hammer energies for each pile type are provided in Table 10.

Table 10. Minimum Hammer Energies.

Pile Size	Location	Embedment Length (feet)	Required Capacity (tons/kips)	Minimum Rated Hammer Energy (kip-feet)
12x53ª	End Bents (Bents 1 and 4)	72	185 / 370	13
20" ^b	Intermediate Bents (Bents 2 and 3)	62	325 / 650	28

^a H-Pile.

^b Closed-ended pipe piles with ½-inch thick walls.

<u>Static Pile Load Testing</u>. At least one static pile compression load test should be performed for each bent or abutment location. The testing should be performed in accordance with ASTM D 1143 using the quick loading procedure and AASHTO LRFD (2017) section 10.7.3.8.2. Please refer to the previous Resistance Factors table for additional guidance regarding the minimum number of tests and alternate resistance factors associated with other field methods for determining resistance.

If the piles are to support net uplift loads, at least one tension load test should be performed for each location. The test should be performed in accordance with ASTM D 3689. Piles should be tested to the required nominal uplift resistances.

Load tests are required to verify recommended nominal pile resistance and will not be used to increase the design pile resistance. The piles used in the load tests should not be used for support of any structures. Geotechnology should be consulted regarding the locations of the test piles.

Dynamic Testing of Driven Piles. As an alternative to static pile load testing, high-strain dynamic pile testing can be performed according to AASHTO LRFD (2017) section 10.7.3.8.3 and the procedures given in ASTM D4945. Different resistance factors correspond to different load testing combinations as illustrated in the previous table. We recommend that the test piles be identified according to AASHTO LRFD (2017) Table 10.5.5.2.3-1 or 2 percent of the production piles, whichever results in a larger number of tests. We recommend that the identified piles be tested at the end of initial drive (EOID) and a restrike performed at a minimum seven days after EOID.

Pile driving monitoring should be performed by an engineer with a minimum 3 years dynamic pile testing and analysis experience and who has achieved Basic or better certification under the High-Strain Dynamic Pile Testing Examination and Certification process of the Pile Driving Contractors Association and Foundation QA. Pile driving modeling and analyses should be performed by an engineer with a minimum five years dynamic pile testing and analysis experience and who has achieved Advanced or better certification under the High-Strain Pile Testing Examination and Certification under the High-Strain Pile Testing Advanced or better certification under the High-Strain Pile Testing Advanced or better certification under the High-Strain Pile Testing Advanced or Driving Contractors Association and Foundation QA.

Dynamic tests are required to monitor hammer and drive system performance, assess driving stresses and structural integrity and to evaluate pile resistance, and should not be used to increase design pile resistance. Dynamic tests should be performed on production piles with the lowest driving resistance. Geotechnology will be available to assist with development of specifications for this program and should be on site to perform or observe the testing and establish the pile driving criteria.

<u>Settlement</u>. Settlement of pile foundations depends on the loads applied and the foundation configuration. In general, settlement of deep foundations designed in accordance with the recommendations provided in this report is expected to be less than 1-inch. However, a calculation of the expected settlement of the pile foundations can be performed when the applied service loads and foundation configuration are available.

<u>Uplift Resistance</u>. Uplift forces can be resisted by the effective weight of the piles and caps, and frictional resistance between the piles and surrounding soil. If the anticipated maximum level of groundwater is higher than the tip of the pile then the buoyant unit weight of the pile must be used in computing uplift resistance for pile lengths extending below the design groundwater level.

<u>Lateral Resistance</u>. The lateral resistance of pile foundations depends on the length and dimensions of the foundation and the soil characteristics. The lateral resistance of pile foundations can be computed using the computer program LPILE to model the behavior of a single pile or shaft. Soil parameters are provided in Appendix G for the various strata and soil strengths present at the site. Soil parameters are based on field and laboratory test results and empirical correlations with SPT N-values.

The effects of group interaction must be considered when evaluating pile/shaft group horizontal movement. The lateral resistance for individual piles calculated by LPILE must be reduced by the P-multipliers provided in Section 10.7.2.4 of the AASHTO LRFD (2017) to determine lateral resistance of a pile group. Alternatively, the GROUP software can be used to evaluate the lateral resistance of the pile/shaft groups. The resistance factor for lateral resistance of single piles or pile groups is 1.0.

<u>Corrosion Potential</u>. In addition to laboratory soil classification and strength testing, pH and soil resistivity testing was also conducted. The purpose of corrosion and soil resistivity testing is to provide soil data for analysis of any necessary protection to the piling, concrete, reinforcing steel, etc. Corrosion and deterioration protection requirements and guidelines for piling are set forth in Section 10.7.5 of the AASHTO LRFD Bridge Design Specifications. The corrosion and deterioration testing results are summarized below and are included in Appendix D.

		Sample Depth		Soil Resistivity
Boring	Sample No.	(foot)	рН	(ohm-cm)
MC-1	ST-3	5	4.91	17,100
MC-1	SS-5 – SS-8	13.5		7,980
MC-1	SS-14 – SS-17	58.5		1,824
MC-2	ST-4	8	4.53	10,545
MC-3	SS-3 – SS-6	6		3,420
MC-3	SS-8 – SS-10	28.5		1,311
MC-6	SS-4 – SS-8	8.5		9,690
MC-6	ST-5	10	3.90	11,400
MC-6	SS-14 – SS-16	53.5		1,197
MC-7	SS-4 – SS-7	8.5		9,120

Table 11. Results of pH and Soil Resistivity Testing.

Based on the results of the pH and soil resistivity testing and the criteria set forth in the AASHTO LRFD Bridge Design Specifications, low pH and resistivity were measured in multiple samples indicating strong corrosion or deterioration potential in the soils at the depths represented by these samples.

CHAPTER 7. RECOMMENDED ADDITIONAL SERVICES

The conclusions and recommendations given in this report are based on: Geotechnology's understanding of the proposed design and construction, as outlined in this report; site observations; interpretation of the exploration data; and our experience. Since the intent of the design recommendations is best understood by Geotechnology, we recommend Geotechnology be included in the final design and construction process, and be retained to review the project plans and specifications to confirm the recommendations given in this report have been correctly implemented. We recommend Geotechnology be retained to participate in pre-bid and preconstruction conferences to reduce the risk of misinterpretation of the conclusions and recommendations in this report relative to the proposed construction of the subject project.

Since actual subsurface conditions between boring locations could vary from those encountered in the borings, our design recommendations are subject to adjustment in the field based on the subsurface conditions encountered during construction. Therefore, we recommend Geotechnology be retained to provide construction observation services as a continuation of the design process to confirm the recommendations in this report and to revise them accordingly to accommodate differing subsurface conditions. Construction observation is intended to enhance compliance with project plans and specifications. It is not insurance, nor does it constitute a warranty or guarantee of any type. Regardless of construction observation, contractors, suppliers, and others are solely responsible for the quality of their work and for adhering to plans and specifications.

CHAPTER 8. LIMITATIONS

This report has been prepared on behalf of, and for the exclusive use of, the client for specific application to the named project as described herein. If this report is provided to other parties, it should be provided in its entirety with all supplementary information. In addition, the client should make it clear the information is provided for factual data only, and not as a warranty of subsurface conditions presented in this report.

Geotechnology has attempted to conduct the services reported herein in a manner consistent with the level of care and skill ordinarily exercised by members of the profession currently practicing in the same locality and under similar conditions. The recommendations and conclusions contained in this report are professional opinions. The report is not a bidding document and should not be used for that purpose.

Our scope for this phase of the project did not include any environmental assessment or investigation for the presence or absence of wetlands or hazardous or toxic materials in the soil, surface water, groundwater, or air, on or below or around this site. Any statements in this report or on the boring logs regarding odors noted or unusual or suspicious items or conditions observed are strictly for the information of our client. Our scope did not include an assessment of the effects of flooding and erosion of creeks or rivers adjacent to or on the project site.

Our scope did not include: any services to investigate or detect the presence of mold or any other biological contaminants (such as spores, fungus, bacteria, viruses, and the by-products of such organisms) on and around the site; or any services, designed or intended, to prevent or lower the risk of the occurrence of an infestation of mold or other biological contaminants.

The analyses, conclusions, and recommendations contained in this report are based on the data obtained from the geotechnical exploration. The field exploration methods used indicate subsurface conditions only at the specific locations where samples were obtained, only at the time they were obtained, and only to the depths penetrated. Consequently, subsurface conditions could vary gradually, abruptly, and/or nonlinearly between sample locations and/or intervals.

The conclusions or recommendations presented in this report should not be used without Geotechnology's review and assessment if the nature, design, or location of the facilities is changed, if there is a lapse in time between the submittal of this report and the start of work at the site, or if there is a substantial interruption or delay during work at the site. If changes are contemplated or delays occur, Geotechnology must be allowed to review them to assess their impact on the findings, conclusions, and/or design recommendations given in this report. Geotechnology will not be responsible for any claims, damages, or liability associated with any other party's interpretations of the subsurface data or with reuse of the subsurface data or engineering analyses in this report.

The recommendations included in this report have been based in part on assumptions about variations in site stratigraphy that can be evaluated further during earthwork and foundation construction. Geotechnology should be retained to perform construction observation and continue its geotechnical engineering service using observational methods. Geotechnology cannot assume liability for the adequacy of its recommendations when they are used in the field without Geotechnology being retained to observe construction.

Important Information about This Geotechnical-Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

The Geoprofessional Business Association (GBA) has prepared this advisory to help you - assumedly a client representative - interpret and apply this geotechnical-engineering report as effectively as possible. In that way, you can benefit from a lowered exposure to problems associated with subsurface conditions at project sites and development of them that, for decades, have been a principal cause of construction delays, cost overruns, claims, and disputes. If you have questions or want more information about any of the issues discussed herein, contact your GBA-member geotechnical engineer. Active engagement in GBA exposes geotechnical engineers to a wide array of risk-confrontation techniques that can be of genuine benefit for everyone involved with a construction project.

Understand the Geotechnical-Engineering Services Provided for this Report

Geotechnical-engineering services typically include the planning, collection, interpretation, and analysis of exploratory data from widely spaced borings and/or test pits. Field data are combined with results from laboratory tests of soil and rock samples obtained from field exploration (if applicable), observations made during site reconnaissance, and historical information to form one or more models of the expected subsurface conditions beneath the site. Local geology and alterations of the site surface and subsurface by previous and proposed construction are also important considerations. Geotechnical engineers apply their engineering training, experience, and judgment to adapt the requirements of the prospective project to the subsurface model(s). Estimates are made of the subsurface conditions that will likely be exposed during construction as well as the expected performance of foundations and other structures being planned and/or affected by construction activities.

The culmination of these geotechnical-engineering services is typically a geotechnical-engineering report providing the data obtained, a discussion of the subsurface model(s), the engineering and geologic engineering assessments and analyses made, and the recommendations developed to satisfy the given requirements of the project. These reports may be titled investigations, explorations, studies, assessments, or evaluations. Regardless of the title used, the geotechnical-engineering report is an engineering interpretation of the subsurface conditions within the context of the project and does not represent a close examination, systematic inquiry, or thorough investigation of all site and subsurface conditions.

Geotechnical-Engineering Services are Performed for Specific Purposes, Persons, and Projects, and At Specific Times

Geotechnical engineers structure their services to meet the specific needs, goals, and risk management preferences of their clients. A geotechnical-engineering study conducted for a given civil engineer will <u>not</u> likely meet the needs of a civil-works constructor or even a different civil engineer. Because each geotechnical-engineering study is unique, each geotechnical-engineering report is unique, prepared *solely* for the client.

Likewise, geotechnical-engineering services are performed for a specific project and purpose. For example, it is unlikely that a geotechnical-engineering study for a refrigerated warehouse will be the same as one prepared for a parking garage; and a few borings drilled during a preliminary study to evaluate site feasibility will <u>not</u> be adequate to develop geotechnical design recommendations for the project.

Do not rely on this report if your geotechnical engineer prepared it:

- for a different client;
- for a different project or purpose;
- for a different site (that may or may not include all or a portion of the original site); or
- before important events occurred at the site or adjacent to it; e.g., man-made events like construction or environmental remediation, or natural events like floods, droughts, earthquakes, or groundwater fluctuations.

Note, too, the reliability of a geotechnical-engineering report can be affected by the passage of time, because of factors like changed subsurface conditions; new or modified codes, standards, or regulations; or new techniques or tools. *If you are the least bit uncertain* about the continued reliability of this report, contact your geotechnical engineer before applying the recommendations in it. A minor amount of additional testing or analysis after the passage of time – if any is required at all – could prevent major problems.

Read this Report in Full

Costly problems have occurred because those relying on a geotechnicalengineering report did not read the report in its entirety. Do <u>not</u> rely on an executive summary. Do <u>not</u> read selective elements only. *Read and refer to the report in full.*

You Need to Inform Your Geotechnical Engineer About Change

Your geotechnical engineer considered unique, project-specific factors when developing the scope of study behind this report and developing the confirmation-dependent recommendations the report conveys. Typical changes that could erode the reliability of this report include those that affect:

- the site's size or shape;
- the elevation, configuration, location, orientation, function or weight of the proposed structure and the desired performance criteria;
- the composition of the design team; or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project or site changes – even minor ones – and request an assessment of their impact. *The geotechnical engineer who prepared this report cannot accept* responsibility or liability for problems that arise because the geotechnical engineer was not informed about developments the engineer otherwise would have considered.

Most of the "Findings" Related in This Report Are Professional Opinions

Before construction begins, geotechnical engineers explore a site's subsurface using various sampling and testing procedures. *Geotechnical engineers can observe actual subsurface conditions only at those specific locations where sampling and testing is performed.* The data derived from that sampling and testing were reviewed by your geotechnical engineer, who then applied professional judgement to form opinions about subsurface conditions throughout the site. Actual sitewide-subsurface conditions may differ – maybe significantly – from those indicated in this report. Confront that risk by retaining your geotechnical engineer to serve on the design team through project completion to obtain informed guidance quickly, whenever needed.

This Report's Recommendations Are Confirmation-Dependent

The recommendations included in this report – including any options or alternatives – are confirmation-dependent. In other words, they are <u>not</u> final, because the geotechnical engineer who developed them relied heavily on judgement and opinion to do so. Your geotechnical engineer can finalize the recommendations *only after observing actual subsurface conditions* exposed during construction. If through observation your geotechnical engineer confirms that the conditions assumed to exist actually do exist, the recommendations can be relied upon, assuming no other changes have occurred. *The geotechnical engineer who prepared this report cannot assume responsibility or liability for confirmation-dependent recommendations if you fail to retain that engineer to perform construction observation.*

This Report Could Be Misinterpreted

Other design professionals' misinterpretation of geotechnicalengineering reports has resulted in costly problems. Confront that risk by having your geotechnical engineer serve as a continuing member of the design team, to:

- confer with other design-team members;
- help develop specifications;
- review pertinent elements of other design professionals' plans and specifications; and
- be available whenever geotechnical-engineering guidance is needed.

You should also confront the risk of constructors misinterpreting this report. Do so by retaining your geotechnical engineer to participate in prebid and preconstruction conferences and to perform constructionphase observations.

Give Constructors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can shift unanticipated-subsurface-conditions liability to constructors by limiting the information they provide for bid preparation. To help prevent the costly, contentious problems this practice has caused, include the complete geotechnical-engineering report, along with any attachments or appendices, with your contract documents, *but be certain to note* conspicuously that you've included the material for information purposes only. To avoid misunderstanding, you may also want to note that "informational purposes" means constructors have no right to rely on the interpretations, opinions, conclusions, or recommendations in the report. Be certain that constructors know they may learn about specific project requirements, including options selected from the report, only from the design drawings and specifications. Remind constructors that they may perform their own studies if they want to, and be sure to allow enough time to permit them to do so. Only then might you be in a position to give constructors the information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions. Conducting prebid and preconstruction conferences can also be valuable in this respect.

Read Responsibility Provisions Closely

Some client representatives, design professionals, and constructors do not realize that geotechnical engineering is far less exact than other engineering disciplines. This happens in part because soil and rock on project sites are typically heterogeneous and not manufactured materials with well-defined engineering properties like steel and concrete. That lack of understanding has nurtured unrealistic expectations that have resulted in disappointments, delays, cost overruns, claims, and disputes. To confront that risk, geotechnical engineers commonly include explanatory provisions in their reports. Sometimes labeled "limitations," many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely*. Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

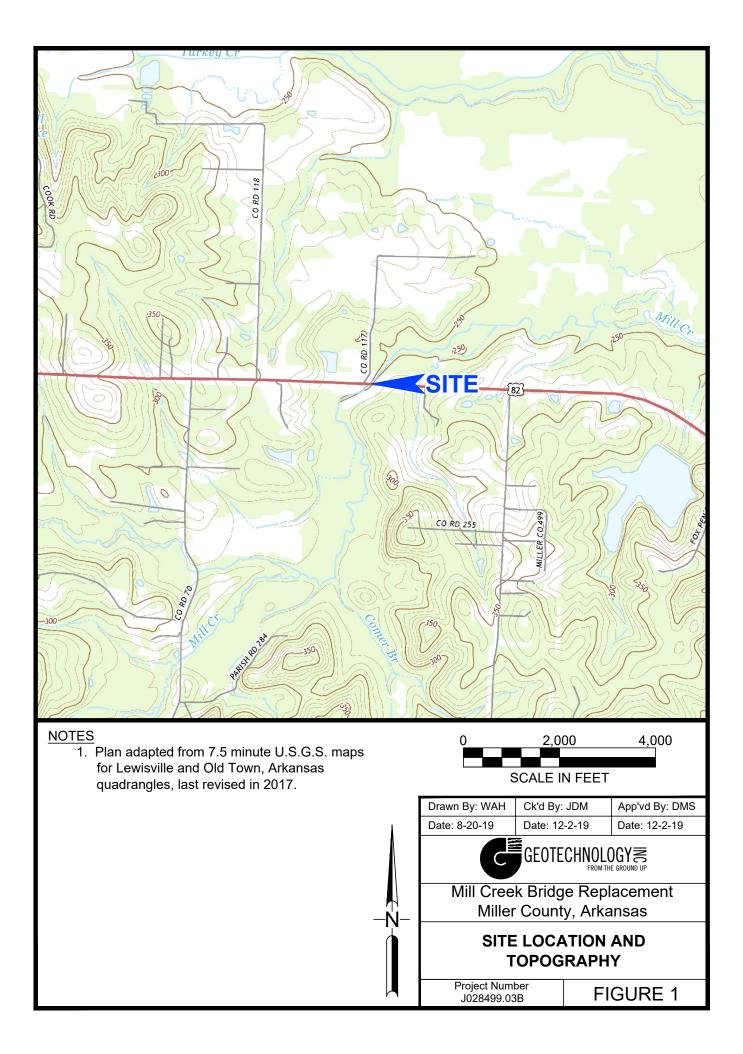
The personnel, equipment, and techniques used to perform an environmental study – e.g., a "phase-one" or "phase-two" environmental site assessment – differ significantly from those used to perform a geotechnical-engineering study. For that reason, a geotechnical-engineering report does not usually provide environmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated subsurface environmental problems have led to project failures.* If you have not obtained your own environmental information about the project site, ask your geotechnical consultant for a recommendation on how to find environmental risk-management guidance.

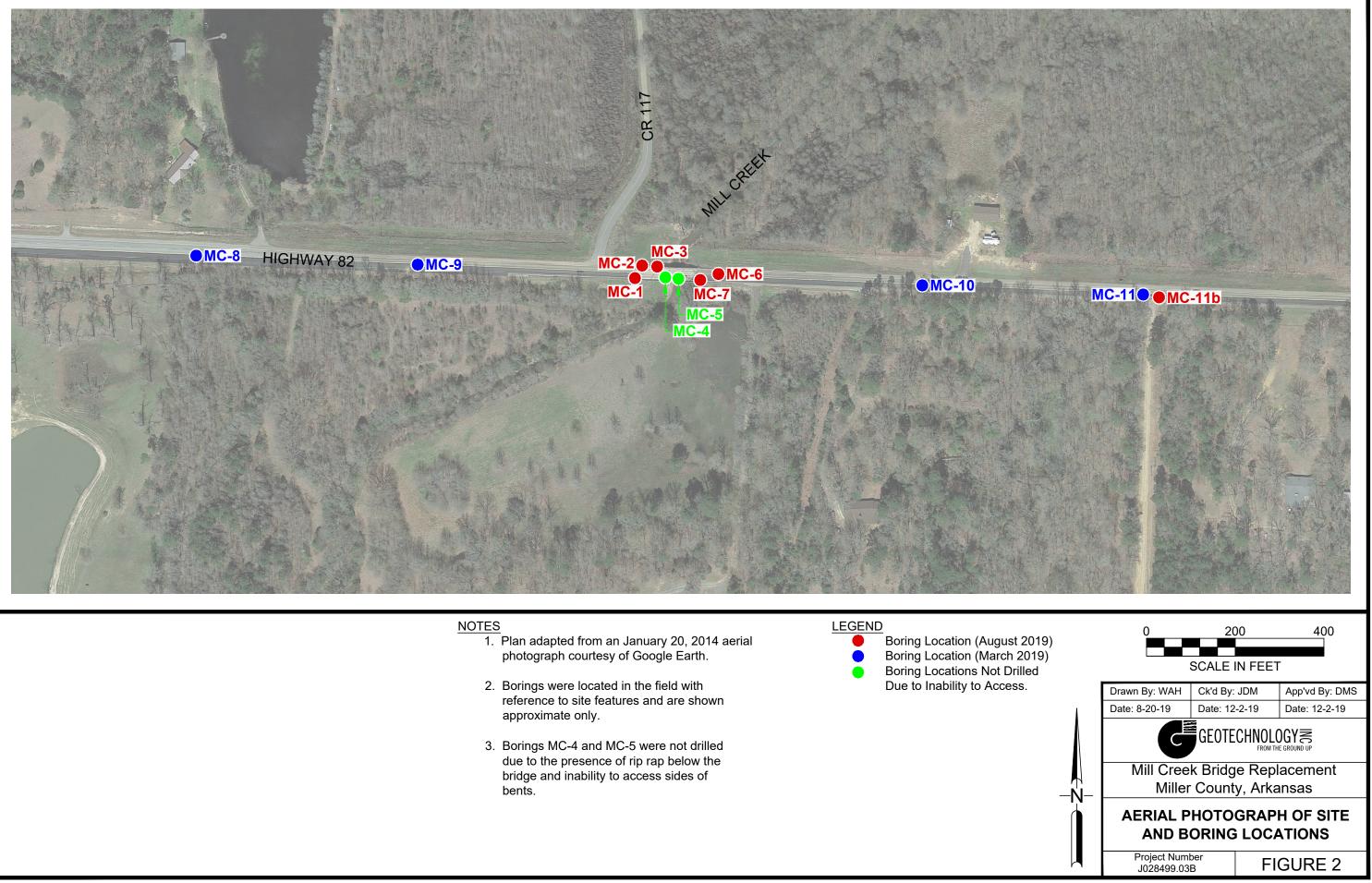
Obtain Professional Assistance to Deal with Moisture Infiltration and Mold

While your geotechnical engineer may have addressed groundwater, water infiltration, or similar issues in this report, the engineer's services were not designed, conducted, or intended to prevent migration of moisture – including water vapor – from the soil through building slabs and walls and into the building interior, where it can cause mold growth and material-performance deficiencies. Accordingly, proper implementation of the geotechnical engineer's recommendations will <u>not</u> of itself be sufficient to prevent moisture infiltration. Confront the risk of moisture infiltration by including building-envelope or mold specialists on the design team. Geotechnical engineers are <u>not</u> building-envelope or mold specialists.

Telephone: 301/565-2733 e-mail: info@geoprofessional.org www.geoprofessional.org

Copyright 2019 by Geoprofessional Business Association (GBA). Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with GBA's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of GBA, and only for purposes of scholarly research or book review. Only members of GBA may use this document or its wording as a complement to or as an element of a report of any kind. Any other firm, individual, or other entity that so uses this document without being a GBA member could be committing negligent




APPENDIX B – FIGURES

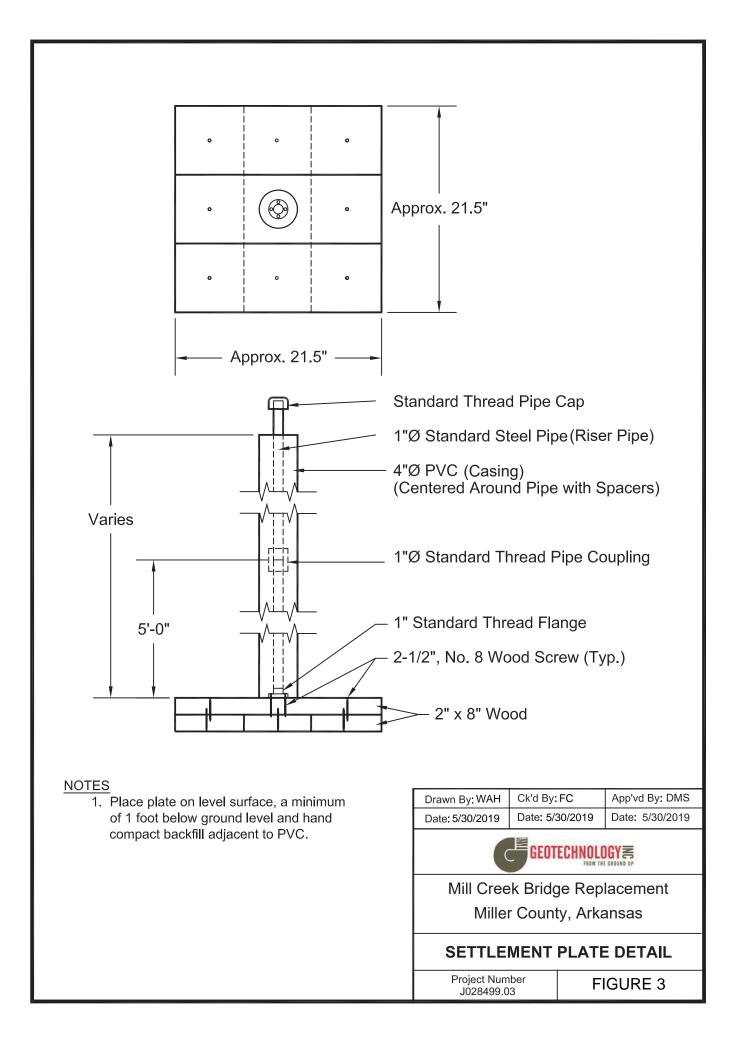

Figure 1 – Site Location and Topography

Figure 2 – Aerial Photograph of Site and Boring Locations

Figure 3 – Settlement Plate Detail

APPENDIX C – BORING INFORMATION

Boring Logs

Boring Log Terms and Symbols

• Su	rfac	e Elevation: 260	Completion Date:	8/21/19		D D D		S	HEAR STR	ENGTH	, tsf	
Su	nac		Completion Date.		ŋ	/ UNIT WEIGHT (pcf) PT BLOW COUNTS RE RECOVERY/RQD		∆ - UU/2	0 - C		_	SV
	Ľ	Datum <mark>NAVD 8</mark> 8			GRAPHIC LOG	<u>Б</u> С П С С С С С С С С С С	В.	0,5	1,0 1,			
					- ¥	N N N N N N N N N N N N N N N N N N N	SAMPLES	STANDARI		-	RESISTA	ANCE
포탑	5				ZAF	REC	SAI	A NLA	(ASTM D ALUE (BLC)			
DEPTH N FFFT	-	DESCR	IPTION OF MA	TERIAL	Ū	Р Т П П П		v	VATER CO	NTENT	.%	
						DRY UI SPT E CORE I		PL 10	20 30			
	-	ASPHALT: 6 inches	3			1-8-12	004					
	_		k and brown sand, litt		////	3-3-6	SS1 SS2	A •	• 1 • • • • •			
- 5	2	Medium dense, brov	wn and black SAND, t	race silt and gravel - //		116	ST3					
- 10	5		n, sandy, FAT CLAY -	CH //		1-1-2	SS4					
	=		AYEY SAND - (SC)	/								
— 15	5-	Very loose, brown, \$]/		0-0-0	SS5					
- 20		Very loose, gray, Cl				2-1-4	SS6		•			
	<u>'</u>		soft, brown and gray	to gray, sandy SILT								
- 25	5-	- ML 61.6% passing No.	200 sieve			2-1-3	SS7		· · · · · ·			
		1 0										
— 30)_					0-0-1	SS8			<u> </u>		
- 35						1-2-3	SS9					
- 35	<u>ر</u>											
- 40	計	Hard, gray to brown	, FAT CLAY - CH			8-16-20	<u>SS10</u>					<u> </u>
<u> </u>		Sandy Sandy Sandy Sandy										79
	5-	 silty trace black decayed 	l organic material			12-29 -50/1"	<u>SS11</u>					<u>;</u> ;7"
- 50	-	Very dense, gray, S	-			11-22-32	SS12					
	,	, , , , , , , , , , , , , , , , , , ,										
- 55	5-	Dense, gray SAND	with silt - SP-SM			12-19-25	<u>SS13</u>			· · · · ·		
	=					05 00 00	0014					62
- 60)_	Hard, gray, sandy, F	-AT CLAY - CH			25-33-29	5514					
- 65	5											
— 70	Σ	Very dense, gray, S 21.3% passing No.				31-50/6"	<u>SS15</u>			· · · · ·		
		21.3% passing No.	200 Sieve									
- 75	2											
80 - 80)-					22-50/6"	SS16				6"	
- 75 - 80												
- 85 - 85 - 85 - 85 - 90	5-											
						23-50/5"	SS17		•			
ම <u>ි</u> – 90 ද	,										5"	
01 10 10 10 10	5-					-						
5						40 50/47	0040					
<u>–</u> 100)	Boring terminated a	t 100 feet.			16-50/4"	<u>5518</u>				4"	
	(GROUNDWATER D	ATA	DRILLING	DATA			Drawn by: JDN			App'vd. b	
10400	-	X FREE WATER N		AUGER <u>3 3/4</u> H				Date: 8/23/19	Date: 11/4	+/ 19	Date: 11/	4/19
J028499.03 ARDOT 030497	VCC	UNTERED DURING		WASHBORING FR					GEOTE	CHN	<u> </u>	/Z
				<u>BMF</u> DRILLER J							OM THE GROU	
9.03												
12849				<u>CME 550X</u> DF HAMMER TYF				Mill C	reek Bridg		cement	
				HAMMER EFFICIE					Miller C	ounty		
R	EM	ARKS:				<u> </u>						
		-						L	DG OF BOI	ring: I	MC- 1	
2 D									-	-		
								_				
								D-	oject No.	10254	00 02	

	ce Elevation: <u>260</u> Datum NAVD 8 8	Completion Date: 8/13 /		GHT (pcf) OUNTS ERY/RQD	ES		0,5	2		TREN() - QU/2 1 _. 5		□ -	SV 5
DEPTH IN FEET			GRAPHIC LOG	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS CORE RECOVERY/RQD	SAMPLES	STA		N-VA	(AS LUE (TRATIC TM D 158 BLOWS CONTE	6) PER	FOOT)	
				<u>Е<u></u></u>		PLF	10	2	0	30	40	5	
	<u> </u>	of grass with brown silt wn, sandy, LEAN CLAY, trace <u>c</u>	ravel - Cl	3-2-3	SS1	▲●							
- 5-	Soft, brown, sandy s			2-1-3	SS2								
- 10		own to gray, LEAN CLAY with s	and - (CL)	2-2-2 128	SS3 ST4					<u> </u>			
- 10-		200 sieve											
- 15-	70.7% passing No. 3	200 sieve		0-0-1	SS5		<u> </u>	::		<u> </u>	<u>:</u> :::::::::::::::::::::::::::::::::::		
	Very loose, brown, S			3-2-2	SS6								
- 20-	very loose, brown, s	SILTY SAIND - SIVI		. <u> </u>	1330								
- 25-	Very loose, gray, Cl	AYEY SAND - SC		0-0-2	SS7					<u> </u>			
- 30-	Very loose to very d SAND - (SM)	ense, gray to gray and black, S		1-1-0	SS8			::					
- 35-	30% passing No. 20	00 sieve		2-4-9	SS9		_						
- 35-					1								
- 40-				12-19-26	SS10		:::			<u> </u>	:::		
	<				0011								
- 45-	trace organics			12-50/5"	5511							5"	
- 50-				11-20-27	SS12				•	<u> </u>			
	Boring terminated a	t 50 feet.											
- 55 -							:::: ::::	::	:::	<u> </u>	::::::::::::::::::::::::::::::::::::::		
<u> </u>													
- 60-													
- 65 -							:::	::	:::	<u> </u>	1 1 1 1 1 1		
- 70-													
- 75-										<u> </u>			
- 80-													
- 85-													
00													
- 90 -										<u> </u>	1 1 1 1 1 1		
- 95-													
-100-										<u> </u>			
						Drawn	by: J	:: DM	Cheo	ked by: A	SM A	: : : : \pp'vd. b	::::::: y::DMS
	GROUNDWATER D		DRILLING DATA	:		Date:			-	: 11/4/19		Date: 11/-	
ENC	<u>X</u> FREE WATER NO OUNTERED DURING I		GER <u>3 3/4</u> HOLLC					2	נרט	TECH		וחפי	
		WASI	HBORING FROM				C		uEU	ICUT		LUU I The grou	
			DRILLER JDM L										
			<u>CME 550X</u> DRILL R				Mill	Cre	ek Br	idge R	eplac	ement	
			AMMER TYPE <u>Au</u>					5.0		er Cour			
DE	IARKS:	HAM	MER EFFICIENCY	<u>92</u> %									
κen								LOC	6 of	BORIN	G: M	C- 2	
										10. J0		• • •	
								n	4 1				

Surfa	ce Elevation: _ 250 _	Completion Date: _	8/20/19		pcf) SDD				
				Ю	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS CORE RECOVERY/RQD	0	∆ - UU/2 0.5	○ - QU/2 1.0 1.5	□ - SV 2.0 2.5
	Datum <mark>NAVD 8</mark> 8			CL		LEG			
		1		GRAPHIC LOG		SAMPLES	OTANDAND	(ASTM D 1586)	
DEPTH IN FEET	DESCR	IPTION OF MAT		GR∕		Ś		ALUE (BLOWS P	
IN F	DESCR				SP SP SP SP			ATER CONTEN	
		of grass with brown silt			2		10 2	20 30	40 50
_	Very stiff, brown, sa	indy, FAT CLAY, trace r	oots and silt - CH		14-13-10 5-4-4	SS1 SS2			
- 5-	Medium stiff, brown	and gray SILT, trace or	- /		1-2-2	SS3	A		
- 10-	Soft to very stiff, bro	own and gray to tan and	gray, sandy SILT ∠		1-2-2	SS4			
45	 ML 60.7% passing No. 3 	200 sieve			4-5-4	SS5		•	
- 15-	∖ trace clay								
- 20-					5-11-6	SS6			
- 25-	Medium dense to de	ense, gray, SILTY SAND	D, trace black		1-2-9	SS7		•	
20	decayed organic ma 49.9% passing No.	aterial - SM							
- 30-	40.070 passing 10.	200 510 00			9-18-28	SS8			
- 35-					15-23-24	SS9	•		
- 40-	Hard, gray, sandy, F material - (CH)	FAT CLAY, trace black o	devayed organic		9-15-27	<u>SS10</u>			
- 45-	Dense to very dense	e, gray, SILTY SAND - S	SM		14-20-22	SS11		•	
	<								7
- 50-	trace clay				15-21 -50/4"	SS12			10
- 55-	Very dense, gray SA	AND with silt - SP-SM			18-50/4"	SS13	· · · · · · · · · · · · · · · · · · ·		<u> </u>
						0014			
- 60 -					21-50/5"	5514			5"
- 65-									
70	Very dense, gray SA				18-50/6"	<u>9915</u>			
- 70-	very dense, gray or				10-30/0	5515			6"
- 75-									
- 80-	Verv dense, grav SA	AND with silt - SP-SM			30-50/3"	SS16		•	
00	Boring terminated a								3"
- 85-									
- 90-									
- 95-									
-100-									
	GROUNDWATER D	ΑΤΑ					Drawn by: JDM	Checked by: ASN	
			AUGER <u>3 3/4</u> H				Date: 8/23/19	Date: 11/4/19	Date: 11/4/19
FN	ICOUNTERED AT <u>9</u> F	- 	WASHBORING FRC					GEOTECHN	OLOGYZ
			<u>BMF</u> DRILLER <u>JI</u>						FROM THE GROUND UP
			<u>CME 550X</u> DR						
			HAMMER TYP	E <u>Aut</u>	<u>o</u>		Mill Cre	ek Bridge Rep Miller County	lacement
_			HAMMER EFFICIE	NCY	<u>92_</u> %				
RE	MARKS:							g of Boring:	MC- 3
							Pro	ject No. J028	499.03
								-	

0 0		260	8/22/19		÷ Q		SHE	EAR STRENGTH	l, tsf
ASPHALT Binches Berken Material: Brown and gray still. Hile send and gravel. Control of the send and gravel. <thcontrol and="" gravel.<="" of="" send="" th="" the=""> Co</thcontrol>	Surfa		0/22/19	Ð	HT (po JNTS Y/RQ				□ - SV
ASPHALT 0 mbles 0.12.4 SS1 Sedem addetial Errown and gray will blick SAND, title all and gravel 0.12.4 SS2 100 Locse, cray and black SAND, title all and gravel 0.3.3.4 SS1 15 Mare day 0.3.4.4 SS1 16 Mare day 0.4.72.6 SS1 17 SS3 0.4.1 0.4.1 18 Mare day 0.4.1 SS1 19 Mare day 0.4.1 SS1 100 Locse, red, CLAYEY SAND, reas all + (SC) 0.4.1 SS1 20 This passing No. 200 even 0.4.1 SS1 11.12 SS8 0.4.1 SS1 11.12 SS8 0.4.1 0.4.1 20 This passing No. 200 even 0.4.1 0.4.1 21.11 Deriver deriver, tan and gray SAND - SP 3.3.4 SS1 13.20.31 SS12 0.4.1 0.4.1 13.20.31 SS13 0.4.1 0.4.1 13.21.31 SS14 0.4.1 0.4.1		DatumNAVD 88		CLO	KER'	PLES			
ASPHALT 9 Inches Graduation Sea Material: Brown and gray sill. Hile send and gravel 24-3 552 1 1 Notion dome: gray and black SAND, lifte oil and gravel 3-3-4 554 1				APHI	× NO EC NO EC NO	AMF		(ASTM D 1586)	
ASPHALT 9 Incles Aspendent		DESCRIPTION OF MAT	FERIAL	GR	UN T BI ČE R	0			
ASPHALT 9 inches 4 See Matchiel Bown 4 Neelum dense, gray and black SAND, little sill and gravel - 1 See Matchiel Bown 2-3-3 See Matchiel Bown 2-3-4 Loose, ride (LAYEY SAND, tace sill - (SC) Loose, ride (LAYEY SAND, tace sill - (SC) Loose (ride (LAYEY SAND, SLT - ML Thac day 11-12 SS8	ΞZ				COF COF			•	
S Ubase Material Brown and gravel Z24-3 SS2 30 Loose, orange and lant to red and orange, SILTY SAND - SM 23-3 SS3 4 10 Loose, road, CLWYY SMN, bree sit - (SC) 3-3 SS3 4 4 20 State day 0-0-0 SS6 4 1 1 11 State day 0-0-0 SS6 4 1					9-12-6	SS1	•		
Order orange and tan to red and orange. SILTY SAND - SM 10 <td>— 5—</td> <td></td> <td></td> <td></td> <td>\sim</td> <td></td> <td></td> <td></td> <td></td>	— 5—				\sim				
Notes Notes <th< td=""><td>_ 10-</td><td></td><td></td><td>////</td><td></td><td>\square</td><td></td><td></td><td></td></th<>	_ 10-			////		\square			
Dig 08.4% passing No. 200 sieve 11.12 557 11.12 557 11.12 557 11.12 557 11.12 557 11.12 557 11.12 555 11.12 555 11.12 555 11.12 555 11.12 555 11.12 555 11.12 555 11.12 557 11.12 555 11.12 557 11.12 557 11.12 557 11.12 557 11.12 557 11.12 557 11.12 557 11.12 557 11.12 557 11.12 557 11.12 557 11.12 557 11.12 557 11.12 557 11.12 557 11.12 557 <t< td=""><td></td><td>\ \trace clay</td><td></td><td></td><td></td><td></td><td>Δ</td><td></td><td></td></t<>		\ \trace clay					Δ		
Open Set Open Set 11.1% passing No. 200 sleve 11.12 SS6 11.12 SS6 11.12 SS6 230 Loose to very dense, tan and gray SAND - SP 3.3.4 SS9 330 trace gravel and black decayed organic material 9.10 SS10 400 Hard, gray, LEAN CLAY, trace sand - (CL) 10.17.24 SS11 41 13.20.31 SS12 4 45 Very dense, black decayed LIGNITE 50/6° SS13 55 Hard, gray, sitty, sandy, FAT CLAY - CH 13.21.31 SS15 43.0% passing No. 200 sleve 13.20.31 SS15 43.0% passing No. 200 sleve 13.20.31 SS15 43.0% passing No. 200 sleve 13.20.35 SS15 56 Very dense, gray SAND with sit - SP-SM 13.20.35 SS16 57 Very dense, gray SAND with sit - SP-SM 13.26.50/7 SS18 58 SS19 SS19 SS19 SS19 59 Boring terminated at 100 feet AUGER 3.34 HOLOW STEM MASH AND APVel.by: D <t< td=""><td>— 15—</td><td>38.4% passing No. 200 sieve</td><td>.,</td><td></td><td>0-0-0</td><td>556</td><td></td><td></td><td></td></t<>	— 15—	38.4% passing No. 200 sieve	.,		0-0-0	556			
225 30 Loose to very dense, tan and gray SAND - SP 3-34 SS9 4 <	- 20-				0-0-1	SS7			
00 Very dense, gray, SILTY SAND - SM 43.0% passing No. 200 sieve 13.23 50/4" 19.50/6" SS16 19.50/6" SS16 0 19.50/6" SS16 0 19.50/6" SS16 0 100 Boring terminated at 100 feet. 24.50/6" SS18 0 100 Boring terminated at 100 feet. 23.3/4 AUGER 3.3/4 AUGER 3.3/4 AULOW STEM WASHBORING FROM 10 FEET BMF DRILLER JDM LOGGER CME 550X DRILL RIG Mill Creek Bridge Replacement Miller County Mill Creek Bridge Replacement	≻ 25-	∖ trace clay			1-1-2	SS8			
60 Very dense, gray, SILTY SAND - SM 43.0% passing No. 200 sieve 13:23 50/4 -50/4 19:50/6" SS16 -6 70 -60 75 -75 80 Very dense, gray SAND with silt - SP-SM 90 -75 90 </td <td></td> <td>Loose to very dense, tan and dray SAND</td> <td>SD</td> <td></td> <td>331</td> <td>022</td> <td></td> <td></td> <td></td>		Loose to very dense, tan and dray SAND	SD		331	022			
00 Very dense, gray, SILTY SAND - SM 43.0% passing No. 200 sieve 13:23 00 43.0% passing No. 200 sieve 00 65 70 19:50/6" SS16 75 19:50/6" SS16 75 0 75 0 80 Very dense, gray SAND with silt - SP-SM 90 0 95 0 90 0 95 0 90 0 95 0 90 0 95 0 90 0 90 0 90 0 90 0 90 0 91 0 92 0 93 0 94 0 95 0 96 0 97 0 98 0 99 0 90 0 90 0 91 0 92 0	30- 30-								
00 Very dense, gray, SILTY SAND - SM 43.0% passing No. 200 sieve -50/4" 50 -50/4" 19-50/6" SS16 -6 70 -75 75 -75 80 Very dense, gray SAND with silt - SP-SM 90 -75 910 -75 92 -75 93 -75 93<		Trace gravel and black decayed organic ma	terial			<u>SS10</u>			11
60 Very dense, gray, SILTY SAND - SM 43.0% passing No. 200 sieve 13-23 66 10-50/6" 75 19-50/6" 76 19-50/6" 76 19-50/6" 76 19-50/6" 76 19-50/6" 76 19-50/6" 80 Very dense, gray SAND with silt - SP-SM 100 Boring terminated at 100 feet. 990 24-50/6" 95 24-50/6" 90 90 90 Boring terminated at 100 feet. 100 Boring terminated at 100 feet. 24-50/6" SS19 100 Boring terminated at 100 feet. 910 26-50/3" 92 93 93 94 94 95 95 96 96 97 97 98 98 98 99 99 90 98 910 98 92 99 93 99 94 98	01 40-	Hard, gray, LEAN CLAY, trace sand - (CL)			10-17-24	SS11			
60 Very dense, gray, SILTY SAND - SM 43.0% passing No. 200 sieve 13:23 50/4 -50/4 19:50/6" SS16 -6 70 -60 75 -75 80 Very dense, gray SAND with silt - SP-SM 90 -75 90 </td <td></td> <td></td> <td></td> <td></td> <td>13-20-31</td> <td>SS12</td> <td></td> <td>•</td> <td></td>					13-20-31	SS12		•	
00 Very dense, gray, SILTY SAND - SM 43.0% passing No. 200 sieve -50/4" 50 -50/4" 19-50/6" SS16 -6 70 -75 75 -75 80 Very dense, gray SAND with silt - SP-SM 90 -75 910 -75 92 -75 93 -75 93<]			74
00 Very dense, gray, SILTY SAND - SM 43.0% passing No. 200 sieve -50/4" 50 -50/4" 19-50/6" SS16 -6 70 -75 75 -75 80 Very dense, gray SAND with silt - SP-SM 90 -75 910 -75 92 -75 93 -75 93<	ບຶ <u>່</u> 50 –	Very dense, black decayed LIGNITE				<u>SS13</u>			S-6"
60 Very dense, gray, SILTY SAND - SM 43.0% passing No. 200 sieve 13.0% passing No. 200 sieve 65 19-50/6" SS16 70 19-50/6" SS16 70 66 75 60 80 Very dense, gray SAND with silt - SP-SM 80 Very dense, gray SAND with silt - SP-SM 90 90 90 90 90 Boring terminated at 100 feet. 91 24-50/6" SS19 100 Boring terminated at 100 feet. 91 00 92 93 94 00 95 00 96 00 97 00 98 00 99 00 90 00 910 Boring terminated at 100 feet.		Hard, gray, silty, sandy, FAT CLAY - CH			13-21-31	SS14	<u></u>		
75 Very dense, gray SAND with silt - SP-SM 24-50/6" SS17 80 Very dense, gray SAND with silt - SP-SM 24-50/6" SS18 90 24-50/6" SS18 6" 90 24-50/6" SS18 6" 90 24-50/6" SS18 6" 91 00 Boring terminated at 100 feet. 6" 95 26-50/3" SS19 0 6" 95 0 0 6" 95 0 0 6" 95 0 0 6" 95 0 0 6" 96 0 0 6" 97 0 0 6" 98 0 0 6" 99 0 0 6" 90 0 0 6" 90 0 0 6" 91 0 0 6" 92 0 0 6" 93 0 0 0 94 0 0 6" 95 0 0 0 <td>5 </td> <td></td> <td></td> <td></td> <td></td> <td>SS15</td> <td></td> <td>•</td> <td>73</td>	5 					SS15		•	73
75 Very dense, gray SAND with silt - SP-SM 24-50/6" SS17 80 90 24-50/6" SS18 90 24-50/6" SS18 6" 90 95 26-50/3" SS19 100 Boring terminated at 100 feet. 6" 90 0 26-50/3" SS19 0 Boring terminated at 100 feet. 0 0 0 0 0 Boring terminated at 100 feet. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td< td=""><td>ADU</td><td>✓ 43.0% passing No. 200 sieve</td><td></td><td></td><td>50/4"</td><td></td><td></td><td></td><td>10</td></td<>	ADU	✓ 43.0% passing No. 200 sieve			50/4"				10
75 Very dense, gray SAND with silt - SP-SM 24-50/6" SS17 80 Very dense, gray SAND with silt - SP-SM 24-50/6" SS18 90 24-50/6" SS18 6" 90 24-50/6" SS18 6" 90 26-50/3" SS19 6" 910 Boring terminated at 100 feet. 6" 95 26-50/3" SS19 0 6" 95 Boring terminated at 100 feet. 26-50/3" SS19 0 6" 95 Boring terminated at 100 feet. 26-50/3" SS19 0 0 6" 95 Boring terminated at 100 feet. 0 0 0 0 0 0 96 Boring terminated at 100 feet. 0 0 0 0 0 0 97 AUGER 3.3/4 HOLLOW STEM WASHBORING FROM 10 FEET DM LOGGER 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
T5 75 80 Very dense, gray SAND with silt - SP-SM 85 90 90 24-50/6" SS17 90 24-50/6" SS18 90 26-50/3" SS19 90 6 ⁴ 95 90 90 95 90 95 90 95 910 Boring terminated at 100 feet. 0 Boring terminated at 100 feet. 0 Auger 3 3/4 0 Auger 3 3/4 0 Drawn by: JDM Checked by: ASM App'vd. by: D 0 Date: 31/21/19 0 Date: 11/4/19 0 Composition of the tabular of the tabul	W - 70-				19-50/6"	<u>SS16</u>			6
85 90 90 90 95 90 95 90 90 95 100 Boring terminated at 100 feet. 26-50/3" SS19 90 100 Boring terminated at 100 feet. 3" 26-50/3" SS19 0 0 100 Boring terminated at 100 feet. 3" 26-50/3" SS19 0 0 100 Boring terminated at 100 feet. 3" 0 100 Boring terminated at 100 feet. 3" 0 100 Boring terminated at 100 feet. 3" 0 100 Boring terminated at 100 feet. 100 Boring terminated at 100 feet. 100 Boring terminated at 100 feet. 100 DRILLING DATA	01LISN - 75-								
85 90 90 90 95 90 100 Boring terminated at 100 feet. 26-50/3" SS19 0 100 Boring terminated at 100 feet. 3" 26-50/3" SS19 100 Boring terminated at 100 feet. 3" 26-50/3" SS19 100 Boring terminated at 100 feet. 3" 26-50/3" SS19 100 Boring terminated at 100 feet. 3" 3" 100 Boring terminated at 100 feet. 3" 26-50/3" SS19 100 Boring terminated at 100 feet. 3" 3" 4 DRILLING DATA	₩ <u>₩</u>	Very dense, gray SAND with silt - SP-SM			24-50/6"	SS17		•	<u> </u>
95 95 100 Boring terminated at 100 feet. 26-50/3" SS19 0 26-50/3" SS19 3" 0 0 0 0 0 0 0 0 00 0 0 0									
95 95 100 Boring terminated at 100 feet. 26-50/3" SS19 0 26-50/3" SS19 3" 0 0 0 0 0 0 0 0 00 0 0 0	8301.8								
100 Boring terminated at 100 feet. 100 Boring terminated at 100 feet. <td< td=""><td>90- 2</td><td></td><td></td><td></td><td>24-50/6"</td><td><u>SS18</u></td><td></td><td></td><td>6"</td></td<>	90- 2				24-50/6"	<u>SS18</u>			6"
GROUNDWATER DATA DRILLING DATA X_FREE WATER NOT ENCOUNTERED DURING DRILLING AUGER <u>3 3/4</u> HOLLOW STEM WASHBORING FROM <u>10</u> FEET <u>BMF</u> DRILLER JDM LOGGER <u>CME 550X</u> DRILL RIG HAMMER TYPE <u>Auto</u> Drawn by: JDM Checked by: ASM App'vd. by: D Mill Creek Bridge Replacement Miller County									
GROUNDWATER DATA DRILLING DATA X_FREE WATER NOT ENCOUNTERED DURING DRILLING AUGER <u>3 3/4</u> HOLLOW STEM WASHBORING FROM <u>10</u> FEET <u>BMF</u> DRILLER JDM LOGGER <u>CME 550X</u> DRILL RIG HAMMER TYPE <u>Auto</u> Drawn by: JDM Checked by: ASM App'vd. by: D Mill Creek Bridge Replacement Miller County	do Xi -100 -	Paring terminated at 100 feet			26-50/3"	SS19		•	3"
X FREE WATER NOT ENCOUNTERED DURING DRILLING AUGER 3 3/4 HOLLOW STEM WASHBORING FROM 10 FEET BMF DRILLER JDM LOGGER CME 550X DRILL RIG HAMMER TYPE Auto		Boring terminated at 100 reet.							
X FREE WATER NOT ENCOUNTERED DURING DRILLING AUGER _3 3/4_ HOLLOW STEM WASHBORING FROM 10_ FEET BMF_ DRILLER _JDM_LOGGER GEOTECHNOLOGYE CME 550X_DRILL RIG HAMMER TYPE _Auto MIII Creek Bridge Replacement Miller County		GROUNDWATER DATA	DRILLING D	ATA					App'vd. by: DMS
initial county	03049		AUGER <u>33/4</u> HC	DLLO\	N STEM			1	1
initial county	ENC	OUNTERED DURING DRILLING							
initial county	9.03 A								
initial county	102849						Mill Cre		acement
REMARKS:								willier County	
LOG OF BORING: MC- 6	OG OF BORING 2002 WL	MARKS:					LOC	g of Boring:	MC- 6
Project No. J028499.03	LOG OF						Proj	ect No. J0284	199.03

Jun	ace Elevation: _260	Completion Date:8/22/19		aD D			HEAR STRENGT	H, tsf
			g	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS CORE RECOVERY/RQD		∆ - UU/2	○ - QU/2	🗆 - SV
	Datum <mark>NAVD 8</mark> 8		GRAPHIC LOG	E SE	Ц Ц Ц	0,5		2,0 2,5
			H	N N N N N N N N N N N N N N N N N N N	SAMPLES	STANDARI		RESISTANCE
포뇨			RAF	REC	SA	▲ N-\	(ASTM D 1586) VALUE (BLOWS P	FR FOOT)
DEPTH IN FEET	DESCR	IPTION OF MATERIAL	Ū	ЪТЯ П		V	WATER CONTEN	T, %
□≧				R S S		PL 10	20 30	40 50 LL
	ASPHALT: 9 inches			5-7-9	SS1	•		
— 5-		k and brown sand with silt and gravel ery loose, tan and orange to gray and	/	3-2-3	SS2			
	white, SILTY SAND			3-3-4	SS3			
10				3-3-3	SS4			
- 15-				1-0-1	SS5			
- 20-	Medium stiff, gray a 50.3% passing No.	nd white, sandy SILT - ML 200 sieve		0-2-3	SS6			
- 25-				3-3-3	SS7			
25								
² / ₂ − 30−	Very loose, brown a	nd gray SAND - SP		2-2-2	SS8			
- 25- - 30- - 35- - 40- - 45- - 55- - 60- - 65- - 65- - 70-	Very losse to dense	e, gray, SILTY SAND, little clay - SM		0-0-0	SS9			
- 35-	42.3% passing No.				339			
₹ - 40-				9-20-20	SS10			
3								61
<u> </u>	Hard, gray, sandy, s	silty, FAT CLAY - (CH)		14-20-31	<u>SS11</u>			>>>>>
3 50-	little black decayed	organic material		35-24-20	SS12		•	
<u>د</u>	Boring terminated a	t 50 feet.						
55-								
 ا								
	-							
65-								
- 75- - 80-								
b 								
- 000 - 85- - 85- - 90-	-							
<u> </u>								
3 90								
95-	-							
	1					Drawn by: JDN	1 Checked by: ASN	App'vd. by: DMS
97 - N	GROUNDWATER D	ATA DRILLI	NG DATA			Date: 8/23/19	Date: 11/4/19	Date: 11/4/19
0304	X FREE WATER N		<u>/4</u> HOLLO	W STEM				
ENC	OUNTERED DURING	DRILLING WASHBORING	FROM <u>10</u>	<u>FEET</u>			GEOTECHN	FROM THE GROUND UP
03 Ar		<u>BMF</u> DRILLER	JDM LO	OGGER			•	INGM THE GROUND UP
J028499.03 ARDOT 030497 - MILL			<u>X</u> DRILL R			Mill C	reek Bridge Rep	lacement
			TYPE Aut				Miller County	
		HAMMER EFI	ICIENCY	<u>92_</u> %				
	MARKS:						og of Boring:	MC 7
ΣI Σ							UG UP DURING:	
2								
06 0F BORING 2002 WL						-	roject No. J028	400.00

DEPTH IN FEET	DESCR		apletion Date: 3/14/19 50 OD OF MATERIAL 00 01		RAPHIC LOG UIT WEIGHT (p. ILOW COUNTS RECOVERY/RC SAMPLES			□ - SV 2,0 2,5
	-	IPTION OF MATERIAL	GRAPHIC	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS CORE RECOVERY/RQD	SAMPL	▲ N-V/	PENETRATION (ASTM D 1586) ALUE (BLOWS PE ATER CONTEN 20 30	ER FOOT)
- 5-	Stiff, brown, sandy,	sand, trace gravel and silt LEAN CLAY - CL ilty SAND, trace clay - SM		16-8-7 2-1-1 0-5-10 1-1-3	SS1 SS2 SS3 SS4			
- 15-		tan to tan and gray, silty SAND - SM		4-4-7	SS5			
<u> </u>								
- 30-								
<u>- 40</u> - 45- - 50-								
- 55-								
<u> </u>								
- 75-								
- 85-								
<u> </u>								
	ROUNDWATER D	ATA DRILLI	NG DATA			Drawn by: JDM Date: 3/18/19	Checked by: ASM Date: 11/4/19	App'vd. by: DMS Date: 11/4/19
	<u>X</u> FREE WATER NO UNTERED DURING I	DRILLING WASHBORING	FROM	FEET DGGER			GEOTECHN	
RFM	ARKS:		_ DRILL RIC TYPE <u>Aut</u> FICIENCY _	<u>o</u>		Mill Cre	eek Bridge Repl Miller County	acement
						LO	g of Boring:	MC- 8

	nce Elevation: <u>260</u> Datum <mark>NAVD 8</mark> 8			ate: <u>3/14/19</u> BROW COUNTS BLOW COUNT WEIGHT (ped) BLOW COUNTS BLOW COUNTS BLOW COUNTS BLOW COUNTS		GRAPHIC LOG GRAPHIC LOG DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS CORE RECOVERY/RQD SAMPLES	SHEAR STRENGTH, tsf △ - UU/2 ○ - QU/2 □ - SV 0,5 1,0 1,5 2,0 2,5 STANDARD PENETRATION RESISTANCE (ASTM D 1586)						
DEPTH IN FEET	DESCR	PTION OF MATERIA	C GRAP	SPT BLO	SAN	PLI		W	LUE (Ater		PER F	D	L
	ASPHALT: 8.5 inch	29				.		2 	20 : : :	30	40	50) ::::
	Base Material: Blacl	sand, trace gravel and silt		<u>3-4-5</u> 0-3-3	SS1			P					
— 5—	Stiff, brown, sandy,			2-1-1	SS2 SS3	Á		•					
- 10-	50.6% passing No. 2	y SAND, little silt - SC	/ //	1-1-1	SS4		<u> </u>	<u> </u>				<u> </u>	<u> </u>
	Medium stiff to soft,	brown to tan and gray, sandy, F	AT CLAY										
— 15—	- CH	EAN CLAY, little sand - CL	//////	<u> </u>	SS5		<u> </u>	::::				<u> </u>	
— 20—	Boring terminated a		/										
_ 20-	Ŭ												
- 25-							<u> </u>	<u></u>				<u> </u>	
— 30—								<u> </u>				<u> </u>	
— 35—													
- 40-													
— 45—													
<u> </u>													
- 55-													
- 60 -								<u> </u>				<u> </u>	
- 65-								<u> </u>				· · · · ·	
— 70—													
— 75—													
- 80 -													
- 85-													
00													
- 90 -							<u> </u>	<u> </u>					
<u> </u>													
—100—													
100													
						Drav	vn by:		Cher	ked by: A	::::::::::::::::::::::::::::::::::::::	p'vd. by	: : : /: DMS
	GROUNDWATER DA	<u>ATA</u>	DRILLING DATA	<u> </u>			e: 3/18		_	: 11/4/19		ate: 11/4	
	X FREE WATER N		ER <u>3 3/4</u> HOLLO	OW STEM					0-0	TEAU	NO	0.014	_
ENC	OUNTERED DURING I	ORILLING WASH	BORING FROM	_ FEET		(uEU	TECH			
		<u>BMF</u>	DRILLER <u>JDM</u> L	OGGER							FROM	THE GROU	NUUP
			CME 55 DRILL R	IG									
		Н	IAMMER TYPE <u>Au</u>	uto_			Mi	II Cre		ridge Re er Coun		ment	
		HAMI	MER EFFICIENCY	′ <u>90</u> %							<i>.</i> ,		
RE	MARKS:							LO	g of	BORIN	G: MC	;- 9	
										No. J02			

	Surface Elevatio Datum NAV		Completion Date:	3/14/19	GRAPHIC LOG	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS CORE RECOVERY/RQD	SAMPLES	- UU/2 0,5 ANDA	2		QU/2 1 _. 5	2 ₁ 0	□ - S 2 _. 5	
	DEPTH IN FEET	DESCR	IPTION OF M	ATERIAL	GRAPH	RY UNIT W SPT BLOW DRE RECO	SAMI		N-VA		I D 1586) .OWS P	ER FO		
						E°S		 10	2		30	40	50	
NOTE: STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARIES BETWEEN SOIL TYPES KEEK.GPJ. GTINC 0638301. ØMQ. TEJEÇITB ANSITION MAY BE GRADUAL. GRAPHIC LOG FOR ILLUSTRATION PURPOSES ONLY.	ASPH/ Base N Stiff, ta 4.7% C 74.6% Mediur SP-SC Mediur Mediur Very st	ALT: 4 inches Material: Blac In and gray, L Gravel passing No. n dense, tan n dense, gray	k sand, trace gravel a EAN CLAY with san 200 sieve and gray SAND with y, silty SAND - SM y and tan SAND, trac CLAY - CH	and silt d, trace gravel - (CL) clay, trace gravel -		5-6-5 3-9-9 2-6-6 3-10-12 8-11-12	SS1 SS2 SS3 SS4 SS5				3 0	-		
J028499.03 ARDOT 030497 - MILL CREEK.		WATER DA WATER N D DURING I	ОТ	DRILLING I AUGER <u>33/4</u> H WASHBORING FRO <u>BMF</u> DRILLER <u>JI</u>	OLLO OM	FEET		 vn by: J e: 3/18/	19	Checke Date: 1	ECHN	Dat	9'vd. by: e: 11/4/1 DGY e ground	9 NC
OG OF BORING 2002 WL J028499.0	REMARKS:	<u>CME 55</u> DRILL RIG HAMMER TYPE <u>Auto</u> HAMMER EFFICIENCY <u>90</u> % REMARKS :						ek Brid Miller G OF BC	County	/				
LOG OF BOF									Proj	ect No). J028	8499.	03	

		2/4 4/40		θ				SHE	AR ST	RENGT	H, ts	f	
	Surfa	ce Elevation: <u>260</u> Completion Date: <u>3/14/19</u>	U	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS CORE RECOVERY/RQD		Δ	- UU	/2	0 -	QU/2		🗆 - S'	V
		DatumNAVD 88	GRAPHIC LOG	ERV IDUI	ы В Ш		0,5	1.(2,0	2,5	
			E E	MAN NO	SAMPLES	ST	AND	ARD P		RATION	RE	SISTAN	CE
	표뇨		RAF	REC REC	SAI			N-VAL		D 1586) OWS PI	ER F	OOT)	
	DEPTH IN FEET	DESCRIPTION OF MATERIAL	G	RE NTU NE			_			ONTEN			
				He o o		PL	10	20) :	30	40	50	- LL
		ASPHALT: 8 inches	<u> ////////////////////////////////////</u>	3-6-6	SS1		•						
	— 5—	Base Material: Black sand, trace gravel and silt		3-7-50/1"	SS2	<u> </u>	•	•	<u> </u>				A :
	— 10—	Medium dense, gray, silty SAND, trace clay - SM						•					
	10	Split-spoon refusal at approximately 4.75 feet.											
	— 15—					<u> </u>	<u> </u>				:		
	- 20-												
ES													
NLY.	— 25—												
V SOI	— 30—						<u> </u>		<u> </u>				
WEE													
ES BET	- 35-												
UDARIE STRAT	— 40—				-	:::	:::				:		
BOUN	- 45-						<u> </u>			<u> </u>			
AATE 5 FOR													
C LOC	— 50—										-		
E APP ZAPHI	- 55-												
AL. GF	- 60-						<u> </u>		<u> </u>	<u> </u>		<u> </u>	
NOTE: STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARIES BETWEEN SOIL TYPES GTINC 0638301,处码 市过境济度ANSTITION MAY BE GRADUAL. GRAPHIC LOG FOR ILLUSTRATION PURPOSES ONLY.	- 65-												
ES REF Y BE G	05												
N LINI	— 70—				-					<u> </u>		· · · · · ·	
CATIC	— 75—					<u> </u>	· · · ·		<u> </u>		:		
aTIFI §/¶BAI	- 80-												
C STF 0 TUJE													
NOTE 1.02	- 85-												
06383	— 90—												
TINC	05												
	— 95— —												
CREEK.GPJ	100												
- MILL CI			L			Draw	:::: /n by:	JDM	Checke	d by: ASN	: Ap	p'vd. by: [:::: DMS
497 - N		GROUNDWATER DATA DRILLING					: 3/18		Date: 1			ite: 11/4/1	
T 030	FNC	X FREE WATER NOT AUGER 3.3/4 H OUNTERED DURING DRILLING WASHDODING EDG						le r	FUL	ECHN	n	UUVI	Ξ
J028499.03 ARDOT 030497	2,10	WASHBORING FRO										HE GROUND	
99.03 .		<u></u>						-					
J0284		HAMMER TYP					Mi	II Cree	k Brid Millor	ge Rep County	lace	ment	
		HAMMER EFFICIE								Jounty			
LOG OF BORING 2002 WL	RE	MARKS: Auger refusal encountered at approximately 4.7	5 feet.					LOG	of BC	RING:	MC	-11	
JF BOF													
LOG C								Proje	ect No	. J028	499	.03	

	ce Elevation: <u>260</u> Datun <mark>NAVD 8</mark> 8	Completion Date: 3/14/19	GRAPHIC LOG	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS CORE RECOVERY/RQD	SAMPLES		- UU 0.5 AND	/2	(1 ₁ 0 PENE	STRENG - QU/2 1,5 TRATIOI TM D 1586)	2,0 N RE	□ - 2.	5
DEPTH IN FEET	DESCR	IPTION OF MATERIAL	GRAF	RY UNIT SPT BLC ORE REC	SA	PL		N-VA	LUE (PER F	<u>оот)</u>	
				E.S		PLI	10	:	20	30	40	50	
	Refer to Boring MC-	-11.											
_ 5_	Medium dense, brov SAND, trace gravel	<i>w</i> n and gray to gray and orange, silty - SM		6-8-8	SS3			4					
- 10-				3-6-8	SS4		<u> </u>		:: ::		<u>:</u> : :		<u> </u>
- 15-	Stiff, gray and tan, F	AT CLAY - CH		5-3-6	SS5			<u> </u>				<u> </u>	
	Boring terminated a	t 15 feet.											
- 20-											-		
- 25-								<u> </u>			<u> </u>		<u> </u>
- 30-													
- 35-													
-25 -30 -35 -40 -45 -55 -60 -65 -65 -70													
- 45-											: :		
- 50 -							<u> </u>	<u> </u>			<u> </u>		
- 55-													
- 60-													
- 65-								<u> </u>					<u> </u>
- 70-								<u> </u>			<u> </u>		<u> </u>
<u> </u>													
- 80-								<u> </u>					<u> </u>
90-							<u> </u>	<u> </u>			· ·	<u> </u>	<u> </u>
90-													
90-													
—100—							<u> </u>	<u> </u>			<u> </u>	<u> </u>	<u> </u>
	GROUNDWATER D	ATA DRILL	ING DATA				vn by: e: 3/18			cked by: AS e: 11/4/19		p'vd. by ate: 11/4	
		AUGER _ <u>3 :</u>							PEN	TECHI	เกเ	በቦህ	
ENC	COUNTERED AT <u>13</u> F								uEU			UUI The grou	
ENC			DRILL RIC	3			мі		ek R	ridge Rep	olace	ment	
		HAMMER HAMMER EF	R TYPE <u>Aut</u>							er Count			
REN to fu	IARKS: Boring offs Ill depth of explorat	set approximately 40 feet east of			ed			LOG	G OF E	BORING:	MC-	11b	
								Pro	iect l	No. J02	8499	03	

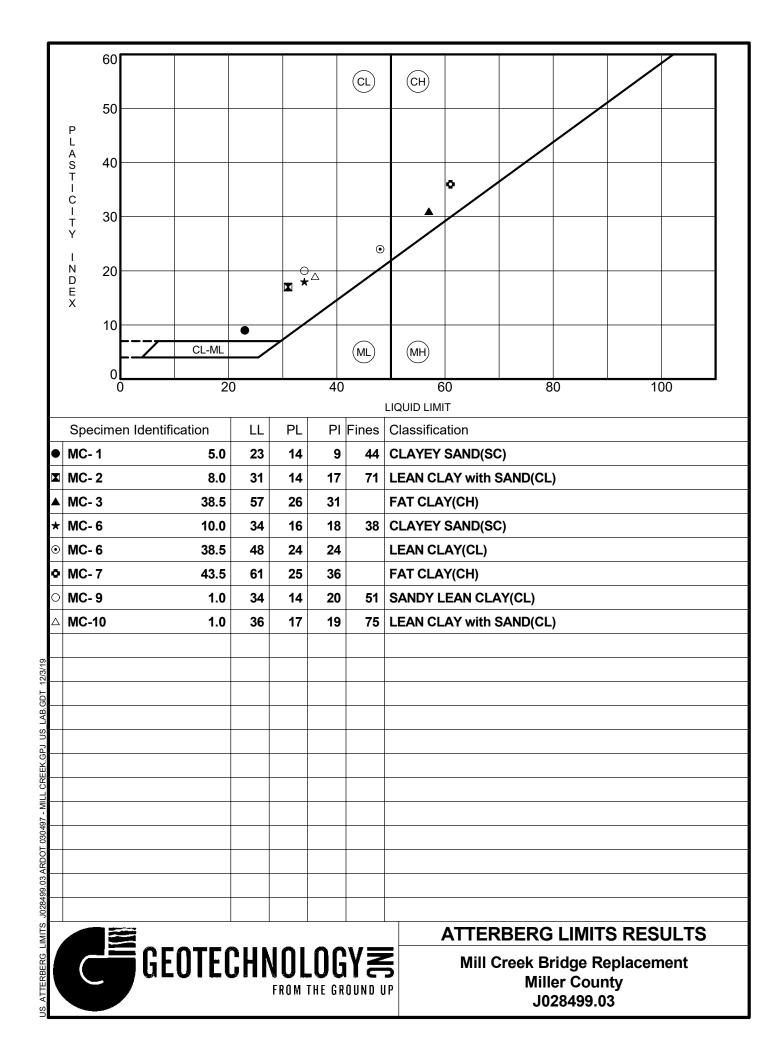
	B	ORING	LOG:	TER	MS AN	D SYMBOL	S
	LEGE	END				Plasticity Ch	art
CS	Continuous	Sampler			80 %		
GB	Grab Samp	le			70 %		
NQ	NQ Rock C	ore			60 %		UTU "Ane a
PST	Three-Inch	Diameter Pi	ston Tube \$	Sample	50 %		СН
SS		n Sample (St					CH CH Subject CH CH Subject CH Subject CH CH Subject CH
ST		Diameter Sh		Sample	30 %		- HM
*	Sample No	t Recovered			20 %		
PL		it (ASTM D4	,		10 %		
LL		: (ASTM D43	,		0%	10 % 20 % 30 % 40 % 50 % 60 % Liquid Limit	% 70 % 80 % 90 % 100 % 110 %
SV		ngth from Fie	•		,		
UU		-				ompression Test (ASTI	M D2850)
QU	Shear Stree	ngth from Ur				/I D2166)	
			ę	Soil GRA	IN SIZE		
				US STANDA	RD SIEVE		
	12	2" 3	3, 3,	/4" 4	ļ 10) 40 20	00
BOULD	JEB S	COBBLES		AVEL		SAND	SILT CLAY
DOOLL			COARSE		COARSE		
	30	10 76			76 2.0		74 0.005
					N MILLIMETER		
			FIED SO	1	IFICATIO	N SYSTEM	
	Major Di			Symbol		Description	
Coarse-Grained Soils (More than 50% Larger than No. 200 Sieve Size)	Gravel	Clean C		GW		Gravel, Gravel- Sand Mi	
าec า 5 r . 2 .	and Little or no Fines GP Poorly-Graded Gravel, Gravel-Sand Mixture						
air'air' har No ze	E S S Gravelly Gravels with GM Silty Gravel, Gravel-Sand-Silt Mixture						
Coarse-Grained soils (More than 50% Larger than No. 200 Sieve Size)	Soil	Apprecial		GC	Clayey-Grav	el, Gravel-Sand-Clay Mix	ture
se lor th: eve	Clean Sands SW Well-Graded					Sand, Gravelly Sand	
oar (N Jer Sie	Sand and Sandy	Little or r	no Fines	SP	Poorly-Grade	ed Sand, Gravelly Sand	
C. C.	Soils	Sands	s with	SM	Silty Sand, S	Sand-Silt Mixture	
	00115	Apprecial	ole Fines	SC	Clayey-Sand	I, Sand-Clay Mixture	
ls	Silts and	Liquid	Limit	ML	Silt, Sandy S	Silt, Clayey Silt, Slight Pla	sticity
Soi Nc Ze	Clays	Less T		CL	Lean Clay, S	Sandy Clay, Silty Clay, Lo	w to Medium Plasticity
ed n 5 an Si	Clays	Less II	1411 30	OL	Organic Silts	or Lean Clays, Low Plas	ticity
aine tha eve		ا من بنام	Lineit	MH	Silt, High Pla	asticity	
Gra Si Ile	Silts and	Liquid Greater		СН	Fat Clay, Hig	h Plasticity	
-ər Mo 1ma 200	Clays	Greater	man 50	OH	Organic Clay	/, Medium to High Plastic	ity
Fine-Grained Soils (More than 50% Smaller than No. 200 Sieve Size)	High	nly Organic S	Soils	PT	Peat, Humus	s, Swamp Soil	
	STRENG	TH OF CO	OHESIVE	SOILS	-	DENSITY OF GF	ANULAR SOILS
		Undraine			ed Comp.		Approximate
Consis	tency	Streng			, th (tsf)	Descriptive Term	N ₆₀ -Value Range
Very	Soft	less tha			en 0.25	Very Loose	0 to 4
So		0.125 t	o 0.25	0.25	to 0.5	Loose	5 to 10
Mediun	n Stiff	0.25 t	o 0.5	0.5 1	o 1.0	Medium Dense	11 to 30
Sti	ff	0.5 to	o 1.0	1.01	io 2.0	Dense	31 to 50
Very	Stiff	1.0 to	o 2.0	2.01	o 3.0	Very Dense	>50
Hai	rd	greater t	han 2.0	greater	than 4.0		
						N = 7 + 9 = 16). Value	es are shown as a
summation o	n the grid pl	ot and show	n in the Un	it Dry Weigh	nt/SPT colum	าท.	
REL	ATIVE CO	OMPOSITI	ON			OTHER TERMS	
Trac	ce	0 to	10%	Layer - Inc	lusion greate	er than 3 inches thick.	
Litt	le	10 to				ich to 3 inches thick	
Son	ne	20 to		-		than 1/8-inch thick	
An	d	35 to	50%	Pocket - In	clusion of m	aterial that is smaller th	nan sample diameter
	EOTECHNOI From		visual descri	otions and are		only. If laboratory tests we	designations are based on re performed to classify the

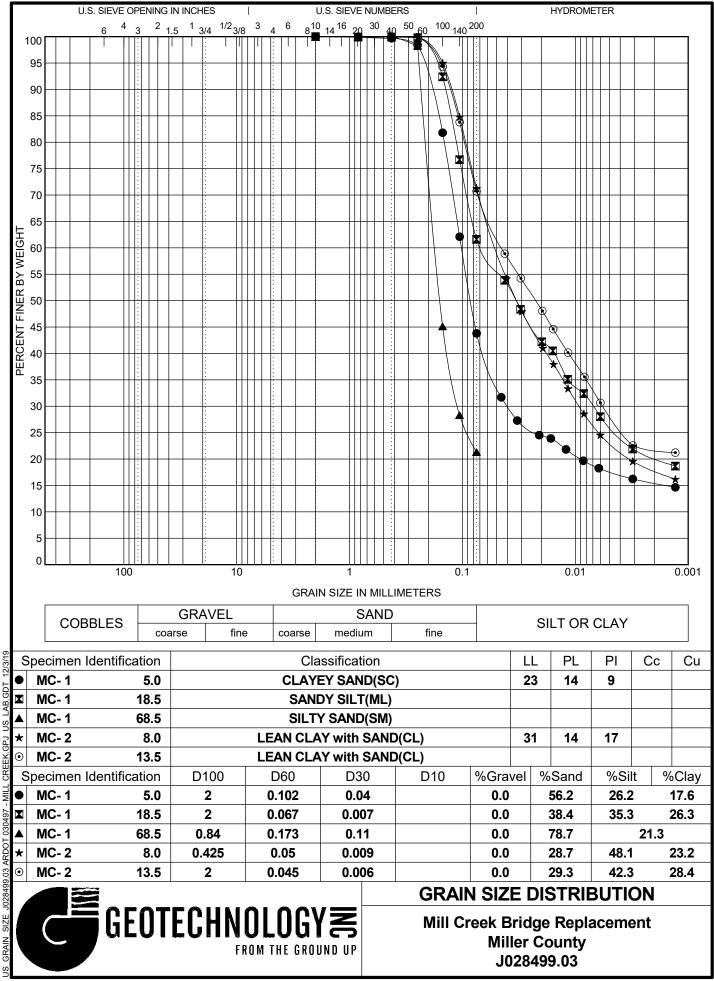
APPENDIX D – LABORATORY TEST DATA

Atterberg Limits

Grain Size Distributions

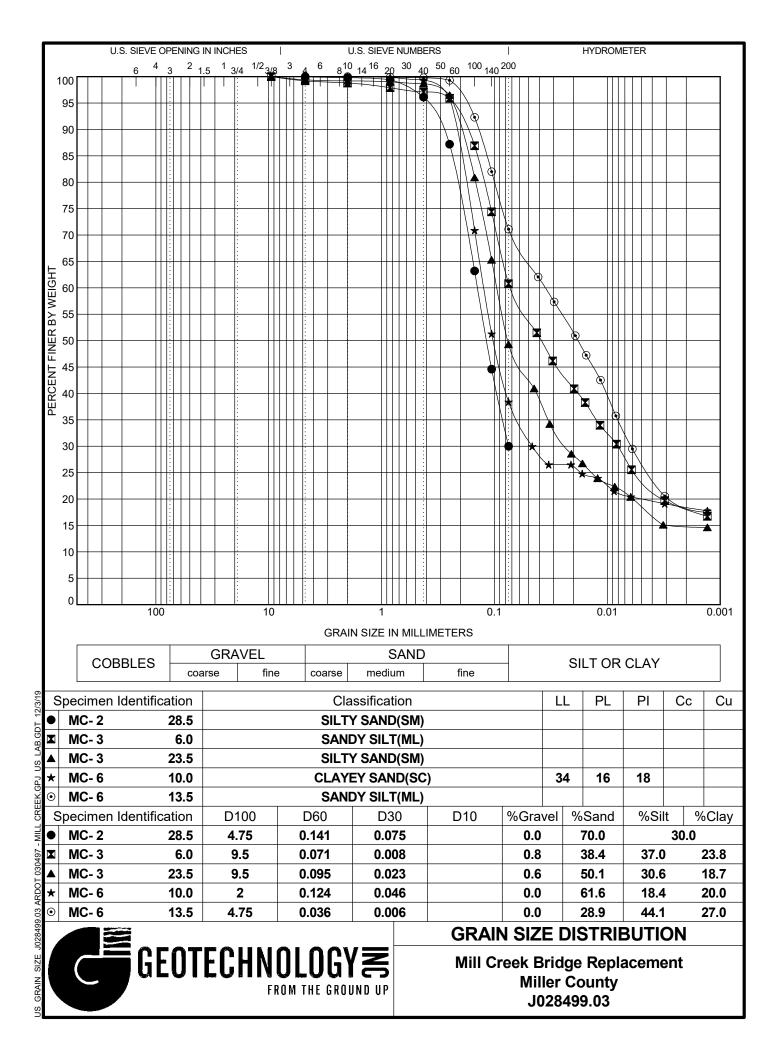
Unconsolidated-Undrained Triaxial Compression

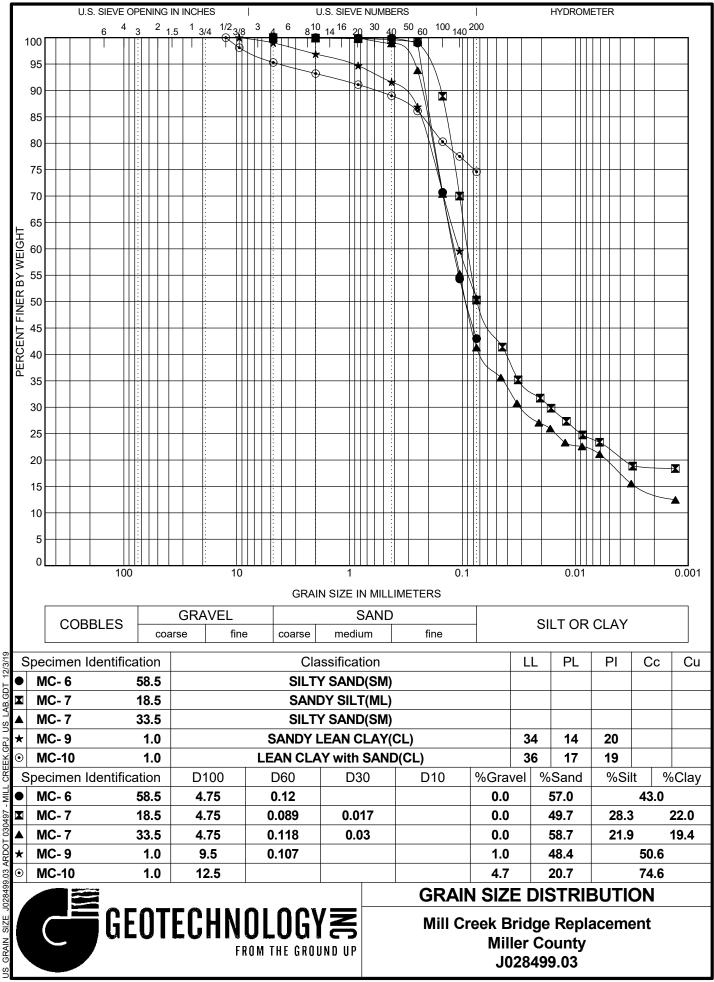

Direct Shear


Resistivity

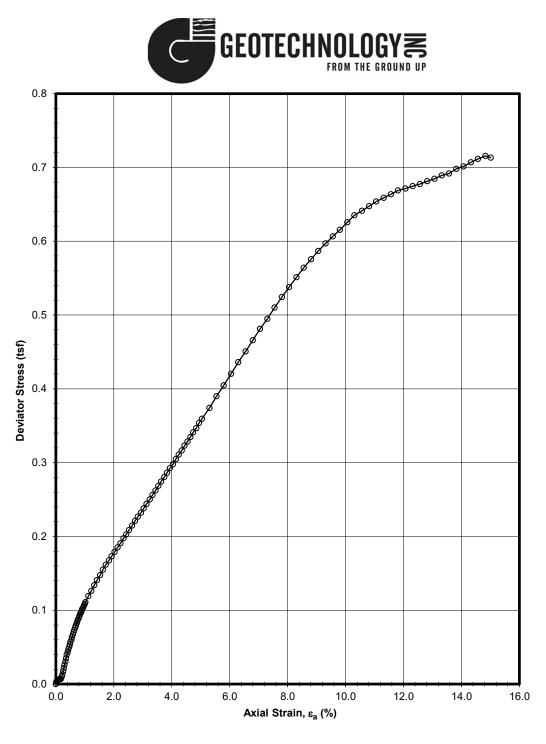
pН

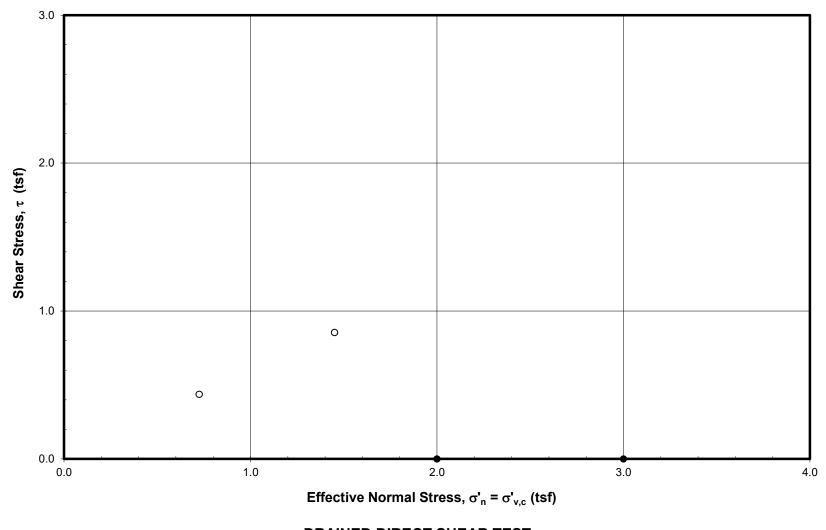
Standard Proctor Curves


CBR Results



CRFFK 130497 **ARDO** ĉ 028499 SIZE


GRAIN


CRFFK 130497 **ARDO** ĉ 028499 SIZE

GRAIN

UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST ASTM D 2850 Project No.: J028499.01 Boring: MC-6 Sample: ST-5 - Depth: 10 ft.

DRAINED DIRECT SHEAR TEST ASTM D 3080 Boring: MC-6 Sample: ST-5 -Depth: 10ft

Prepared For: Garver USA 4701 Northshore Drive North Little Rock, Arkansas 72118

Project No.:	J028499.01	November 20, 2019
Project Name:	ARDOT 030497 Bridge Replacement over Mill Creek	Page 1 of 1
Boring Number:	MC-1	
Sample ID:	ST-3	
Depth (ft):	5	

MINIMUM LABORATORY SOIL RESISTIVITY AASHTO T288

<u>Reading</u>	Resistance <u>Measurement</u>	Soil Box Factor (cm)	Soil Resistivity (ohms-cm)	Moisture Content (%)
#1	52,000	0.57	29,640.00	10.3
#2	30,000	0.57	17,100.00	17.2
#3	32,000	0.57	18,240.00	25.5

Minimum Soil Resistivity <u>17,100.00</u>

Prepared For: Garver USA 4701 Northshore Drive North Little Rock, Arkansas 72118

Project No.:	J028499.01	December 17, 2019
Project Name:	ARDOT 030497 Bridge Replacement over Mill Creek	Page 1 of 1
Boring Number:	MC-1	
Sample ID:	SS5-8	
Depth (ft):	13.5	

MINIMUM LABORATORY SOIL RESISTIVITY AASHTO T288

<u>Reading</u>	Resistance Measurement	Soil Box Factor (cm)	Soil Resistivity (ohms-cm)	Moisture Content (%)
#1	18,000	0.57	10,260.00	11.9
#2	14,000	0.57	7,980.00	19.9
#3	15,000	0.57	8,550.00	25.6

Minimum Soil Resistivity 7,980.00

Prepared For: Garver USA 4701 Northshore Drive North Little Rock, Arkansas 72118

Project No.:	J028499.01	December 17, 2019
Project Name:	ARDOT 030497 Bridge Replacement over Mill Creek	Page 1 of 1
Boring Number:	MC-1	
Sample ID:	SS14-17	
Depth (ft):	58.5	

MINIMUM LABORATORY SOIL RESISTIVITY AASHTO T288

Reading	Resistance Measurement	Soil Box Factor (cm)	Soil Resistivity (ohms-cm)	Moisture Content (%)
#1	5,900	0.57	3,363.00	13.4
#2	3,500	0.57	1,995.00	20.1
#3	3,200	0.57	1,824.00	27.1
#4	3,300	0.57	1,881.00	34.0

Minimum Soil Resistivity <u>1,824.00</u>

Prepared For: Garver USA 4701 Northshore Drive North Little Rock, Arkansas 72118

Project No.:	J028499.03	November 14, 2019
Project Name:	ARDOT 030497 Bridge Replacement over Mill Creek	Page 1 of 1
Boring Number:	MC-2	
Sample ID:	ST-4	
Depth (ft):	8	

MINIMUM LABORATORY SOIL RESISTIVITY AASHTO T288

Reading	Resistance <u>Measurement</u>	Soil Box Factor (cm)	Soil Resistivity (ohms-cm)	Moisture Content (%)
#1	43,000	0.57	24,510.00	9.9
#2	19,000	0.57	10,830.00	16.2
#3	18,500	0.57	10,545.00	23.0
#4	19,000	0.57	10,830.00	28.0
	Minimum Soil	Resistivity	<u>10,545.00</u>	

Prepared For: Garver USA 4701 Northshore Drive North Little Rock, Arkansas 72118

Project No.:	J028499.01	December 17, 2019
Project Name:	ARDOT 030497 Bridge Replacement over Mill Creek	Page 1 of 1
Boring Number:	MC-3	
Sample ID:	SS3-6	
Depth (ft):	6	

MINIMUM LABORATORY SOIL RESISTIVITY AASHTO T288

Reading	Resistance Measurement	Soil Box Factor (cm)	Soil Resistivity (ohms-cm)	Moisture Content (%)
#1	23,000	0.57	13,110.00	11.5
#2	6,000	0.57	3,420.00	17.8
#3	15,000	0.57	8,550.00	22.7
#4	16,000	0.57	9,120.00	31.0

Minimum Soil Resistivity 3,420.00

Prepared For: Garver USA 4701 Northshore Drive North Little Rock, Arkansas 72118

Project No.:	J028499.01	December 18, 2019
Project Name:	ARDOT 030497 Bridge Replacement over Mill Creek	Page 1 of 1
Boring Number:	MC-3	
Sample ID:	SS8-10	
Depth (ft):	28.5	

MINIMUM LABORATORY SOIL RESISTIVITY AASHTO T288

Reading	Resistance Measurement	Soil Box Factor (cm)	Soil Resistivity (ohms-cm)	Moisture Content (%)
#1	7,000	0.57	3,990.00	10.4
#2	2,700	0.57	1,539.00	17.8
#3	2,300	0.57	1,311.00	24.6
#4	2,400	0.57	1,368.00	29.5

Minimum Soil Resistivity <u>1,311.00</u>

Prepared For: Garver USA 4701 Northshore Drive North Little Rock, Arkansas 72118

Project No.:	J028499.01	December 18, 2019
Project Name:	ARDOT 030497 Bridge Replacement over Mill Creek	Page 1 of 1
Boring Number:	MC-6	
Sample ID:	SS4-8	
Depth (ft):	8.5	

MINIMUM LABORATORY SOIL RESISTIVITY AASHTO T288

<u>Reading</u>	Resistance Measurement	Soil Box Factor (cm)	Soil Resistivity (ohms-cm)	Moisture Content (%)
#1	30,000	0.57	17,100.00	10.5
#2	18,000	0.57	10,260.00	17.3
#3	17,000	0.57	9,690.00	24.0
#4	19,000	0.57	10,830.00	29.7

Minimum Soil Resistivity <u>9,690.00</u>

Prepared For: Garver USA 4701 Northshore Drive North Little Rock, Arkansas 72118

Project No.:	J028499.01	November 20, 2019
Project Name:	ARDOT 030497 Bridge Replacements over Mill Creek	Page 1 of 1
Boring Number:	MC-6	
Sample ID:	ST-5	
Depth (ft):	10	

MINIMUM LABORATORY SOIL RESISTIVITY AASHTO T288

<u>Reading</u>	Resistance Measurement	Soil Box Factor (cm)	Soil Resistivity (ohms-cm)	Moisture Content (%)
#1	36,000	0.57	20,520.00	25.6
#2	20,000	0.57	11,400.00	22.8
#3	23,000	0.57	13,110.00	33.7

Minimum Soil Resistivity <u>11,400.00</u>

Prepared For: Garver USA 4701 Northshore Drive North Little Rock, Arkansas 72118

Project No.:	J028499.01	December 18, 2019
Project Name:	ARDOT 030497 Bridge Replacement over Mill Creek	Page 1 of 1
Boring Number:	MC-6	
Sample ID:	SS14-16	
Depth (ft):	53.5	

MINIMUM LABORATORY SOIL RESISTIVITY AASHTO T288

<u>Reading</u>	Resistance Measurement	Soil Box Factor (cm)	Soil Resistivity (ohms-cm)	Moisture Content (%)
#1	4,800	0.57	2,736.00	10.8
#2	2,300	0.57	1,311.00	17.9
#3	2,100	0.57	1,197.00	25.7
#4	2,200	0.57	1,254.00	32.8

Minimum Soil Resistivity <u>1,197.00</u>

FROM THE GROUND UP

Prepared For: Garver USA 4701 Northshore Drive North Little Rock, Arkansas 72118

Project No.:	J028499.01	December 18, 2019
Project Name:	ARDOT 030497 Bridge Replacement over Mill Creek	Page 1 of 1
Boring Number:	MC-7	
Sample ID:	SS4-7	
Depth (ft):	8.5	

MINIMUM LABORATORY SOIL RESISTIVITY AASHTO T288

Reading	Resistance Measurement	Soil Box Factor (cm)	Soil Resistivity (ohms-cm)	Moisture Content (%)
#1	22,000	0.57	12,540.00	10.1
#2	16,000	0.57	9,120.00	17.3
#3	17,000	0.57	9,690.00	24.1

Minimum Soil Resistivity 9,120.00

pH TESTS (ASTM D 4972 or AASHTO T-289)

DATE		PROJECT NAME Mill	Creek	PF NC	ROJECT). J0284	99.03		
General T			boldt Ph Testr H-4371 or	•				
Informatio			required pH=5.5 to 7.5 Measured value:					
	So	il/Water Rati	o: Typically 1/1 or 1/2, but 1/5 for lime stabili	zed soils	-			
	1			Soil : Wate	r pH of	1		1
Boring	Sample	Dopth	Visual Identification	Ratio	Solution	Tare No.	Jar	Remarks
		Depth						Remarks
No.	No.	(ft)	(Color, Group Name & Symbol)	(g/g) or	(Meter/	Air	Number	
				(g/mL)	Paper) ¹	Drying		
					4.91			
MC-1	ST-3	5.00		1/1				
					21.5			
				-				
	ł			-	4.53	ł		
		0.00			4.55			
MC-2	ST-4	8.00		1/1				
					21.4			
					3.9			
MC-6	ST-5	10.00		1/1				
				-	21.5			
					21.0			
				-1				
				-				
				_				
				1				
				-				
				-				
				-				
				_				
				-				
				1				
				-				
		 						
				-				
				-1				
	1	1			1			

¹pH by Meter is Method A; pH by Paper is Method B

Tested By: EM Date: 12/05/19 Calculated By: HP Date: 12/05/19 Checked By: _____JDM Date: _____12/05/19 3312 Winbrook Dr Memphis, TN 38116 Ph: 901-353-1981 Fax: 901-353-2248

Project: ARDOT - Miller and Bodcau

Client: Garver USA

Sample Source: MC9, 1.0'-5.0'

Supplier:

Test InformationProject No.:J028499.03Test Date:03/21/19Proctor No.:MC-9Test Method:ASTM D 698Rammer Type:MechanicalPrep. Method:Dry

Sample Description	
Red/Brown Sandy Lean Clay (CL)/ A-6(6)	

Sample Properties			
Moisture Content	NA		
Liquid Limit	34	-	
Plastic Limit	14	_	
Plasticity Index	20	-	
Specific Gravity:	2.650	Estimated	
Classification	CL	_	

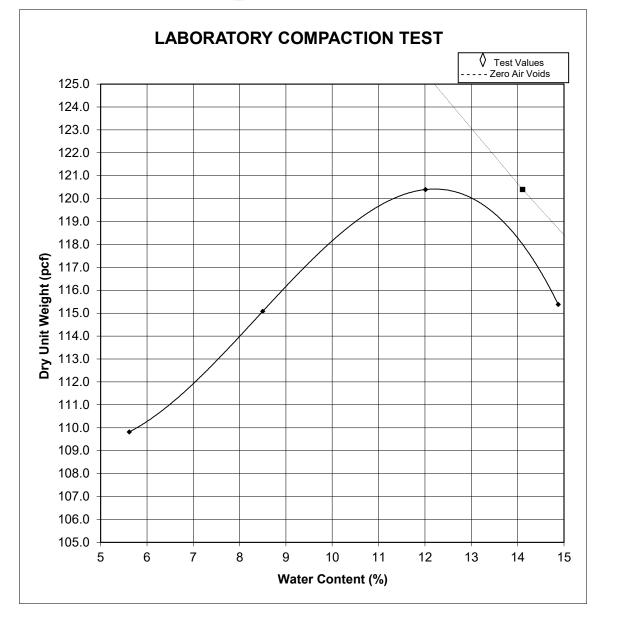
Test Results:	
Maximum Dry Unit Weight (pcf):	117.3
Optimum Water Content (%):	12.4
Oversize Correction Values: Maximum Dry Unit Weight (pcf): Optimum Water Content (%):	
Tested By: <u>TA</u> Input By: _	HP

Date: 03/22/19

Checked By:	HP
Date:	03/22/19

Date: 03/21/19

3312 Winbrook Dr Memphis, TN 38116 Ph: 901-353-1981 Fax: 901-353-2248

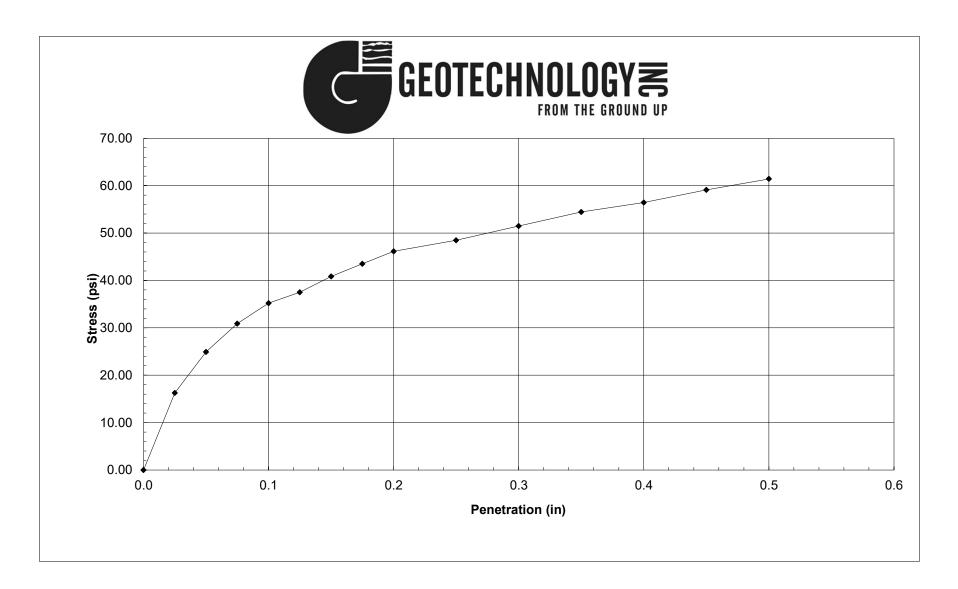


Project: ARDOT - Miller and Bodcau

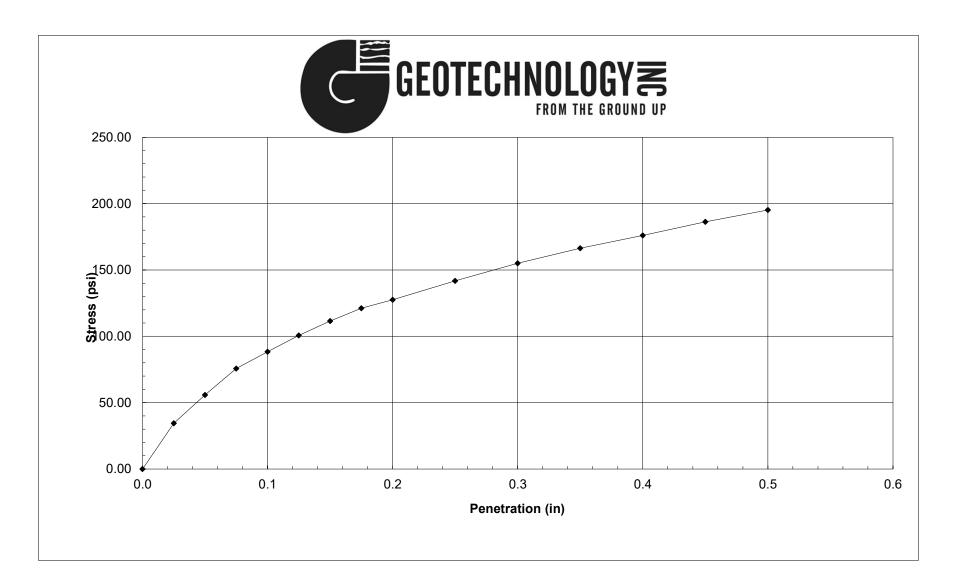
Client: Garver USA

Sample Source: MC10, 1.0'-5.0'

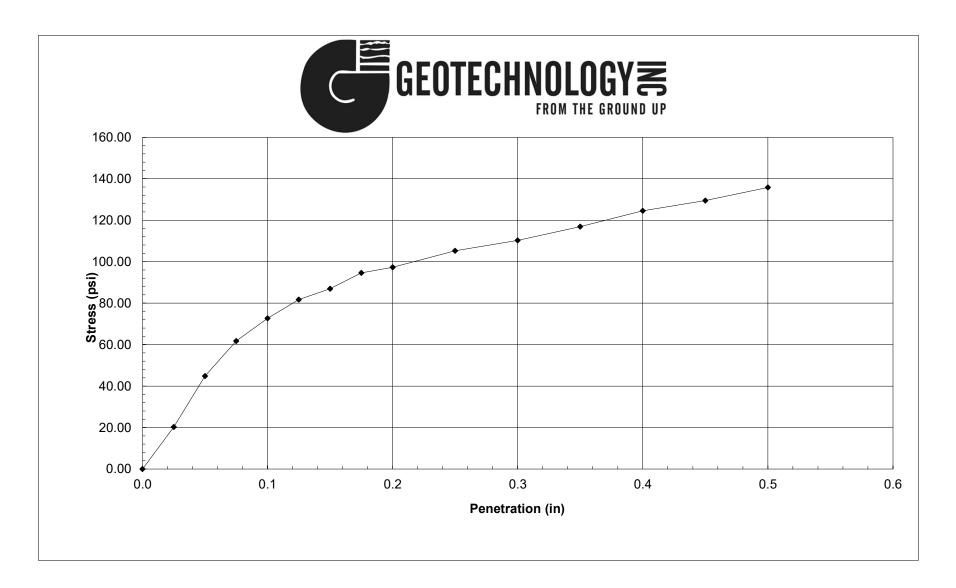
Supplier:

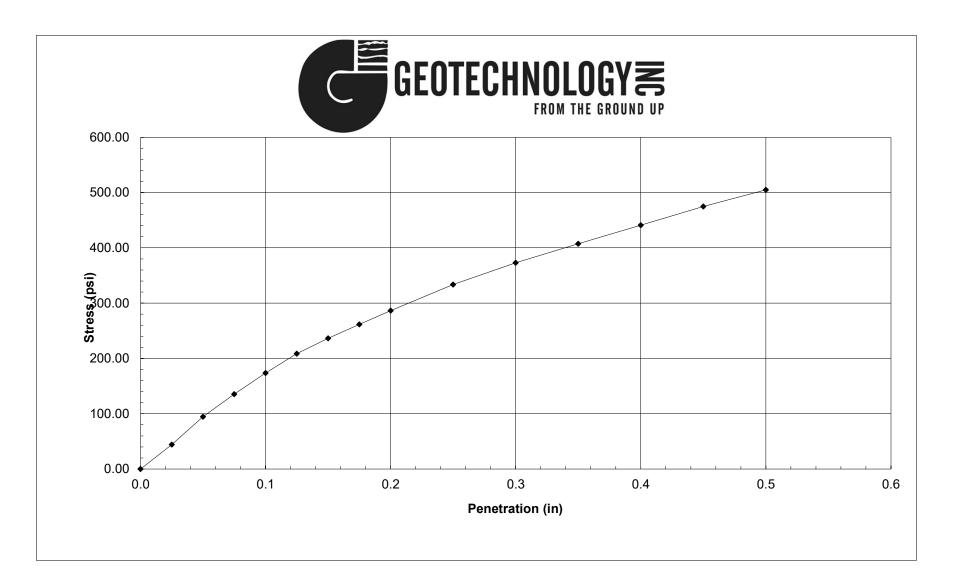

Test InformationProject No.:J028499.03Test Date:03/21/19Proctor No.:MC10Test Method:ASTM D 698Rammer Type:MechanicalPrep. Method:Dry

Sample Description			
Red/Brown Lean Clay with Sand (CL)/ A-6(12)			


Sample Properties			
Moisture Content	NA	_	
Liquid Limit	36	_	
Plastic Limit	17	_	
Plasticity Index	19	_	
Specific Gravity:	2.650	Estimated	
Classification	CL	_	

Test Results:			
Maximum Dry Unit V	Veight (pcf): _	120.4	
Optimum Water C	Content (%):	12.3	
Oversize Correction Values: Maximum Dry Unit Weight (pcf): <u>127.1</u> Optimum Water Content (%): <u>10.4</u>			
Tested Bv: TA	Input Bv:	HP	


Tested By:	TA	Input By:	HP
Date:	03/21/19	Date:	03/22/19
Checked By:	HP		
Date:	03/22/19		


ASTM D 1883 Project No.: J028499.02 Boring: MC-9 Sample: 25 Blows - Depth: 0 ft.

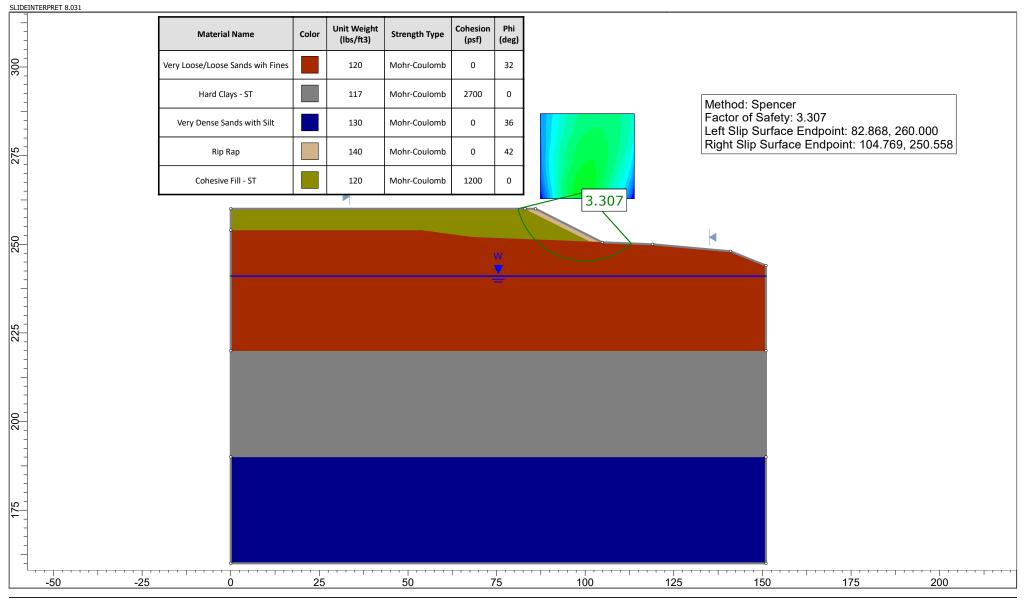
ASTM D 1883 Project No.: J028499.03 Boring: MC-9 Sample: 56 Blows - Depth: 0 ft.

ASTM D 1883 Project No.: J028499.03 Boring: MC-10 Sample: 25 Blows - Depth: 0 ft.

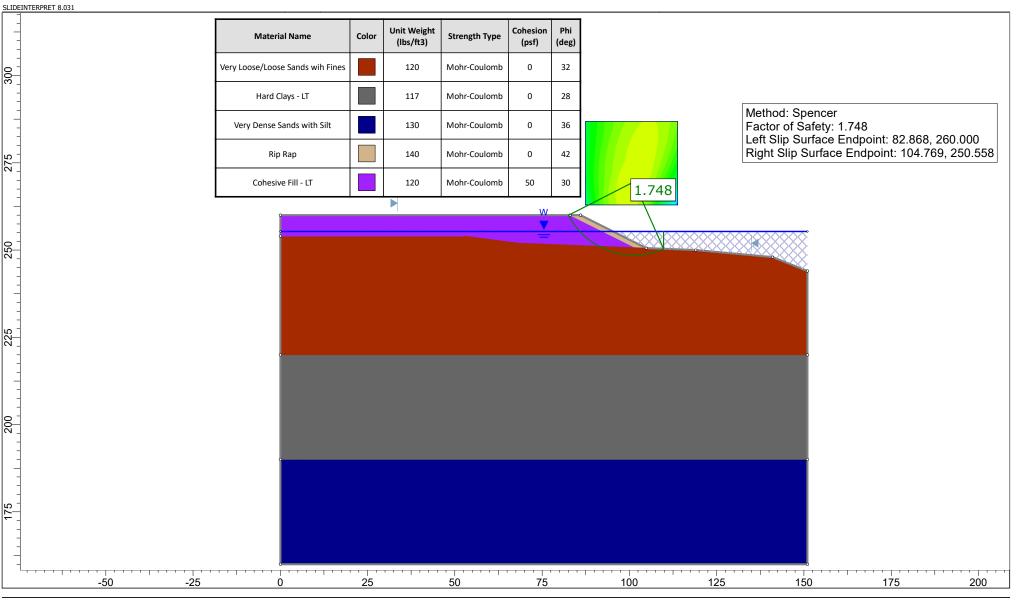
ASTM D 1883 Project No.: J028499.03 Boring: MC-10 Sample: 56 Blows - Depth: 0 ft.

APPENDIX E – AASHTO AND USCS CLASSIFICATIONS

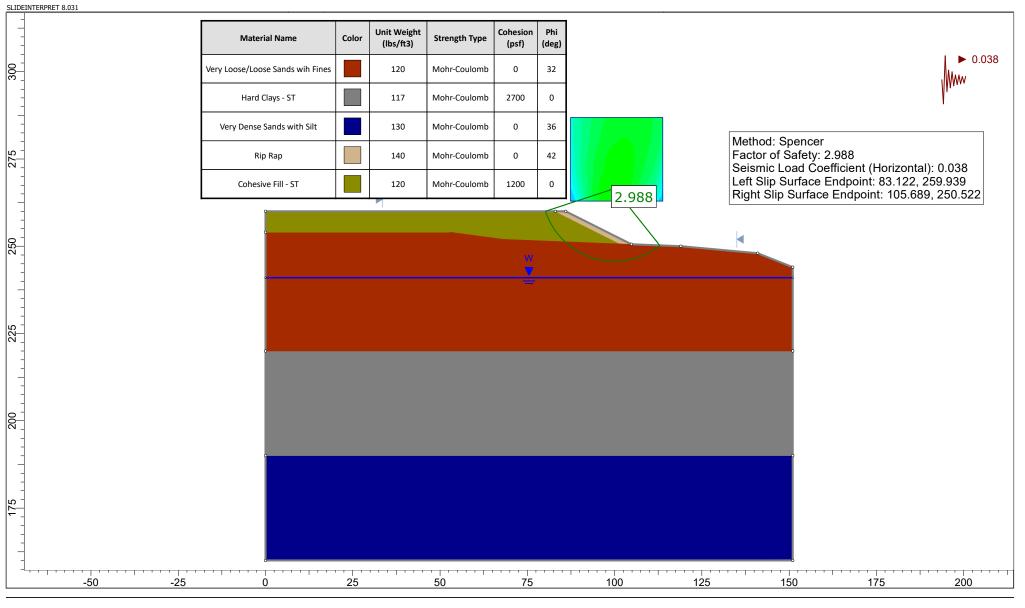
SUMMARY OF CLASSIFICATION RESULTS Highway 82 Strs. & Apprs. (S): Mill Creek Bridge Miller County: Arkansas ARDOT 030497


Boring	Depth (feet)	Liquid Limit (LL) (%)	Plastic Limit (PL) (%)	Plasticity Index (PI) (%)	Sieve Analysis Percent Passing								GI	AASHTO	USCS
					2 in.	1 in.	3/4 in.	3/8 in.	#4	#10	#40	#200	0.	CLASS.	CLASS.
MC-1	5	23	14	9	100.0	100.0	100.0	100.0	100.0	100.0	99.7	43.8	1	A-4	SC
MC-1	18.5				100.0	100.0	100.0	100.0	100.0	100.0	99.9	61.6	0	A-4	ML
MC-1	68.5				100.0	100.0	100.0	100.0	100.0	100.0	100.0	21.3	0	A-2-4	SM
MC-2	8	31	14	17	100.0	100.0	100.0	100.0	100.0	100.0	100.0	71.3	10	A-6	CL
MC-2	13.5				100.0	100.0	100.0	100.0	100.0	100.0	100.0	70.7	0	A-6	CL
MC-2	28.5				100.0	100.0	100.0	100.0	100.0	99.8	96.1	30.0	0	A-2-4	SM
MC-3	6				100.0	100.0	100.0	100.0	99.2	98.8	97.1	60.8	0	A-4	ML
MC-3	23.5				100.0	100.0	100.0	100.0	99.4	99.2	98.7	49.3	0	A-4	SM
MC-6	10	34	16	18	100.0	100.0	100.0	100.0	100.0	100.0	99.4	38.4	2	A-6	SC
MC-6	13.5				100.0	100.0	100.0	100.0	100.0	100.0	99.8	71.1	0	A-4	ML
MC-6	38.5	48	24	24									0	A-2-7	CL
MC-6	58.5				100.0	100.0	100.0	100.0	100.0	100.0	99.9	43.0	0	A-4	SM
MC-7	18.5				100.0	100.0	100.0	100.0	100.0	99.9	99.6	50.3	0	A-4	ML
MC-7	33.5				100.0	100.0	100.0	100.0	100.0	100.0	98.9	41.3	0	A-4	SM
MC-7	43.5	61	42	36									0	A-2-7	СН
MC-9	1	34	14	20	100.0	100.0	100.0	100.0	99.0	96.9	91.6	50.6	6	A-6	CL
MC-10	1	36	17	19	100.0	100.0	100.0	98.1	95.3	93.2	91.1	74.6	12	A-6	CL

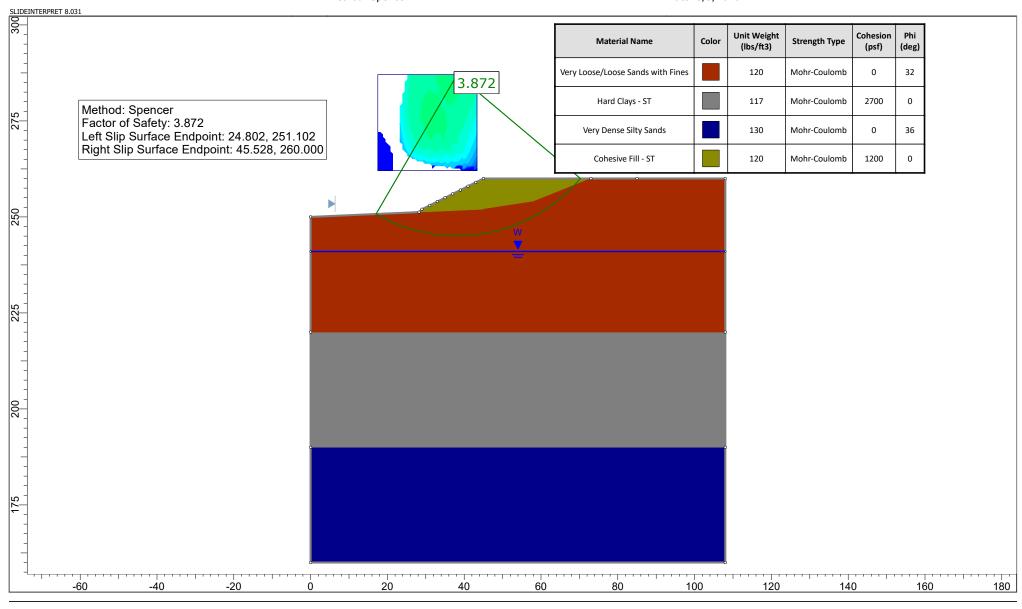
APPENDIX F – GLOBAL STABILITY ANALYSES



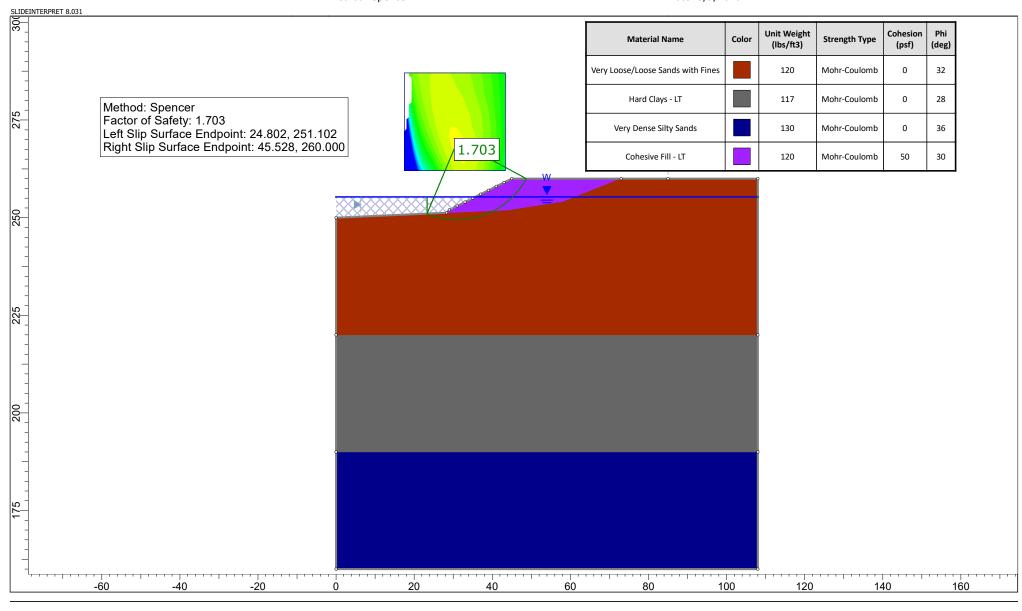
File Name: West Abutment.slmd Name: Group 1 Description: Short Term Conditions Method: Spencer Project Number: J028499.03 Client: Garver Project: ArDOT 030497 - Hwy 82 Mill Creek - West Abutment Date: 3/9/2020



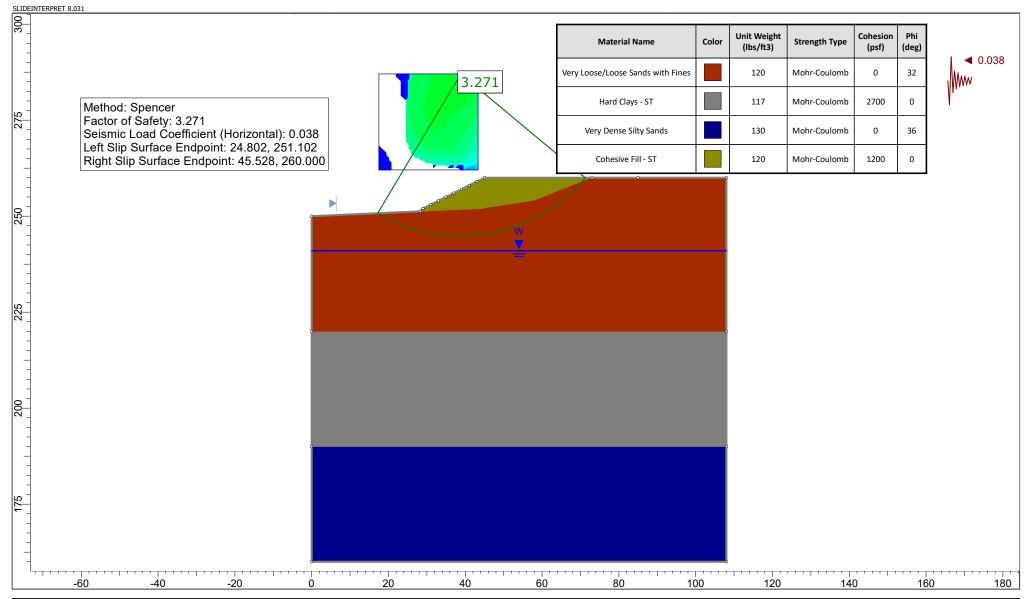
File Name: West Abutment.slmd Name: Group 1 Description: Long Term Conditions Method: Spencer Project Number: J028499.03 Client: Garver Project: ArDOT 030497 - Hwy 82 Mill Creek - West Abutment Date: 3/9/2020



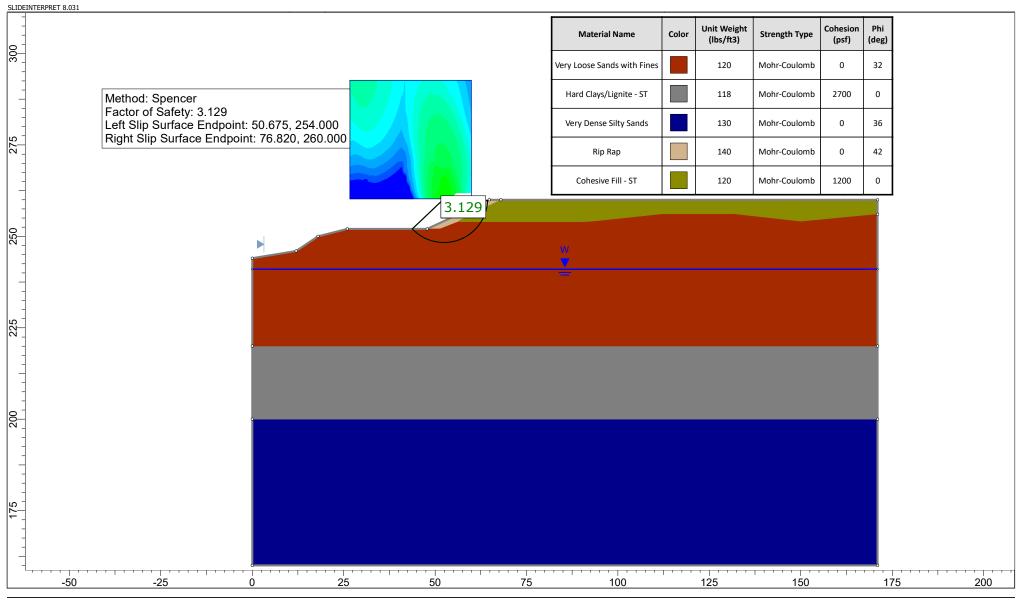
File Name: West Abutment.slmd Name: Group 1 Description: Seismic Conditions Method: Spencer Project Number: J028499.03 Client: Garver Project: ArDOT 030497 - Hwy 82 Mill Creek - West Abutment Date: 3/9/2020



File Name: STA 110+00 Southern Side Slope.slmd Name: Group 1 Description: Short Term Conditions Method: Spencer Project Number: J028499.03 Client: Garver Project: ArDOT 030497 - Hwy 82 Mill Creek - STA 110+00 Southern Side Slope Date: 3/9/2020

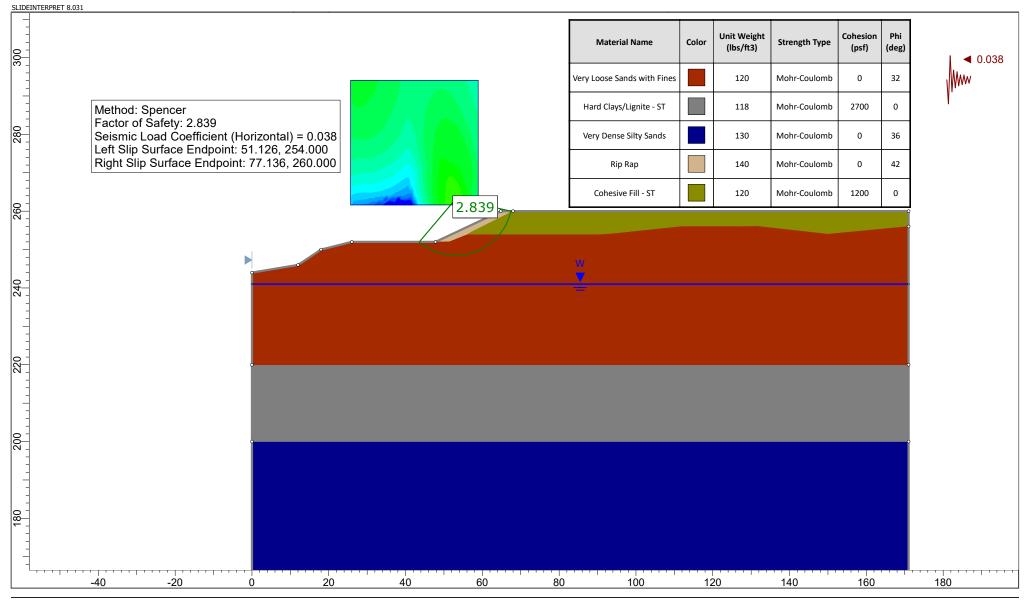


File Name: STA 110+00 Southern Side Slope.slmd Name: Group 1 Description: Long Term Conditions Method: Spencer Project Number: J028499.03 Client: Garver Project: ArDOT 030497 - Hwy 82 Mill Creek - STA 110+00 Southern Side Slope Date: 3/9/2020



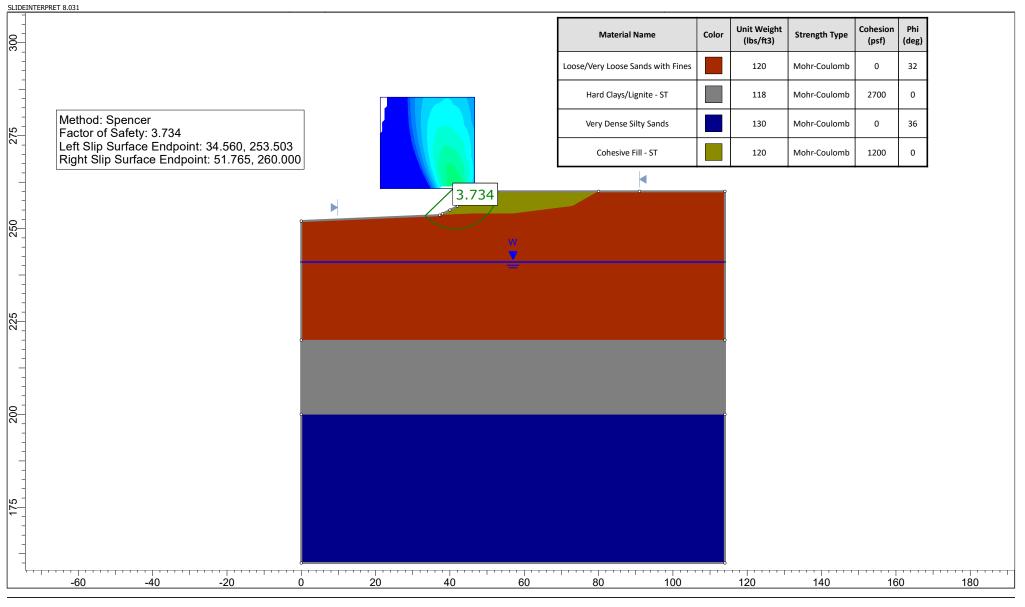
File Name: STA 110+00 Southern Side Slope.slmd Name: Group 1 Description: Seismic Conditions Method: Spencer Project Number: J028499.03 Client: Garver Project: ArDOT 030497 - Hwy 82 Mill Creek - STA 110+00 Southern Side Slope Date: 3/9/2020

File Name: East Abutment.slmd Name: Group 1 Description: Short Term Conditions Method: Spencer Project Number: J028499.03 Client: Garver Project: ArDOT 030497 - Hwy 82 Mill Creek - East Abutment Date: 3/9/2020

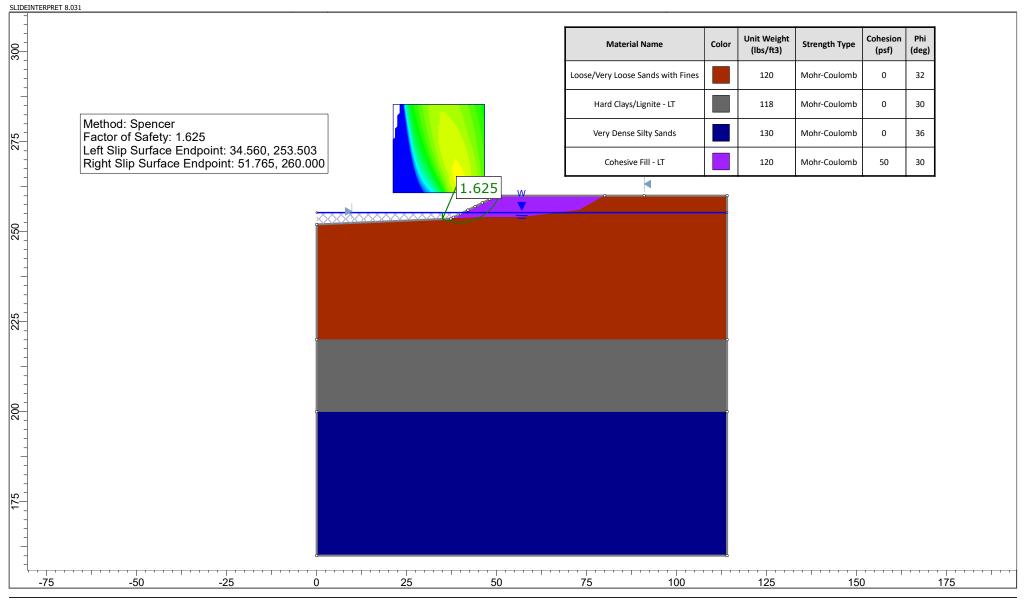

SLIDEINTERPRET 8.031

File Name: East Abutment.slmd Name: Group 1 Description: Long Term Conditions Method: Spencer Project Number: J028499.03 Client: Garver Project: ArDOT 030497 - Hwy 82 Mill Creek - East Abutment Date: 3/9/2020

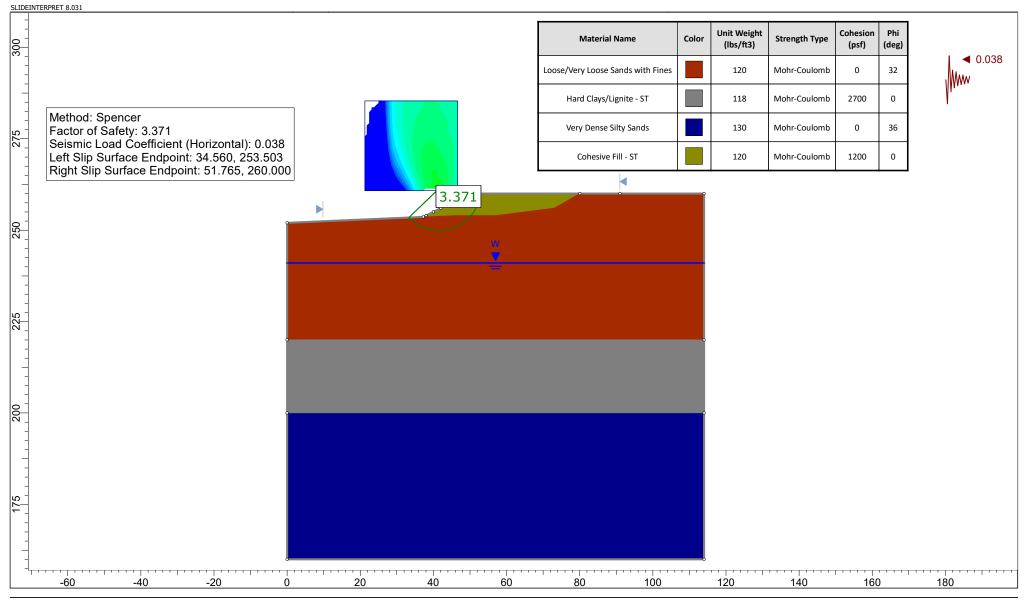
				Material Name	Color	Unit Weight (Ibs/ft3)	Strength Type	Cohesion (psf)	Phi (deg)
		_		Very Loose Sands with Fines		120	Mohr-Coulomb	0	32
	Method: Spencer		2.732	Hard Clays/Lignite - LT		118	Mohr-Coulomb	0	30
	Method: Spencer Factor of Safety: 2.732 Left Slip Surface Endpoint	: 50.675. 254.000		Very Dense Silty Sands		130	Mohr-Coulomb	0	36
	Left Slip Surface Endpoint Right Slip Surface Endpoir	nt: 76.820, 260.000		Rip Rap		140	Mohr-Coulomb	0	42
				Cohesive Fill - LT		120	Mohr-Coulomb	50	30
		*****		W V		-			2
		•							
		•							
									,
-50									ļ -
	-25	0 25	50 75	100		125	150		175



File Name: East Abutment.slmd Name: Group 1 Description: Seismic Conditions Method: Spencer Project Number: J028499.03 Client: Garver Project: ArDOT 030497 - Hwy 82 Mill Creek - East Abutment Date: 3/9/2020



File Name: MC STA112+50 Southern Slope.slmd Name: Group 1 Description: Short Term Conditions Method: Spencer Project Number: J028499.03 Client: Garver Project: ArDOT 030497 - Hwy 82 Mill Creek - STA 112+50 Southern Side Slope Date: 3/9/2020



File Name: MC STA112+50 Southern Slope.slmd Name: Group 1 Description: Long Term Conditions Method: Spencer Project Number: J028499.03 Client: Garver Project: ArDOT 030497 - Hwy 82 Mill Creek - STA 112+50 Southern Side Slope Date: 3/9/2020

File Name: MC STA112+50 Southern Slope.slmd Name: Group 1 Description: Seismic Conditions Method: Spencer Project Number: J028499.03 Client: Garver Project: ArDOT 030497 - Hwy 82 Mill Creek - STA 112+50 Southern Side Slope Date: 3/9/2020

APPENDIX G – SOIL PARAMETERS FOR SYNTHETIC PROFILES

MILL CREEK BRIDGE INTERNAL BENTS 2 & 3 – BORING MC-3												
ASSUMED PILE CUTOFF ELEVATION: EL 250												
ZONE	SOIL TYPES / LPILE SOIL ^b				SHEAR	STRENG	LATERAL LOAD ^b PARAMETERS					
				WET UNIT WEIGHT	UNDRAINED (SHORT TERM)		DRAINED (LONG TERM)		SOIL	STATIC SOIL		
		FROM T	ТО	(PCF)	COHESION (PSF)	Ф (DEGREE)	EFFECTIVE COHESION (PSF)	Φ' (DEGREE)	STRAIN, E ₅₀	MODULUS (PCI)ª		
1	Loose Sands with Silt / Sand (Reese)	250	222	120		33		33		20		
2	Dense Silty Sands / Sand (Reese)	222	212	125		35		35		100		
3	Hard Clay / Stiff Clay w/ Free Water (Reese)	212	207	117	2,700			28	0.004	800		
4	Very Dense Sands with Silt / Sand (Reese)	207	170	130		36		36		125		

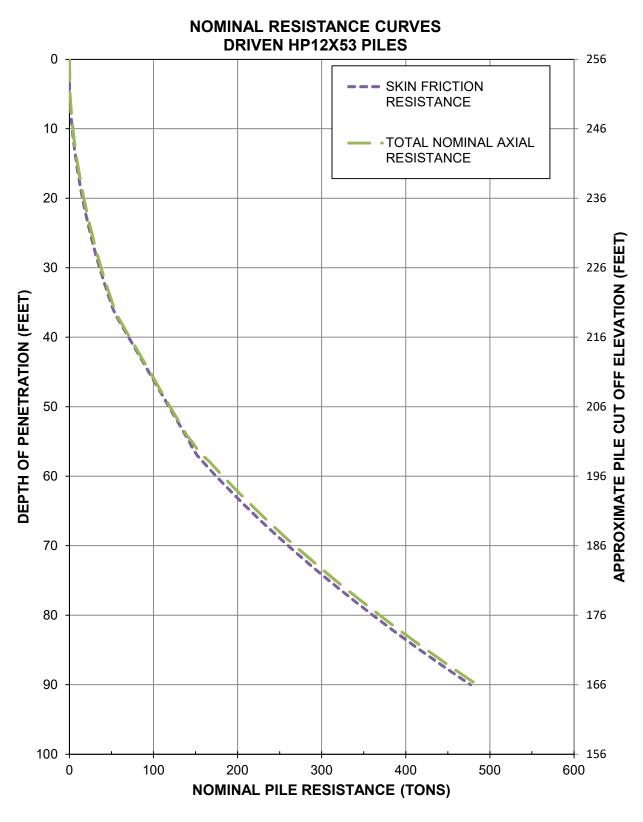
^a Pounds per cubic inch. ^b For lateral load analysis only.

Groundwater assumed at El 241.

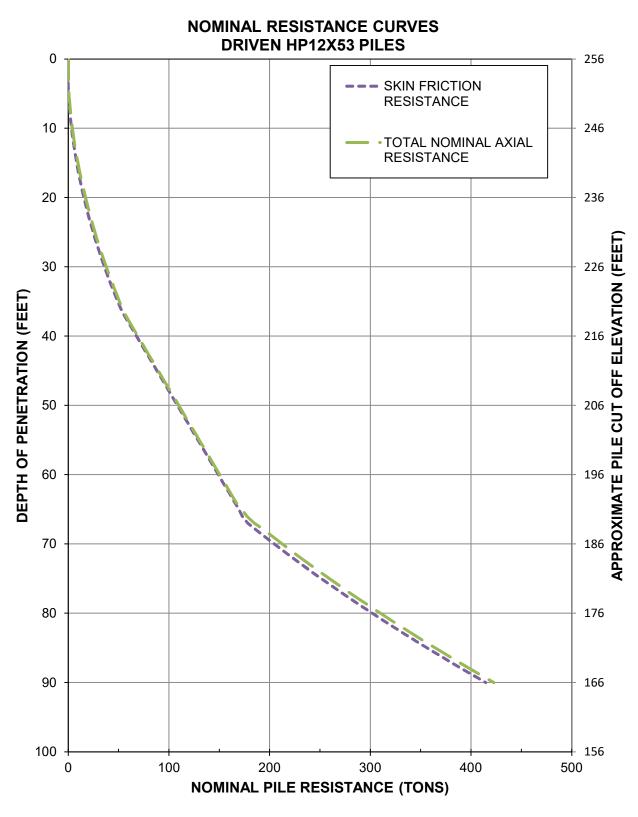
MILL CREEK BRIDGE WEST ABUTMENT – BORINGS MC-1 & MC-2											
ASSUMED PILE CUTOFF ELEVATION: EL 256											
ZONE	SOIL TYPES / LPILE SOIL⁵	DEPTH (ELEVATION)		WET UNIT WEIGHT	SHEAR	STRENG	LATERAL LOAD [♭] PARAMETERS				
					UNDRAINED (SHORT TERM)		DRAINED (LONG TERM)		SOIL	STATIC SOIL	
		FROM	ROM TO	(PCF)	COHESION (PSF)	Ф (DEGREE)	EFFECTIVE COHESION (PSF)	Ф' (DEGREE)	STRAIN, E ₅₀	MODULUS (PCI)ª	
1	Very Loose/Loose Sands with Fines / Sand (Reese)	256	220	120		32		32		20	
2	Hard Clays / Stiff Clay w/ Free Water (Reese)	220	190	117	2,700			28	0.004	700	
3	Very Dense Sands with Silt / Sand (Reese)	190	160	130		36		36		125	

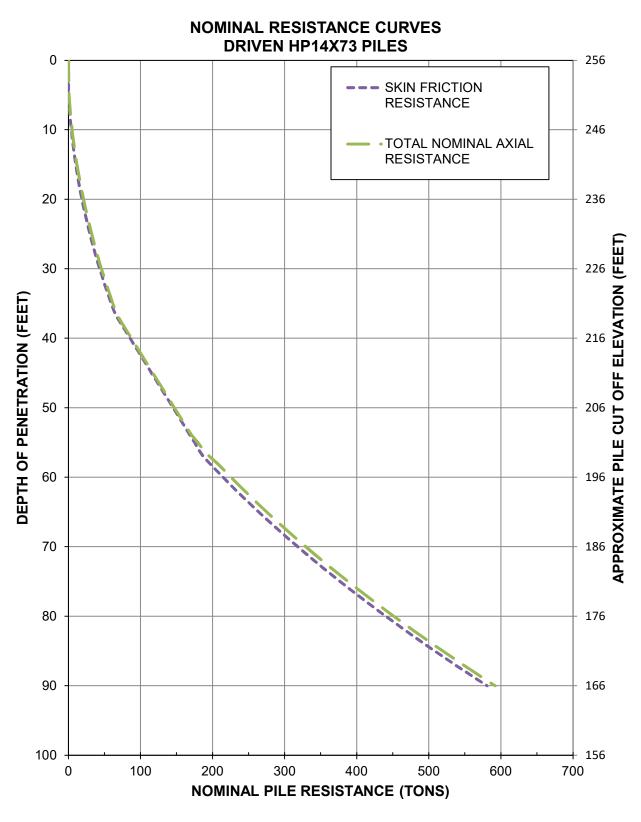
^a Pounds per cubic inch. ^b For lateral load analysis only.

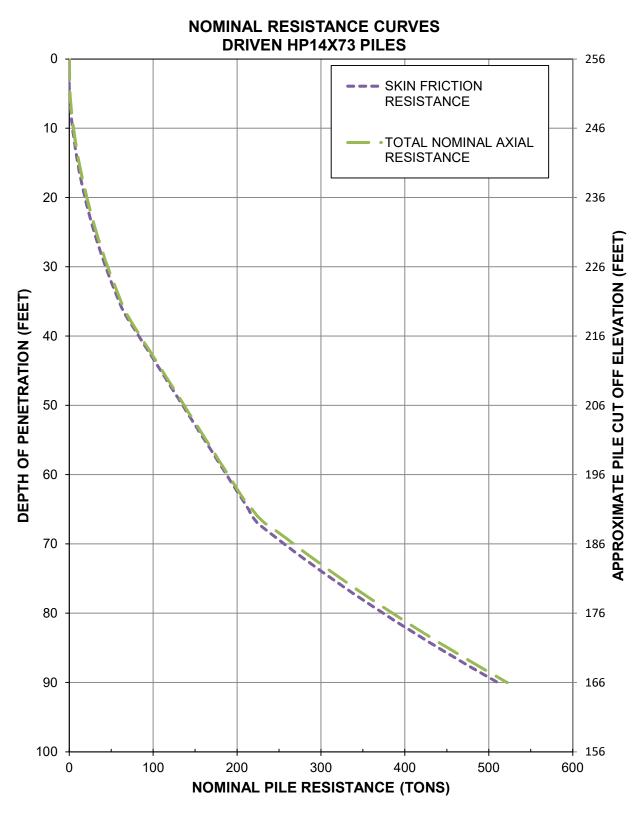
Groundwater assumed at El 241.

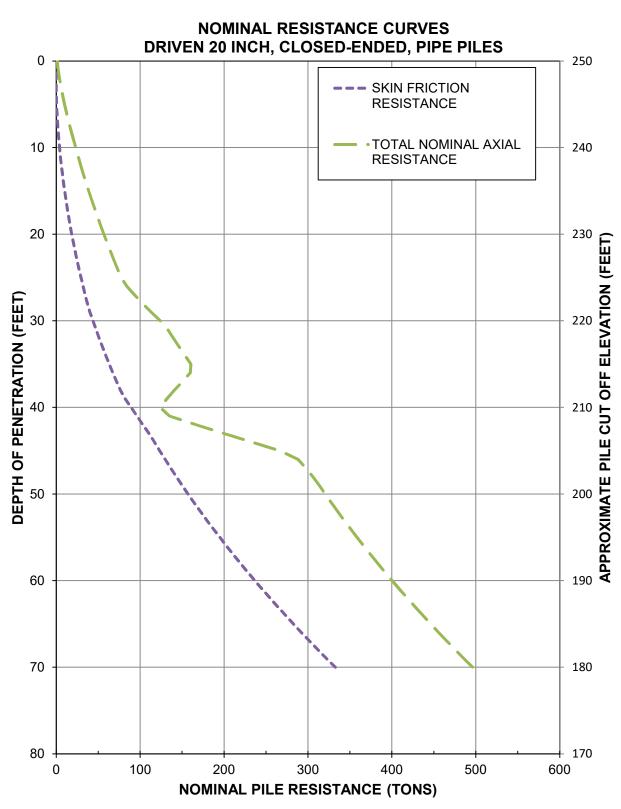

MILL CREEK EAST ABUTMENT – BORINGS MC-6 & MC-7											
ASSUMED PILE CUTOFF ELEVATION: EL 256											
ZONE	SOIL TYPES / LPILE SOIL		τu		SHEAR	STRENG	LATERAL LOAD** PARAMETERS				
		DEPTH (ELEVATION)		WET UNIT WEIGHT	UNDRAINED (SHORT TERM)		DRAINED (LONG TERM)		SOIL	STATIC SOIL	
		FROM	то	(PCF)	COHESION (PSF)	Ф (DEGREE)	EFFECTIVE COHESION (PSF)	Ф' (DEGREE)	STRAIN, E ₅₀	MODULUS (PCI)*	
1	Loose/Very Loose Sands with Fines / Sand (Reese)	256	220	120		32		32		20	
2	Hard Clay/Lignite / Stiff Clay w/ Free Water (Reese)	220	200	118	2,700			30	0.004	700	
3	Very Dense Sands with Silt / Sand (Reese)	200	160	130		36		36		125	

^a Pounds per cubic inch. ^b For lateral load analysis only.


Groundwater assumed at El 241.


APPENDIX H – NOMINAL RESISTANCE CURVES


MILL CREEK BRIDGE EAST END BENT ARDOT 030497 HWY 82


MILL CREEK BRIDGE WEST END BENT ARDOT 030497 HWY 82

MILL CREEK BRIDGE EAST END BENT ARDOT 030497 HWY 82

MILL CREEK BRIDGE WEST END BENT ARDOT 030497 HWY 82

MILL CREEK BRIDGE INTERMEDIATE BENTS ARDOT 030497 HWY 82