ARKANSAS DEPARTMENT OF TRANSPORTATION

SUBSURFACE INVESTIGATION

STATE JOB NO.		020629	
FEDERAL AID PRO	JECT NO	STPR-0921(3)	
	HWY. 65 -	YELLOW BEND PORT	- (S)
STATE HIGHWAY	35	SECTION	9, 10, & 11
IN	C	HICOT & DESHA	COUNTY

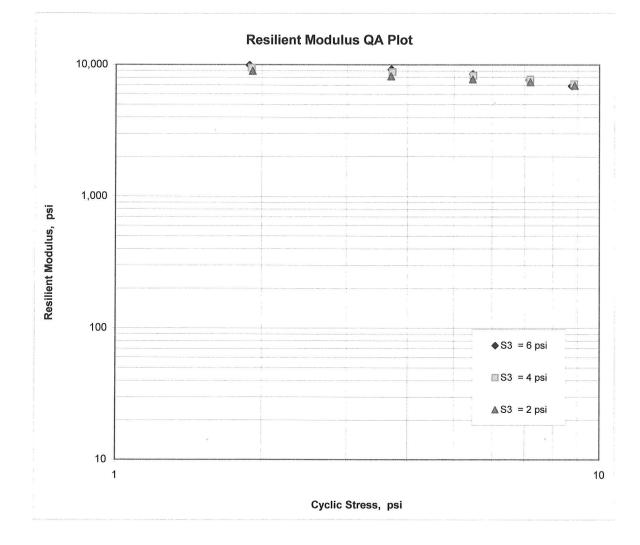
The information contained herein was obtained by the Department for design and estimating purposes only. It is being furnished with the express understanding that said information does not constitute a part of the Proposal or Contract and represents only the best knowledge of the Department as to the location, character and depth of the materials encountered. The information is only included and made available so that bidders may have access to subsurface information obtained by the Department and is not intended to be a substitute for personal investigation, interpretation and judgment of the bidder. The bidder should be cognizant of the possibility that conditions affecting the cost and/or quantities of work to be performed may differ from those indicated herein.

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS **RECOMPACTED SAMPLES**

Job No. Date Sampled: Date Tested: Name of Project: County: Sampled By: Lab No.: Sample ID:	020629 4/10/19 May 9, 2019 HWY. 65 - YELLOW BEND PORT (S) Code: 9 Name: CHICOT FRAZIER / BATES / JORDAN 20191095 RV 195	Material Code Station No.: Location: Depth: AASHTO Class: Material Type (1 o	SSRVPS LM 0.20 15'RT 0-5 A-7-6 (70) 2
LATITUDE:		LONGITUDE:	
1. Testing Inform	nation:		
×	Preconditioning - Permanent Strain > 5% (Testing - Permanent Strain > 5% (Y=Yes o Number of Load Sequences Completed (0-	r N=No)	N N 15
2. Specimen Info			
	Specimen Diameter (in):		2.04
	Top Middle		3.94 3.95
	Bottom		3.95
	Average		3.95
	Membrane Thickness (in):		0.01
	Height of Specimen, Cap and Base (in):		8.02
	Height of Cap and Base (in):		0.00
	Initial Length, Lo (in):		8.02
	Initial Area, Ao (sq. in):		12.18
	Initial Volume, AoLo (cu. in):		97.68
2 Soil Specimen	Waight		
3. Soil Specimen	Weight: Weight of Wet Soil Used (g):		2072.00
	weight of wet soll used (g).		2673.90
4. Soil Properties	:		
	Optimum Moisture Content (%):		31.0
	Maximum Dry Density (pcf):		84.2
	95% of MDD (pcf):		80.0
	In-Situ Moisture Content (%):		N/A
5. Specimen Pro	perties.		
	Wet Weight (g):		2673.90
	Compaction Moisture content (%):		31.1
	Compaction Wet Density (pcf):		104.30
	Compaction Dry Density (pcf):		79.56
	Moisture Content After Mr Test (%):		31.1
6. Quick Shear Te	est (Y=Yes, N=No, N/A=Not Applicable):		#VALUE!
7. Resilient Modu	ılus, Mr:	1001	7(Sc)^-0.18702(S3)^0.06550
8. Comments			
9. Tested By:	GW	Date: May 9, 2019	

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS **RECOMPACTED SAMPLES**

Material Code SSRVPS Station No.: LM 0.20	Location: 15'RT			Depth: 0-5	AASHTO Class: A-7-6 (70)	or 2):	LONGITUDE
020629 4/10/19	May 9, 2019	HWY. 65 - YELLOW BEND PORT (S)	Code: 9 Name: CHICOT	FRAZIER / BATES / JORDAN	20191095	RV 195	
Job No. Date Sampled:	Date Tested:	Name of Project:	County:	Sampled By:	Lab No.:	Sample ID:	LATITUDE:


X	Chamber	Nominal	Actual	Actual	Actual	Actual	Actual	Actual	Average	Resilient	Resilient
	Confining	Maximum	Applied	Applied	Applied	Applied	Applied	Applied	Recov Def.	Strain	Modulus
PARAMETER	Pressure	Axial	Max. Axial	Cyclic Load	Contact	Max.	Cyclic	Contact	LVDT 1		
		Stress	Load		Load	Axial	Stress	Stress	and 2		
and a second secon						Stress					
DESIGNATION	လိ	S _{cyclic}	P max	P _{cyclic}	Pcontact	S _{max}	S _{cyclic}	Scontact	H _{avg}	ພັ	Ar
UNIT	psi	psi	sdl	lbs	lbs	psi	psi	psi	.Ľ	in/in	psi
Sequence 1	6.0	2.0	25.1	22.9	2.2	2.1	1.9	0.2	0.00152	0.00019	9,942
Sequence 2	0.0	4.0	47.4	45.1	2.3	3.9	3.7	0.2	0.00322	0.00040	9,217
Sequence 3	0.0	6.0	69.6	66.6	3.0	5.7	5.5	0.2	0.00515	0.00064	8,512
Sequence 4	6.0	8.0	92.4	87.1	5.3	7.6	7.2	0.4	0.00746	0.00093	7,690
Sequence 5	0.9	10.0	114.2	106.5	7.7	9.4	8.7	0.6	0.01015	0.00127	6,907
Sequence 6	4.0	2.0	25.1	23.2	1.9	2.1	1.9	0.2	0.00161	0.00020	9,496
Sequence 7	4.0	4.0	47.4	45.3	2.1	3.9	3.7	0.2	0.00338	0.00042	8,813
Sequence 8	4.0	6.0	68.9	66.8	2.1	5.7	5.5	0.2	0.00531	0.00066	8,274
Sequence 9	4.0	8.0	91.8	87.4	4.4	7.5	7.2	0.4	0.00743	0.00093	7,745
Sequence 10	4.0	10.0	114.4	107.7	6.7	9.4	8.8	0.6	0.00995	0.00124	7,127
Sequence 11	2.0	2.0	25.1	23.3	1.8	2.1	1.9	0.1	0.00171	0.00021	8,953
Sequence 12	2.0	4.0	47.0	45.0	2.0	3.9	3.7	0.2	0.00363	0.00045	8,161
Sequence 13	2.0	6.0	68.7	66.5	2.1	5.6	5.5	0.2	0.00565	0.00070	7,751
Sequence 14	2.0	8.0	91.0	87.5	3.5	7.5	7.2	0.3	0.00781	0.00097	7,379
Sequence 15	2.0	10.0	113.8	108.0	5.8	9.3	8.9	0.5	0.01024	0.00128	6,943
TESTED BY	GW				May 9, 2019						
REVIEWED BY				DATE -			_				

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS RECOMPACTED / THINWALL TUBE SAMPLES

Job No.	020629	Material Code SSRVPS
Date Sampled:	4/10/19	Station No.: LM 0.20
Date Tested:	May 9, 2019	Location: 15'RT
Name of Project:	HWY. 65 - YELLOW BEND PORT (S)	
County:	Code: 9 Name: CHICOT	
Sampled By:	FRAZIER / BATES / JORDAN	Depth: 0-5
Lab No.:	20191095	AASHTO Class: A-7-6 (70)
Sample ID:	RV 195	Material Type (1 or 2): 2
LATITUDE:		LONGITUDE:

 $M_{R} = K1 (S_{C})^{K_{2}} (S_{3})^{K_{5}}$

K1 =	10,017
K2 =	-0.18702
K5 =	0.06550
$R^2 =$	0.91

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS RECOMPACTED SAMPLES

Job No. Date Sampled: Date Tested: Name of Project: County:	020629 4/9/19 May 1, 2019 HWY. 65 - YELLOW BEND PORT (S) Code: 9 Name: CHICOT	Material Code Station No.: Location:	SSRVPS LM 0.55 15'LT
Sampled By: Lab No.: Sample ID: LATITUDE:	FRAZIER / BATES / JORDAN 20191096 RV196	Depth: AASHTO Class: Material Type (1 or 2 LONGITUDE:	0-5 A-7-6(15) 2
1. Testing Inform	nation:		
	Preconditioning - Permanent Strain > 5% (Testing - Permanent Strain > 5% (Y=Yes or Number of Load Sequences Completed (0-	N=No)	N N 15
2. Specimen Info	ormation:		
	Specimen Diameter (in):		
	Тор		3.94
	Middle		3.94
	Bottom Average		3.94 3.94
	Membrane Thickness (in):		0.01
	Height of Specimen, Cap and Base (in):		8.02
	Height of Cap and Base (in):		0.00
	Initial Length, Lo (in):		8.02
	Initial Area, Ao (sq. in):		12.12
	Initial Volume, AoLo (cu. in):		97.19
3. Soil Specimen	Weight:		
	Weight of Wet Soil Used (g):		3096.40
4. Soil Properties	s:		
	Optimum Moisture Content (%):		18.0
	Maximum Dry Density (pcf):		105.5
	95% of MDD (pcf):		100.2
	In-Situ Moisture Content (%):		N/A
5. Specimen Pro	perties:		
	Wet Weight (g):		3096.40
	Compaction Moisture content (%):		18.3
	Compaction Wet Density (pcf):		121.40
	Compaction Dry Density (pcf):		102.62
	Moisture Content After Mr Test (%):		18.3
6. Quick Shear T	est (Y=Yes, N=No, N/A=Not Applicable):	×	#VALUE!
7. Resilient Modu	ulus, Mr:	11115(S	c)^-0.23442(S3)^0.17259
8. Comments			
9. Tested By:	GW	Date: May 1, 2019	

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS RECOMPACTED SAMPLES

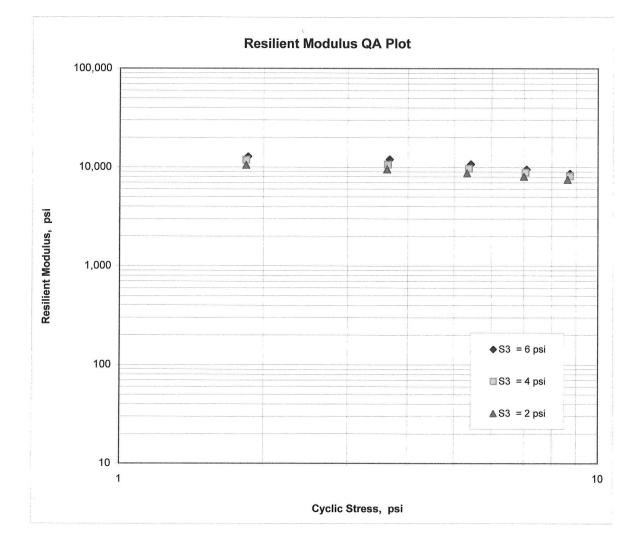
Material Code SSRVPS		Location:	ND PORT (S)	ame: CHICOT	DAN Depth: 0-5	AASHTO Class: A-7-6(15)	Material Type (1 or 2): 2	LONGITUDE:
020629	4/9/19	May 1, 2019	HWY. 65 - YELLOW BEND PORT (S)	Code: 9 N	FRAZIER / BATES / JORDAN	20191096	RV196	
	ate Sampled:	late Tested:	Name of Project:		Sampled By:			

Resilient	Modulus				Mr	psi	12,791	11,981	10,730	9,509	8,620	11,827	10,614	9,662	8,841	8,133	10,514	9,509	8,692	8,034	7,483
Resilient	Strain				చ్	in/in	0.00014	0.00031	0.00051	0.00075	0.00101	0.00016	0.00034	0.00056	0.00080	0.00107	0.00017	0.00038	0.00061	0.00087	0.00115
Average	Recov Def.	LVDT 1	and 2		Havg	.u	0.00116	0.00245	0.00405	0.00598	0.00812	0.00125	0.00274	0.00446	0.00639	0.00860	0.00140	0.00305	0.00491	0.00698	0.00925
Actual	Applied	Contact	Stress		Scontact	psi	0.2	0.2	0.3	0.5	0.7	0.2	0.2	0.2	0.4	0.6	0.2	0.2	0.2	0.3	0.5
Actual	Applied	Cyclic	Stress		S _{cyclic}	psi	1.9	3.7	5.4	7.1	8.7	1.8	3.6	5.4	7.0	8.7	1.8	3.6	5.3	7.0	8.6
Actual	Applied	Max.	Axial	Stress	S _{max}	psi	2.1	3.9	5.7	7.6	9.4	2.1	3.9	5.6	7.5	9.3	2.1	3.8	5.5	7.3	9.2
Actual	Applied	Contact	Load	*	Pcontact	lbs	2.6	2.6	3.5	6.0	8.4	2.8	2.8	2.8	5.1	7.5	2.7	2.7	2.7	4.1	6.5
Actual	Applied	Cyclic Load			P _{cyclic}	lbs	22.5	44.4	65.7	85.9	105.7	22.3	44.0	65.1	85.4	105.7	22.2	43.8	64.5	84.7	104.5
Actual	Applied	Max. Axial	Load		P _{max}	lbs	25.1	47.0	69.3	91.9	114.2	25.0	46.8	67.9	90.5	113.1	24.9	46.5	67.2	88.9	111.1
Nominal	Maximum	Axial	Stress		S _{cyclic}	psi	2.0	4.0	6.0	8.0	10.0	2.0	4.0	6.0	8.0	10.0	2.0	4.0	6.0	8.0	10.0
Chamber	Confining	Pressure			လိ	psi	6.0	6.0	0.9	0.9	6.0	4.0	4.0	4.0	4.0	4.0	2.0	2.0	2.0	2.0	2.0
		PARAMETER		A stript of the Channel Comments of the Channel Comments of the Channel Comments of the Channel Comments of the	DESIGNATION	UNIT	Sequence 1	Sequence 2	Sequence 3	Sequence 4	Sequence 5	Sequence 6	Sequence 7	Sequence 8	Sequence 9	Sequence 10	Sequence 11	Sequence 12	Sequence 13	Sequence 14	Sequence 15

May 1, 2019

DATE DATE

GW


TESTED BY REVIEWED BY

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS RECOMPACTED / THINWALL TUBE SAMPLES

Job No.	020629	Material Code SSRVPS
Date Sampled:	4/9/19	Station No.: LM 0.55
Date Tested:	May 1, 2019	Location: 15'LT
Name of Project:	HWY. 65 - YELLOW BEND PORT (S)
County:	Code: 9 Name: CHICC	Т
Sampled By:	FRAZIER / BATES / JORDAN	Depth: 0-5
Lab No.:	20191096	AASHTO Class: A-7-6(15)
Sample ID:	RV196	Material Type (1 or 2): 2
LATITUDE:		LONGITUDE:

 $M_R = K1 (S_C)^{K_2} (S_3)^{K_5}$

K1 =	11,115
K2 =	-0.23442
K5 =	0.17259
$R^2 =$	0.95

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS **RECOMPACTED SAMPLES**

Job No. Date Sampled: Date Tested: Name of Project: County:	020629 4/9/2019 May 1, 2019 HWY. 65 - YELLOW BEND PORT (S) Code: 9 Name: CHICOT	Material Code Station No.: Location:	SSRVPS LM 1.70 15'RT
Sampled By: Lab No.: Sample ID: LATITUDE:	FRAZIER / BATES / JORDAN 20191097 RV197	Depth: AASHTO Class: Material Type (1 or 2) LONGITUDE:	0-5 A-4 (0) 2
1. Testing Inform	nation:		
	Preconditioning - Permanent Strain > 5% (Y= Testing - Permanent Strain > 5% (Y=Yes or N Number of Load Sequences Completed (0-15	l=No)	N N 15
2. Specimen Info	ormation:		
 Soil Speciment Soil Properties 	Specimen Diameter (in): Top Middle Bottom Average Membrane Thickness (in): Height of Specimen, Cap and Base (in): Height of Cap and Base (in): Initial Length, Lo (in): Initial Area, Ao (sq. in): Initial Volume, AoLo (cu. in): Weight: Weight of Wet Soil Used (g):		3.95 3.95 3.95 3.95 0.01 8.02 0.00 8.02 12.18 97.68 3024.20 14.1 106.9 101.6
	In-Situ Moisture Content (%):		N/A
5. Specimen Pro	perties: Wet Weight (g): Compaction Moisture content (%): Compaction Wet Density (pcf): Compaction Dry Density (pcf): Moisture Content After Mr Test (%):		3024.20 14.0 117.96 103.48 13.8
6. Quick Shear T	est (Y=Yes, N=No, N/A=Not Applicable):		#VALUE!
7. Resilient Modu	ulus, Mr:	6440(Sc	c)^-0.03317(S3)^0.39973
8. Comments			
9. Tested By:	GWD	Date: May 1, 2019	

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS RECOMPACTED SAMPLES

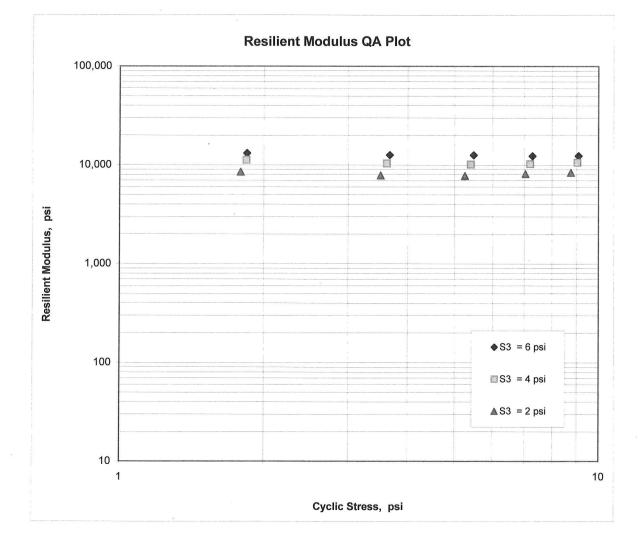
Material CodeSSRVPSStation No.:LM 1.70	Location:		CHICOT	Depth: 0-5	AASHTO Class: A-4 (0)	or 2):	LONGITUDE:
020629 4/9/2019	May 1, 2019	HWY. 65 - YELLOW BEND PORT (S)	Code: 9 Name: CI	FRAZIER / BATES / JORDAN	20191097	RV197	
Job No. Date Sampled:	Date Tested:	Name of Project:	County:	Sampled By:	Lab No.:	Sample ID:	LATITUDE:

	Chamber	Nominal	Actual	Actual	Actual	Actual	Actual	Actual	Average	Resilient	Resilient
PARAMETER	Pressure	Axial	Applieu Max. Axial	Cyclic Load	Contact	Арриеи Мах.	Cyclic	Applied Contact	LVDT 1	Strain	Niodulus
		Stress	Load		Load	Axial	Stress	Stress	and 2		
						Stress					
DESIGNATION	လိ	S _{cyclic}	P _{max}	P _{cyclic}	Pcontact	S _{max}	S _{cyclic}	Scontact	H _{avg}	٤	Mr
UNIT	psi	psi	lbs	lbs	lbs	psi	psi	psi	'n	in/in	psi
Sequence 1	6.0	2.0	25.0	22.5	2.6	2.1	1.8	0.2	0.00112	0.00014	13,174
Sequence 2	6.0	4.0	47.3	44.7	2.6	3.9	3.7	0.2	0.00233	0.00029	12,624
Sequence 3	6.0	6.0	70.2	66.7	3.5	5.8	5.5	0.3	0.00349	0.00044	12,582
Sequence 4	6.0	8.0	94.6	88.6	5.9	7.8	7.3	0.5	0.00474	0.00059	12,322
Sequence 5	6.0	10.0	118.9	110.6	8.3	9.8	9.1	0.7	0.00588	0.00073	12,386
Sequence 6	4.0	2.0	25.0	22.4	2.6	2.1	1.8	0.2	0.00131	0.00016	11,260
Sequence 7	4.0	4.0	46.8	44.0	2.8	3.8	3.6	0.2	0.00280	0.00035	10,371
Sequence 8	4.0	6.0	68.6	65.7	2.9	5.6	5.4	0.2	0.00427	0.00053	10,131
Sequence 9	4.0	8.0	92.8	87.6	5.2	7.6	7.2	0.4	0.00563	0.00070	10,245
Sequence 10	4.0	10.0	117.7	110.0	7.7	9.7	9.0	0.6	0.00684	0.00085	10,594
Sequence 11	2.0	2.0	24.5	21.8	2.7	2.0	1.8	0.2	0.00169	0.00021	8,506
Sequence 12	2.0	4.0	45.5	42.8	2.8	3.7	3.5	0.2	0.00359	0.00045	7,845
Sequence 13	2.0	6.0	66.8	64.0	2.8	5.5	5.3	0.2	0.00543	0.00068	7,758
Sequence 14	2.0	8.0	90.0	85.7	4.3	7.4	7.0	0.4	0.00694	0.00087	8,124
Sequence 15	2.0	10.0	113.3	106.6	6.7	9.3	8.8	0.5	0.00839	0.00105	8,364

May 1, 2019

DATE DATE

GW


TESTED BY REVIEWED BY

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS RECOMPACTED / THINWALL TUBE SAMPLES

Job No.	020629	Material Code SSRVPS
Date Sampled:	4/9/2019	Station No.: LM 1.70
Date Tested:	May 1, 2019	Location: 15'RT
Name of Project:	HWY. 65 - YELLOW BEND PORT (S)	
County:	Code: 9 Name: CHICOT	
Sampled By:	FRAZIER / BATES / JORDAN	Depth: 0-5
Lab No.:	20191097	AASHTO Class: A-4 (0)
Sample ID:	RV197	Material Type (1 or 2): 2
LATITUDE:	· .	LONGITUDE:

 $M_{R} = K1 (S_{C})^{K2} (S_{3})^{K5}$

K1 =	6,440	
K2 =	-0.03317	
	0.39973	
$R^2 =$	0.98	

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS RECOMPACTED SAMPLES

Job No. Date Sampled: Date Tested: Name of Project: County:	020629 4/9/19 May 1, 2019 HWY. 65 - YELLOW BEND PORT (S) Code: 9 Name: CHICOT	Material Code Station No.: Location:	SSRVPS LM 2.02 15'LT
Sampled By: Lab No.: Sample ID: LATITUDE:	FRAZIER / BATES / JORDAN 20191098 RV198	Depth: AASHTO Class: Material Type (1 or 2 LONGITUDE:	0-5 A-7-6(32) 2
1. Testing Inform	nation:		
	Preconditioning - Permanent Strain > 5% (Testing - Permanent Strain > 5% (Y=Yes or Number of Load Sequences Completed (0-	·N=No)	N N 15
2. Specimen Info	prmation:		
·	Specimen Diameter (in):		
	Тор		3.94
	Middle		3.94
	Bottom		3.94
	Average		3.94
	Membrane Thickness (in):		0.01
	Height of Specimen, Cap and Base (in):		8.02
	Height of Cap and Base (in):		0.00
	Initial Length, Lo (in):		8.02
	Initial Area, Ao (sq. in):		12.12
	Initial Volume, AoLo (cu. in):		97.19
3. Soil Specimen	Weight:		
	Weight of Wet Soil Used (g):		3029.60
4. Soil Properties	3:		
nose retar panalan ber (a su) 🖬 recepted (andreson	Optimum Moisture Content (%):		22.1
	Maximum Dry Density (pcf):		98.3
	95% of MDD (pcf):		93.4
	In-Situ Moisture Content (%):		N/A
5. Specimen Pro	perties:		
-	Wet Weight (g):		3029.60
	Compaction Moisture content (%):		22.4
	Compaction Wet Density (pcf):		118.78
	Compaction Dry Density (pcf):		97.04
	Moisture Content After Mr Test (%):		22.4
6. Quick Shear To	est (Y=Yes, N=No, N/A=Not Applicable):		#VALUE!
7. Resilient Modu	ılus, Mr:	10433(S	c)^-0.26044(S3)^0.12144
8. Comments			
9. Tested By:	GW	Date: May 1, 2019	

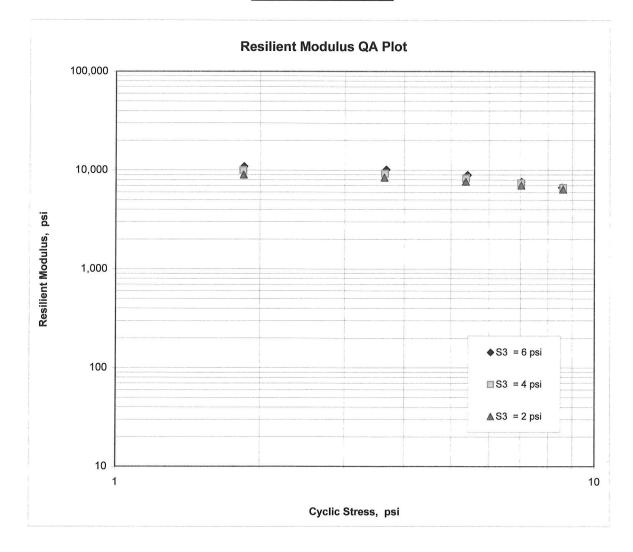
AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS RECOMPACTED SAMPLES

ent Resilient	n Modulus				Ā	psi	17 10,896	36 10,140	51 8,936			18 10,009	40 9,202				21 8,977	43 8,390	70 7,656	7,004	
Resilient	Strain				చ్	in/in	0.00017	0.00036	0.00061	0.00092	0.00128	0.00018	0.00040	0.00065	0.00095	0.00130	0.00021	0.00043	0.00070	0.00100	0.00135
Average	Recov Def.	LVDT 1	and 2		Havg	i	0.00136	0.00290	0.00485	0.00738	0.01027	0.00148	0.00318	0.00519	0.00759	0.01040	0.00165	0.00348	0.00562	0.00804	0.01082
Actual	Applied	Contact	Stress		Scontact	psi	0.2	0.2	0.3	0.5	0.7	0.2	0.2	0.2	0.4	0.6	0.2	0.2	0.2	0.3	0.5
Actual	Applied	Cyclic	Stress		S _{cyclic}	psi	1.9	3.7	5.4	7.0	8.6	1.8	3.6	5.4	7.0	8.6	1.8	3.6	5.4	7.0	8.6
Actual	Applied	Max.	Axial	Stress	S _{max}	psi	2.1	3.9	5.7	7.5	9.3	2.1	3.9	5.6	7.4	9.2	2.1	3.9	5.6	7.4	9.1
Actual	Applied	Contact	Load		Pcontact	lbs	2.7	2.7	3.5	6.0	8.5	2.8	2.8	2.8	5.1	7.6	2.8	2.8	2.7	4.2	6.6
Actual	Applied	Cyclic Load			P _{cyclic}	lbs	22.4	44.4	65.5	85.2	103.7	22.3	44.2	65.0	85.0	104.2	22.4	44.1	65.0	85.1	104.2
Actual	Applied	Max. Axial	Load		P _{max}	lbs	25.1	47.1	69.0	91.2	112.1	25.1	46.9	67.9	90.2	111.8	25.2	46.8	67.7	89.3	110.8
	Maximum	Axial	Stress		S _{cyclic}	psi	2.0	4.0	6.0	8.0	10.0	2.0	4.0	6.0	8.0	10.0	2.0	4.0	6.0	8.0	10.0
Chamber	Confining	Pressure			လိ	psi	6.0	6.0	6.0	6.0	6.0	4.0	4.0	4.0	4.0	4.0	2.0	2.0	2.0	2.0	2.0
		PARAMETER			DESIGNATION	UNIT	Sequence 1	Sequence 2	Sequence 3	Sequence 4	Sequence 5	Sequence 6	Sequence 7	Sequence 8	Sequence 9	Sequence 10	Sequence 11	Sequence 12	Sequence 13	Sequence 14	Sequence 15

May 1, 2019

DATE DATE

TESTED BY REVIEWED BY


GW

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS RECOMPACTED / THINWALL TUBE SAMPLES

Job No.	020629	Material Code SSRVPS
Date Sampled:	4/9/19	Station No.: LM 2.02
Date Tested:	May 1, 2019	Location: 15'LT
Name of Project:	HWY. 65 - YELLOW BEND PORT (S)	
County:	Code: 9 Name: CHICOT	
Sampled By:	FRAZIER / BATES / JORDAN	Depth: 0-5
Lab No.:	20191098	AASHTO Class: A-7-6(32)
Sample ID:	RV198	Material Type (1 or 2): 2
LATITUDE:		LONGITUDE:

 $M_R = K1 (S_C)^{K_2} (S_3)^{K_5}$

K1 =	10,433
K2 =	-0.26044
	0.12144
$R^2 =$	0.89

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS **RECOMPACTED SAMPLES**

Job No.	020629	Material Code	SSRVPS
Date Sampled:	4/10/19	Station No.:	LM 2.95
Date Tested:	May 7, 2019	Location:	15' LT
Name of Project:	HWY. 65 - YELLOW BEND PORT (S)		
County:	Code: 9 Name: CHICOT		
Sampled By:	FRAZIER / BATES / JORDAN	Depth:	0-5
Lab No.:	20191099	AASHTO Class:	A-6 (19)
Sample ID:	RV 199	Material Type (1 or 2): 2
LATITUDE:		LONGITUDE:	
1. Testing Inform	nation:		
	Preconditioning - Permanent Strain > 5% (Y=Yes or N= No)	Ν
	Testing - Permanent Strain > 5% (Y=Yes or	r N=No)	Ν
	Number of Load Sequences Completed (0-	15)	15
2. Specimen Info	ormation:	к.	
	Specimen Diameter (in):		
	Тор		3.95
	Middle		3.95
	Bottom		3.95
	Average		3.95
	Membrane Thickness (in):		0.01
	Height of Specimen, Cap and Base (in):		8.02
	Height of Cap and Base (in):		0.00
	Initial Length, Lo (in):		8.02
	Initial Area, Ao (sq. in):		12.18
	Initial Volume, AoLo (cu. in):		97.68
3. Soil Specimer			
	Weight of Wet Soil Used (g):		3112.70
4. Soil Properties	s:		
	Optimum Moisture Content (%):		16.4
	Maximum Dry Density (pcf):		107.5
	95% of MDD (pcf):		102.1
	In-Situ Moisture Content (%):		N/A
5. Specimen Pro	perties:		
	Wet Weight (g):		3112.70
	Compaction Moisture content (%):		16.4
	Compaction Wet Density (pcf):		121.42
	Compaction Dry Density (pcf):		104.31
	Moisture Content After Mr Test (%):		16.2
6. Quick Shear T	est (Y=Yes, N=No, N/A=Not Applicable):		#VALUE!
7. Resilient Mode	ulus, Mr:	11220(8	Sc)^-0.32482(S3)^0.17566
8. Comments			
9. Tested By:	GW	Date: May 7, 2019	
· · · · · · · · · · · · · · · · ·			

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS RECOMPACTED SAMPLES

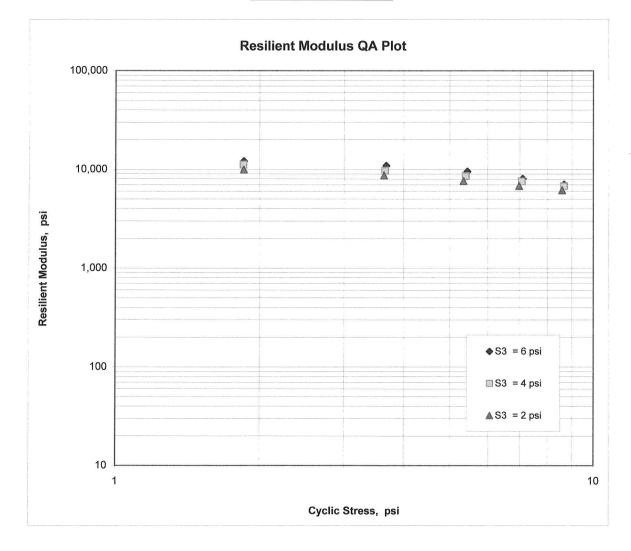
Job No. Date Samiled.	020629	Material Code	SSRVPS
Date Sampieu.	4/10/17	Station No.:	CV.2 MJ
Date Tested:	May 7, 2019	Location:	15' LT
Name of Project:	HWY. 65 - YELLOW BEND PORT (S)		
County:	Code: 9 Name: CHICOT		
Sampled By:	FRAZIER / BATES / JORDAN	Depth:	0-5
Lab No.:	20191099	AASHTO Class:	A-6 (19)
Sample ID:	RV 199	Material Type (1 or 2): 2	2
LATITUDE:		LONGITUDE:	

	Nominal	Actual	Actual	Actual	Actual	Actual	Actual	Average	Resilient	Resilient
Maximum A Axial Ma	N N	Applied Max. Axial	Applied Cyclic Load	Applied Contact	Applied Max.	Applied Cyclic	Applied Contact	Recov Def. LVDT 1	Strain	Modulus
Stress	1	Load		Load	Axial	Stress	Stress	and 2		
S _{cyclic}		P _{max}	P _{cyclic}	Pcontact	S _{max}	S _{cyclic}	Scontact	H _{avg}	പ്	Ā
psi		lbs	lbs	lbs	psi	psi	psi	.Ľ	in/in	psi
2.0		25.4	22.6	2.8	2.1	1.9	0.2	0.00122	0.00015	12,131
4.0		47.5	44.8	2.8	3.9	3.7	0.2	0.00270	0.00034	10,904
6.0	Ű	69.9	66.3	3.6	5.7	5.4	0.3	0.00458	0.00057	9,532
8.0	ິດ	92.5	86.4	6.0	7.6	7.1	0.5	0.00707	0.00088	8,046
10.0	1	114.0	105.5	8.5	9.4	8.7	0.7	0.00988	0.00123	7,034
2.0 25	25	25.3	22.5	2.8	2.1	1.8	0.2	0.00133	0.00017	11,169
4.0 47	47	47.2	44.5	2.7	3.9	3.7	0.2	0.00302	0.00038	9,698
6.0	80	68.5	65.7	2.8	5.6	5.4	0.2	0.00506	0.00063	8,545
8.0	ັດ	91.2	86.0	5.1	7.5	7.1	0.4	0.00748	0.00093	7,569
10.0	÷	113.1	105.5	7.6	9.3	8.7	0.6	0.01029	0.00128	6,748
2.0 2	2	25.3	22.5	2.7	2.1	1.9	0.2	0.00149	0.00019	9,970
4.0	4	47.0	44.2	2.8	3.9	3.6	0.2	0.00336	0.00042	8,676
6.0 6	Q	67.8	65.0	2.8	5.6	5.3	0.2	0.00563	0.00070	7,604
8.0	~	89.1	84.9	4.2	7.3	7.0	0.3	0.00824	0.00103	6,784
10.0		111.2	104.5	6.6	9.1	8.6	0.5	0.01119	0.00140	6,148

May 7, 2019

DATE DATE

GW


TESTED BY REVIEWED BY

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS RECOMPACTED / THINWALL TUBE SAMPLES

Job No.	020629	Material Code SSRVPS
Date Sampled:	4/10/19	Station No.: LM 2.95
Date Tested:	May 7, 2019	Location: 15' LT
Name of Project:	HWY. 65 - YELLOW BEND PORT (S)	
County:	Code: 9 Name: CHICOT	
Sampled By:	FRAZIER / BATES / JORDAN	Depth: 0-5
Lab No.:	20191099	AASHTO Class: A-6 (19)
Sample ID:	RV 199	Material Type (1 or 2): 2
LATITUDE:		LONGITUDE:

 $M_{R} = K1 (S_{C})^{K2} (S_{3})^{K5}$

K1 =	11,220
K2 =	-0.32482
K5 =	0.17566
$R^2 =$	0.95

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS RECOMPACTED SAMPLES

Job No. Date Sampled: Date Tested: Name of Project: County:	020629 4/10/19 May 8, 2019 HWY. 65 - YELLOW BEND PORT (S) Code: 9 Name: CHICOT	Material Code Station No.: Location:	SSRVPS LM 3.70 15'RT
Sampled By: Lab No.: Sample ID: LATITUDE:	FRAZIER / BATES / JORDAN 20191100 RV 200	Depth: AASHTO Class: Material Type (1 o LONGITUDE:	0-5 A-7-6 (40) 2
1. Testing Inform	nation:		
	Preconditioning - Permanent Strain > 5% (Y Testing - Permanent Strain > 5% (Y=Yes or Number of Load Sequences Completed (0-1	N=No)	N N 15
2. Specimen Info	ormation:		
3. Soil Specimer 4. Soil Properties	Weight of Wet Soil Used (g): s: Optimum Moisture Content (%):		3.94 3.94 3.94 3.94 0.01 8.02 0.00 8.02 12.12 97.19 2938.10 21.9
	Maximum Dry Density (pcf): 95% of MDD (pcf):		97.3 92.4
	In-Situ Moisture Content (%):		52.4 N/A
5. Specimen Pro	Wet Weight (g): Compaction Moisture content (%): Compaction Wet Density (pcf): Compaction Dry Density (pcf):		2938.10 22.0 115.19 94.42
	Moisture Content After Mr Test (%):		22.0
6. Quick Shear T	est (Y=Yes, N=No, N/A=Not Applicable):		#VALUE!
7. Resilient Mode	ulus, Mr:	1091	5(Sc)^-0.20615(S3)^0.08707
8. Comments			
9. Tested By:	GW	Date: <u>May 8, 2019</u>	

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS RECOMPACTED SAMPLES

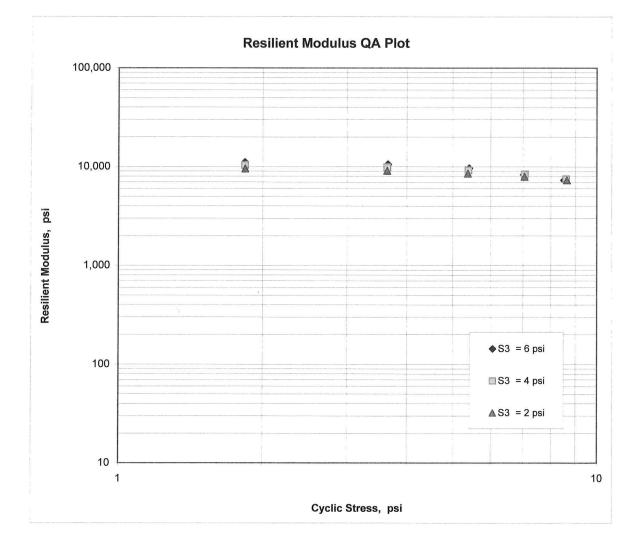
de	Station No.: LM 3.70	Location: 15'RT			Depth: 0-5	AASHTO Class: A-7-6 (40)	Material Type (1 or 2): 2	LONGITUDE:
020629	4/10/19	May 8, 2019	HWY. 65 - YELLOW BEND PORT (S)	Code: 9 Name: CHICOT	FRAZIER / BATES / JORDAN	20191100	RV 200	
Job No.	Date Sampled:	Date Tested:	Name of Project:	County:	Sampled By:	Lab No.:	Sample ID:	LATITUDE:

	Chamber Confining	Nominal Maximum	Actual Applied	Actual Applied	Actual Applied	Actual Applied	Actual Applied	Actual Applied	Average Recov Def.	Resilient Strain	Resilient Modulus
PARAMETER	Pressure	Axial	100	Cyclic Load	Contact	Max.	Cyclic	Contact	LVDT 1		
		Stress	Load		Load	Axial	Stress	Stress	and 2		
						Stress					
DESIGNATION	လိ	S _{cyclic}	P _{max}	P _{cyclic}	P _{contact}	S _{max}	S _{cyclic}	Scontact	H _{avg}	చ్	Mr
UNIT	psi	psi	lbs	lbs	lbs	psi	psi	psi	'n	in/in	psi
Sequence 1	6.0	2.0	25.0	22.2	2.8	2.1	1.8	0.2	0.00133	0.00017	11,077
Sequence 2	0.9	4.0	47.0	44.2	2.8	3.9	3.6	0.2	0.00277	0.00035	10,563
Sequence 3	6.0	6.0	69.1	65.5	3.6	5.7	5.4	0.3	0.00449	0.00056	9,647
Sequence 4	6.0	8.0	91.1	85.1	6.0	7.5	7.0	0.5	0.00677	0.00084	8,322
Sequence 5	0.9	10.0	111.7	103.3	8.5	9.2	8.5	0.7	0.00934	0.00116	7,317
Sequence 6	4.0	2.0	25.0	22.2	2.8	2.1	1.8	0.2	0.00142	0.00018	10,380
Sequence 7	4.0	4.0	46.9	44.1	2.8	3.9	3.6	0.2	0.00295	0.00037	9,896
Sequence 8	4.0	6.0	68.1	65.3	2.8	5.6	5.4	0.2	0.00469	0.00059	9,201
Sequence 9	4.0	8.0	90.6	85.4	5.2	7.5	7.1	0.4	0.00678	0.00085	8,338
Sequence 10	4.0	10.0	111.8	104.2	7.6	9.2	8.6	0.6	0.00922	0.00115	7,484
Sequence 11	2.0	2.0	25.1	22.3	2.8	2.1	1.8	0.2	0.00154	0.00019	9,551
Sequence 12	2.0	4.0	46.9	44.1	2.8	3.9	3.6	0.2	0.00322	0.00040	9,067
Sequence 13	2.0	6.0	67.9	65.1	2.8	5.6	5.4	0.2	0.00505	0.00063	8,531
Sequence 14	2.0	8.0	89.6	85.4	4.3	7.4	7.0	0.4	0.00714	0.00089	7,910
Sequence 15	2.0	10.0	111.3	104.6	6.7	9.2	8.6	0.6	0.00948	0.00118	7,309

May 8, 2019

DATE DATE

GW


TESTED BY REVIEWED BY

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS RECOMPACTED / THINWALL TUBE SAMPLES

Job No.	020629	Material Code SSRVPS
Date Sampled:	4/10/19	Station No.: LM 3.70
Date Tested:	May 8, 2019	Location: 15'RT
Name of Project:	HWY. 65 - YELLOW BEND PORT (S)	
County:	Code: 9 Name: CHICOT	
Sampled By:	FRAZIER / BATES / JORDAN	Depth: 0-5
Lab No.:	20191100	AASHTO Class: A-7-6 (40)
Sample ID:	RV 200	Material Type (1 or 2): 2
LATITUDE:		LONGITUDE:

 $M_R = K1 (S_C)^{K_2} (S_3)^{K_5}$

K1 =	10,915
K2 =	-0.20615
K5 =	0.08707
$R^2 =$	0.83

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS **RECOMPACTED SAMPLES**

Job No.	020629	Material Code	SSRVPS
Date Sampled:	4/10/19	Station No.:	LM 4.95
Date Tested:	May 9, 2019	Location:	15'LT
Name of Project:	HWY. 65 - YELLOW BEND PORT (S)		
County:	Code: 9 Name: CHICOT		
Sampled By:	FRAZIER / BATES / JORDAN	Depth:	0-5
Lab No.:	20191101	AASHTO Class:	A-7-6 (19)
Sample ID:	RV 201	Material Type (1 or 2)): 2
LATITUDE:		LONGITUDE:	
1. Testing Inform	nation:		
	Preconditioning - Permanent Strain > 5% (Y=Yes or N= No)	Ν
	Testing - Permanent Strain > 5% (Y=Yes or	r N=No)	Ν
	Number of Load Sequences Completed (0-	15)	15
2. Specimen Info	ormation:		
•	Specimen Diameter (in):		
	Тор		3.94
	Middle		3.94
	Bottom		3.94
	Average		3.94
	Membrane Thickness (in):		0.01
	Height of Specimen, Cap and Base (in):		8.02
	Height of Cap and Base (in):		0.00
	Initial Length, Lo (in):		8.02
	Initial Area, Ao (sq. in):		12.12
	Initial Volume, AoLo (cu. in):		97.19
3. Soil Specimer	n Weight:		
	Weight of Wet Soil Used (g):		3040.50
4 Soil Droportio			
4. Soil Properties			10.0
	Optimum Moisture Content (%): Maximum Dry Density (pcf):		19.9 101.7
	95% of MDD (pcf):		96.6
	In-Situ Moisture Content (%):		90.0 N/A
E. Casalina D			
5. Specimen Pro	•		2040 50
	Wet Weight (g): Compaction Moisture content (%):		3040.50 20.2
	Compaction Wet Density (pcf):		20.2 119.20
	Compaction Dry Density (pcf):		99.17
	Moisture Content After Mr Test (%):		20.2
C. Owiek Sheer T			
o. Quick Shear I	est (Y=Yes, N=No, N/A=Not Applicable): /		#VALUE!
7. Resilient Modu	ulus, Mr:	10064(S	c)^-0.30598(S3)^0.14897
8. Comments			
9. Tested By:	GW	Date: May 9, 2019	

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS RECOMPACTED SAMPLES

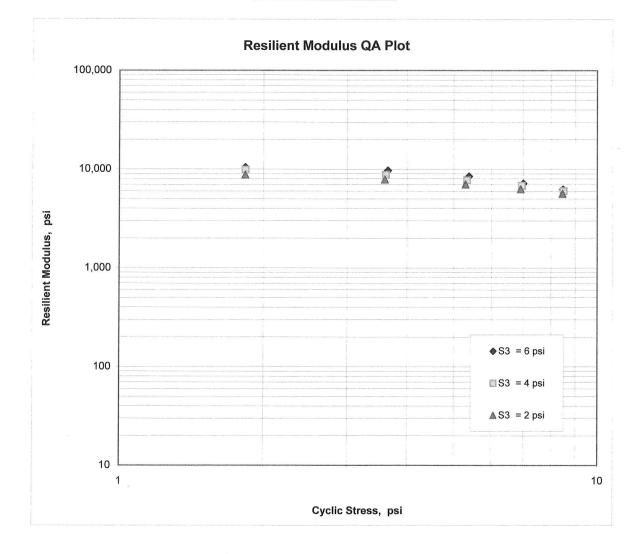
Job No. Date Sampled: Date Tested:	020629 4/10/19 May 9, 2019	Material Code Station No.: Location:	SSRVPS LM 4.95 15'LT
Name of Project:	HWY. 65 - YELLOW BEND PORT (S)		
County:	Code: 9 Name: CHICOT		
Sampled By:	FRAZIER / BATES / JORDAN	Depth:	0-5
Lab No.:	20191101	AASHTO Class:	A-7-6 (19)
Sample ID:	RV 201	Material Type (1 or 2): 2	2
LATITUDE:		LONGITUDE:	

	Chamber Confining	Nominal Maximum	Actual Applied	Actual Applied	Actual Applied	Actual Applied	Actual Applied	Actual Applied	Average Recov Def.	Resilient Strain	Resilient Modulus
PARAMETER	Pressure	Axial	Max. Axial	Cyclic Load	Contact	Max.	Cyclic	Contact	LVDT 1		
		Stress	Load		Load	Axial	Stress	Stress	and 2		
						Stress					
DESIGNATION	လိ	S _{cyclic}	P _{max}	P _{cyclic}	Pcontact	S _{max}	S _{cyclic}	Scontact	H _{avg}	చ్	Å
UNIT	psi	psi	lbs	lbs	lbs	psi	psi	psi	Ľ	in/in	psi
Sequence 1	6.0	2.0	25.1	22.2	2.8	2.1	1.8	0.2	0.00141	0.00018	10,460
Sequence 2	6.0	4.0	47.0	44.2	2.8	3.9	3.6	0.2	0.00302	0.00038	9,687
Sequence 3	6.0	6.0	68.8	65.2	3.6	5.7	5.4	0.3	0.00510	0.00064	8,452
Sequence 4	6.0	8.0	90.8	84.8	6.0	7.5	7.0	0.5	0.00783	0.00098	7,172
Sequence 5	6.0	10.0	111.1	102.7	8.4	9.2	8.5	0.7	0.01091	0.00136	6,235
Sequence 6	4.0	2.0	25.0	22.2	2.8	2.1	1.8	0.2	0.00150	0.00019	9,824
Sequence 7	4.0	4.0	46.6	43.8	2.8	3.8	3.6	0.2	0.00331	0.00041	8,751
Sequence 8	4.0	6.0	67.4	64.6	2.8	5.6	5.3	0.2	0.00553	0.00069	7,723
Sequence 9	4.0	8.0	89.3	84.2	5.1	7.4	6.9	0.4	0.00820	0.00102	6,799
Sequence 10	4.0	10.0	110.5	103.0	7.5	9.1	8.5	0.6	0.01133	0.00141	6,014
Sequence 11	2.0	2.0	25.0	22.2	2.8	2.1	1.8	0.2	0.00168	0.00021	8,755
Sequence 12	2.0	4.0	46.4	43.6	2.8	3.8	3.6	0.2	0.00367	0.00046	7,846
Sequence 13	2.0	0.9	6.99	64.1	2.8	5.5	5.3	0.2	0.00606	0.00076	6,998
Sequence 14	2.0	8.0	87.9	83.7	4.2	7.3	6.9	0.3	0.00882	0.00110	6,280
Sequence 15	2.0	10.0	109.0	102.4	6.6	9.0	8.5	0.5	0.01203	0.00150	5,636

DATE DATE

May 9, 2019

TESTED BY REVIEWED BY


GW

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS RECOMPACTED / THINWALL TUBE SAMPLES

Job No.	020629	Material Code SSRVPS
Date Sampled:	4/10/19	Station No.: LM 4.95
Date Tested:	May 9, 2019	Location: 15'LT
Name of Project:	HWY. 65 - YELLOW BEND PORT (S)	
County:	Code: 9 Name: CHICOT	
Sampled By:	FRAZIER / BATES / JORDAN	Depth: 0-5
Lab No.:	20191101	AASHTO Class: A-7-6 (19)
Sample ID:	RV 201	Material Type (1 or 2): 2
LATITUDE:		LONGITUDE:

 $M_R = K1 (S_C)^{K_2} (S_3)^{K_5}$

K1 =	10,064
K2 =	-0.30598
K5 =	0.14897
$R^2 =$	0.92

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS RECOMPACTED SAMPLES

Lab No.:20191102AASHTO Class:	A-4 (3)
Sample ID:RV 202Material Type (1 or 2):LATITUDE:LONGITUDE:	2
1. Testing Information:	
Preconditioning - Permanent Strain > 5% (Y=Yes or N= No)	N
Testing - Permanent Strain > 5% (Y=Yes or N=No) Number of Load Sequences Completed (0-15)	N 15
Number of Load Sequences Completed (0-15)	15
2. Specimen Information:	
Specimen Diameter (in):	5
Тор	3.95
Middle	3.95
Bottom	3.95
Average	3.95
Membrane Thickness (in):	0.01
Height of Specimen, Cap and Base (in):	8.02
Height of Cap and Base (in):	0.00
Initial Length, Lo (in):	8.02
Initial Area, Ao (sq. in):	12.18
Initial Volume, AoLo (cu. in):	97.68
3. Soil Specimen Weight:	
Weight of Wet Soil Used (g):	3122.90
Weight of Wet Soli Osed (g).	5122.90
4. Soil Properties:	
Optimum Moisture Content (%):	15.7
Maximum Dry Density (pcf):	110.6
95% of MDD (pcf):	105.1
In-Situ Moisture Content (%):	N/A
5. Specimen Properties:	
Wet Weight (g):	3122.90
Compaction Moisture content (%):	15.9
Compaction Wet Density (pcf):	121.81
Compaction Dry Density (pcf):	105.10
Moisture Content After Mr Test (%):	15.7
6. Quick Shear Test (Y=Yes, N=No, N/A=Not Applicable):	#VALUE!
7. Resilient Modulus, Mr: 10528(Sc)^-0.1705	7(S3)^0.22875
8. Comments	
·	
9. Tested By: <u>GW</u> Date: <u>May 7, 2019</u>	

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS RECOMPACTED SAMPLES

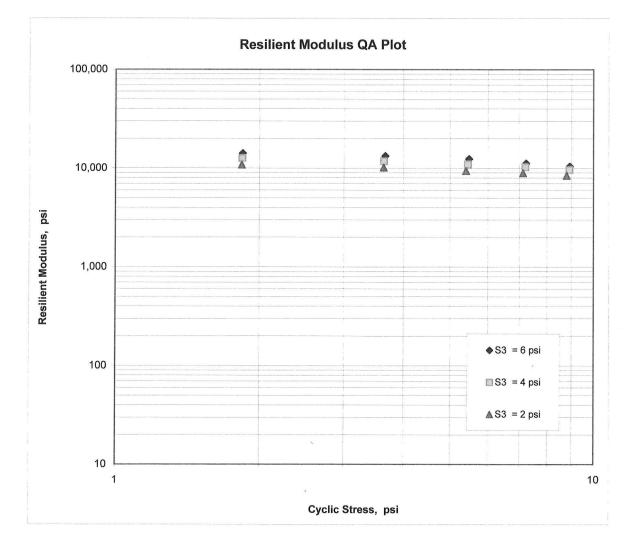
Material Code SSRVPS Station No.: LM 5.35 Location: 15' RT	-	Depth: 0-5 AASHTO Class: A-4 (3)	Material Type (1 or 2): 2 LONGITUDE:
020629 4/10/19 Mav 7, 2019	HWY. 65 - YELLOW BEND PORT (S) Code: 9 Name: CHICOT	FRAZIER / BATES / JORDAN 20191102	RV 202
Job No. Date Sampled: Date Tested:	Name of Project: County:	Sampled By: Lab No.:	Sample ID: LATITUDE:

						May 7, 2019	DATE			GW	TESTED BY
8,417	0.00104	0.00837	0.5	8.8	9.3	6.6	107.0	113.7	10.0	2.0	Sequence 15
8,942	0.00080	0.00638	0.3	7.1	7.5	4.2	86.6	90.9	8.0	2.0	Sequence 14
9,405	0.00057	0.00460	0.2	5.4	5.6	2.8	65.7	68.4	6.0	2.0	Sequence 13
10,145	0.00036	0.00287	0.2	3.6	3.9	2.7	44.3	47.0	4.0	2.0	Sequence 12
10,817	0.00017	0.00136	0.2	1.8	2.1	2.8	22.3	25.1	2.0	2.0	Sequence 11
9,642	0.00092	0.00741	0.6	8.9	9.5	7.6	108.5	116.0	10.0	4.0	Sequence 10
10,299	0.00070	0.00560	0.4	7.2	7.6	5.1	87.6	92.8	8.0	4.0	Sequence 9
10,957	0.00050	0.00398	0.2	5.4	5.7	2.8	66.3	69.0	6.0	4.0	Sequence 8
11,779	0.00031	0.00248	0.2	3.6	3.9	2.8	44.4	47.2	4.0	4.0	Sequence 7
12,640	0.00015	0.00117	0.2	1.8	2.1	2.8	22.4	25.2	2.0	4.0	Sequence 6
10,449	0.00085	0.00685	0.7	8.9	9.6	8.5	108.7	117.2	10.0	6.0	Sequence 5
11,216	0.00064	0.00517	0.5	7.2	7.7	6.0	88.0	94.0	8.0	6.0	Sequence 4
12,413	0.00044	0.00354	0.3	5.5	5.8	3.6	66.7	70.2	6.0	6.0	Sequence 3
13,291	0.00028	0.00221	0.2	3.7	3.9	2.8	44.7	47.5	4.0	6.0	Sequence 2
14,112	0.00013	0.00105	0.2	1.8	2.1	2.8	22.5	25.2	2.0	6.0	Sequence 1
psi	in/in	'n	psi	psi	psi	lbs	lbs	lbs	psi	psi	UNIT
M	ω	H _{avg}	Scontact	S _{cyclic}	S _{max}	Pcontact	P _{cyclic}	P _{max}	S _{cyclic}	လိ	DESIGNATION
		4	20010	200	Stress	5		5			
		LVDT 1 and 2	Contact Stress	Cyclic Stress	Max. Axial	Contact Load	Cyclic Load	Max. Axial Cyclic Load Load	Axial Stress	Pressure	PARAMETER
Modulus	Strain	Recov Def.	Applied	Applied	Applied	Applied	Applied	Applied	Maximum	Confining	
Resilient	Resilient	Average	Actual	Actual	Actual	Actual	Actual	Actual	Nominal	Chamber	

May 7, 2019

DATE DATE

GW


REVIEWED BY

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS RECOMPACTED / THINWALL TUBE SAMPLES

Job No.	020629	Material Code SSRVPS
Date Sampled:	4/10/19	Station No.: LM 5.35
Date Tested:	May 7, 2019	Location: 15' RT
Name of Project:	HWY. 65 - YELLOW BEND PORT (S)	
County:	Code: 9 Name: CHICOT	
Sampled By:	FRAZIER / BATES / JORDAN	Depth: 0-5
Lab No.:	20191102	AASHTO Class: A-4 (3)
Sample ID:	RV 202	Material Type (1 or 2): 2
LATITUDE:		LONGITUDE:

 $M_{R} = K1 (S_{C})^{K2} (S_{3})^{K5}$

K1 =	10,528
K2 =	-0.17057
K5 =	0.22875
$R^2 =$	0.97

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS **RECOMPACTED SAMPLES**

Job No. Date Sampled: Date Tested: Name of Project: County: Sampled By: Lab No.: Sample ID: LATITUDE:	020629 4/10/19 May 8, 2019 HWY. 65 - YELLOW BEND PORT (S) Code: 9 Name: CHICOT FRAZIER / BATES / JORDAN 20191103 RV 203	Material Coo Station No.: Location: Depth: AASHTO CI Material Typ LONGITUD	ass: pe (1 or 2):	SSRVPS LM 6.10 15'LT	0-5 A-7-6 (38) 2
4. Teating Inform					
1. Testing Inform	Preconditioning - Permanent Strain > 5% (V=Ves or N= No)			N
	Testing - Permanent Strain > 5% (Y=Yes o				N
	Number of Load Sequences Completed (0-				15
2. Specimen Info					
	Specimen Diameter (in):				
	Тор				3.94
	Middle				3.94
	Bottom				3.94
					3.94
	Membrane Thickness (in):				0.01
	Height of Specimen, Cap and Base (in):				8.02
	Height of Cap and Base (in):				0.00
	Initial Length, Lo (in):				8.02
	Initial Area, Ao (sq. in):				12.12
	Initial Volume, AoLo (cu. in):				97.19
3. Soil Specimen	Weight:				
5. Oon opecimen	Weight of Wet Soil Used (g):				2969.50
	·····g································				2000.00
4. Soil Properties	5:				
	Optimum Moisture Content (%):				23.7
	Maximum Dry Density (pcf):				96.5
	95% of MDD (pcf):				91.7
	In-Situ Moisture Content (%):				N/A
E Specimen Des	nortion				
5. Specimen Pro	vet Weight (g):				2000 50
	Compaction Moisture content (%):				2969.50
	Compaction Wet Density (pcf):				24.0 116.42
	Compaction Dry Density (pcf):				
	Moisture Content After Mr Test (%):				93.89 23.7
					20.1
6. Quick Shear To	est (Y=Yes, N=No, N/A=Not Applicable):				#VALUE!
7. Resilient Modu	ulus, Mr:		10289(Sc))^-0.23052((\$3)^0.05616
8. Comments					
9. Tested By:	GW	Date: May 9 2040			
J. TESLEU Dy.		Date: May 8, 2019			

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS RECOMPACTED SAMPLES

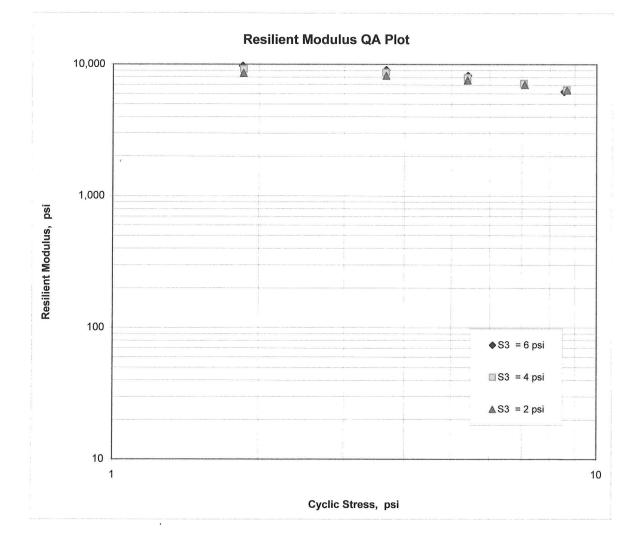
Job No. Date Sampled: Date Tested: Name of Project: County: Sampled By:	020629 4/10/19 May 8, 2019 HWY. 65 - YELLOW BEND PORT (S) Code: 9 Name: CHICOT FRAZIER / BATES / JORDAN	Material Code Station No.: Location: Depth:	SSRVPS LM 6.10 15'LT 0-5
Lab No.:	20191103	AASHTO Class:	A-7-6 (38)
Sample ID: LATITUDE:	RV 203	Material Type (1 or 2): 2 LONGITUDE:	2

FIER Confining Maximum Applied Applied <th< th=""><th></th><th>Chamber</th><th>Nominal</th><th>Actual</th><th>Actual</th><th>Actual</th><th>Actual</th><th>Actual</th><th>Actual</th><th>Average</th><th>Resilient</th><th>Resilient</th></th<>		Chamber	Nominal	Actual	Actual	Actual	Actual	Actual	Actual	Average	Resilient	Resilient
ETER Pressure Axial Max. Axial Cyclic Load Contact Max. Cyclic Contact ATION S Specie Pmax Load Axial Stress Stres Stress		Confining	Maximum	Applied	Applied	Applied	Applied	Applied	Applied	Recov Def.	Strain	Modulus
ATION Stress Load Load Axial Stress Stres Stres Stres	PARAMETER	Pressure	Axial	Max. Axial	Cyclic Load	Contact	Max.	Cyclic	Contact	LVDT 1		
ATION S ₃ S _{opole} Pmass Stress Smass Sopole Smass Sopole Smass Sopole Smass Sopole Sopole Smass Sopole Sopole Smass Sopole			Stress	Load		Load	Axial	Stress	Stress	and 2		
ATION S ₃ S _{spric} P _{mark} P _{spric} P _{spric} S _s	And and any other states of the states of th						Stress					
IT psi psi lbs lbs lbs lbs psi	DESIGNATION	လိ	S _{cyclic}	P _{max}	P _{cyclic}	Pcontact	S _{max}	S _{cyclic}	Scontact	H _{avg}	చ్	Mr
nce1 6.0 2.0 25.2 22.4 2.8 2.1 1.8 0.2 nce2 6.0 4.0 47.1 44.4 2.8 3.9 3.7 0.2 nce3 6.0 6.0 6.0 6.1 6.5 3.5 5.7 5.4 0.3 nce3 6.0 8.0 91.3 85.4 5.9 7.5 7.0 0.5 nce4 6.0 10.0 112.0 103.7 8.4 9.2 8.6 0.7 nce6 4.0 2.0 25.2 22.5 2.7 3.9 3.7 0.2 nce7 4.0 4.0 112.0 103.7 8.4 9.2 8.6 0.7 nce7 4.0 8.0 90.4 85.4 5.0 7.1 0.2 nce8 4.0 6.0 68.1 65.4 0.2 0.2 nce10 4.0 8.0 7.5 7.1 0.2 0.2	UNIT	psi	psi	lbs	lbs	lbs	psi	psi	psi	. <u>c</u>	in/in	psi
nce2 6.0 4.0 47.1 44.4 2.8 3.9 3.7 0.2 nce3 6.0 6.0 69.1 65.5 3.5 5.7 5.4 0.3 nce4 6.0 8.0 91.3 86.4 5.9 7.5 7.0 0.5 nce4 6.0 8.0 91.3 86.4 5.9 7.5 7.0 0.5 nce5 6.0 10.0 112.0 103.7 8.4 9.2 8.6 0.7 nce6 4.0 2.0 25.2 22.5 2.7 3.9 3.7 0.2 nce7 4.0 4.0 4.1 65.4 2.7 3.9 3.7 0.2 nce8 4.0 6.0 68.1 65.4 2.7 5.6 5.4 0.2 nce10 4.0 8.0 90.4 85.4 5.0 7.1 0.4 nce11 2.0 2.0 2.1 1.9 0.2 0.2 <	Sequence 1	0.9	2.0	25.2	22.4	2.8	2.1	1.8	0.2	0.00152	0.00019	9,755
nce 3 6.0 6.0 6.0 6.0 6.1 6.5 3.5 5.7 5.4 0.3 nce 4 6.0 8.0 91.3 85.4 5.9 7.5 7.0 0.5 nce 5 6.0 10.0 112.0 103.7 84 9.2 8.6 0.7 nce 6 4.0 2.0 25.2 22.5 2.7 2.1 1.9 0.2 nce 7 4.0 4.0 4.0 4.7 44.3 2.7 3.9 3.7 0.2 nce 8 4.0 6.0 68.1 65.4 2.7 3.9 3.7 0.2 nce 10 4.0 112.3 104.8 7.5 9.3 8.6 0.6 nce 11 2.0 2.0 7.4 5.6 5.4 0.2 nce 12 2.0 2.0 7.5 7.1 0.4 0.4 nce 11 2.0 2.0 2.5 2.7 2.1 1.9 0.2 <td>Sequence 2</td> <td>0.0</td> <td>4.0</td> <td>47.1</td> <td>44.4</td> <td>2.8</td> <td>3.9</td> <td>3.7</td> <td>0.2</td> <td>0.00323</td> <td>0.00040</td> <td>9,083</td>	Sequence 2	0.0	4.0	47.1	44.4	2.8	3.9	3.7	0.2	0.00323	0.00040	9,083
nee4 6.0 8.0 91.3 85.4 5.9 7.5 7.0 0.5 nee5 6.0 10.0 112.0 103.7 84 9.2 8.6 0.7 nee6 4.0 2.0 25.2 22.5 2.7 3.9 3.7 0.2 nee7 4.0 2.0 25.2 22.5 2.7 3.9 3.7 0.2 nee8 4.0 6.0 68.1 65.4 2.7 3.9 3.7 0.2 nee8 4.0 8.0 90.4 85.4 5.0 7.5 7.1 0.2 nee9 4.0 8.0 90.4 85.4 5.0 7.5 7.1 0.2 nee10 4.0 10.0 112.3 104.8 7.5 9.3 8.6 0.6 nee11 2.0 2.0 7.5 9.3 8.6 0.2 nee12 2.0 2.0 7.5 9.3 8.6 0.2	Sequence 3	0.0	6.0	69.1	65.5	3.5	5.7	5.4	0.3	0.00528	0.00066	8,220
nce5 6.0 10.0 112.0 103.7 8.4 9.2 8.6 0.7 nce6 4.0 2.0 25.2 22.5 2.7 2.1 1.9 0.2 nce7 4.0 4.0 4.0 4.0 4.0 4.0 4.0 3.7 0.2 nce8 4.0 6.0 68.1 65.4 2.7 3.9 3.7 0.2 nce8 4.0 6.0 68.1 65.4 2.7 3.9 3.7 0.2 nce10 4.0 10.0 112.3 104.8 7.5 9.3 8.6 0.6 ice11 2.0 2.0 2.5.2 2.7 3.9 3.7 0.2 ice13 2.0 4.0 11/2.3 104.8 7.5 9.3 8.6 0.6 ice14 2.0 2.0 2.7 3.9 3.7 0.2 ice14 2.0 8.6 0.6 6.6 6.4 0.6 0.2	Sequence 4	6.0	8.0	91.3	85.4	5.9	7.5	7.0	0.5	0.00793	0.00099	7,128
nce 6 4.0 2.0 25.2 22.5 2.7 2.1 1.9 0.2 nce 7 4.0 6.0 6.1 6.5.4 2.7 5.6 5.4 0.2 nce 8 4.0 8.0 90.4 85.4 5.0 7.5 7.1 0.4 nce 10 4.0 10.0 112.3 104.8 7.5 9.3 8.6 0.6 nce 11 2.0 2.0 25.2 22.5 2.7 3.9 3.7 0.2 nce 11 2.0 2.0 2.6 5.4 0.2 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.2 0.2 0.2 0.2 0.2 0.2	Sequence 5	0.0	10.0	112.0	103.7	8.4	9.2	8.6	0.7	0.01106	0.00138	6,200
TCE 7 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 6.0 6.8.1 6.5.4 2.7 5.6 5.4 0.2 nce 8 4.0 8.0 90.4 85.4 5.0 7.5 7.1 0.4 nce 9 4.0 10.0 112.3 104.8 7.5 9.3 8.6 0.6 nce 10 4.0 10.0 112.3 104.8 7.5 9.3 8.6 0.6 nce 11 2.0 2.0 2.52 22.5 2.7 2.1 1.9 0.2 nce 11 2.0 2.0 2.65 2.7 3.9 3.7 0.2 nce 11 2.0 2.0 44.3 2.7 3.9 3.7 0.2 nce 12 2.0 4.0 44.3 2.7 3.9 3.7 0.2 nce 13 2.0 6.0 6.4 2.7 5.6 5.4 0.2 nce 14 2.0 8.6 0.6 9.3 7.1 0.3	Sequence 6	4.0	2.0	25.2	22.5	2.7	2.1	1.9	0.2	0.00162	0.00020	9,215
nce 8 4.0 6.0 68.1 65.4 2.7 5.6 5.4 0.2 nce 9 4.0 8.0 90.4 85.4 5.0 7.5 7.1 0.4 nce 10 4.0 10.0 112.3 104.8 7.5 9.3 8.6 0.6 nce 11 2.0 2.0 2.52 22.5 2.7 3.9 3.7 0.2 nce 12 2.0 2.0 2.65 2.7 3.9 3.7 0.2 nce 12 2.0 6.0 68.1 65.4 2.7 3.9 3.7 0.2 nce 13 2.0 6.0 68.1 65.4 2.7 5.6 5.4 0.2 nce 14 2.0 8.0 86.9 85.8 4.1 7.4 7.1 0.3 nce 15 2.0 10.0 111.6 105.1 6.6 9.2 8.7 0.5	Sequence 7	4.0	4.0	47.0	44.3	2.7	3.9	3.7	0.2	0.00338	0.00042	8,662
nce 9 4.0 8.0 90.4 85.4 5.0 7.5 7.1 0.4 nce 10 4.0 10.0 112.3 104.8 7.5 9.3 8.6 0.6 nce 11 2.0 2.0 25.2 22.5 2.7 2.1 1.9 0.2 nce 11 2.0 2.0 25.2 22.5 2.7 3.9 3.7 0.2 nce 12 2.0 4.0 47.0 44.3 2.7 3.9 3.7 0.2 nce 13 2.0 6.0 68.1 65.4 2.7 3.9 3.7 0.2 nce 14 2.0 8.0 89.9 85.8 4.1 7.4 7.1 0.3 nce 15 2.0 10.0 111.6 105.1 6.6 9.2 8.7 0.5	Sequence 8	4.0	6.0	68.1	65.4	2.7	5.6	5.4	0.2	0.00546	0.00068	7,922
(ce 10 4.0 10.0 112.3 104.8 7.5 9.3 8.6 0.6 (ce 11 2.0 2.0 2.52 22.5 2.7 2.1 1.9 0.2 (ce 12 2.0 4.0 47.0 44.3 2.7 3.9 3.7 0.2 (ce 12 2.0 6.0 68.1 65.4 2.7 3.9 3.7 0.2 (ce 13 2.0 8.0 89.9 85.8 4.1 7.4 7.1 0.3 (ce 14 2.0 10.0 111.6 105.1 6.6 9.2 8.7 0.5	Sequence 9	4.0	8.0	90.4	85.4	5.0	7.5	7.1	0.4	0.00790	0.00099	7,155
Ice 11 2.0 2.0 2.5.2 22.5 2.7 2.1 1.9 0.2 Ice 12 2.0 4.0 47.0 44.3 2.7 3.9 3.7 0.2 Ice 12 2.0 6.0 68.1 65.4 2.7 3.9 3.7 0.2 Ice 13 2.0 8.0 68.9 85.8 4.1 7.4 7.1 0.3 Ice 14 2.0 10.0 111.6 105.1 6.6 9.2 8.7 0.5	Sequence 10	4.0	10.0	112.3	104.8	7.5	9.3	8.6	0.6	0.01083	0.00135	6,403
ce 12 2.0 4.0 47.0 44.3 2.7 3.9 3.7 0.2 ce 13 2.0 6.0 68.1 65.4 2.7 5.6 5.4 0.2 ce 14 2.0 8.0 89.9 85.8 4.1 7.4 7.1 0.3 ce 15 2.0 10.0 111.6 105.1 6.6 9.2 8.7 0.5	Sequence 11	2.0	2.0	25.2	22.5	2.7	2.1	1.9	0.2	0.00173	0.00022	8,587
Ice 13 2.0 6.0 68.1 65.4 2.7 5.6 5.4 0.2 Ice 14 2.0 8.0 89.9 85.8 4.1 7.4 7.1 0.3 Ice 15 2.0 10.0 111.6 105.1 6.6 9.2 8.7 0.5	Sequence 12	2.0	4.0	47.0	44.3	2.7	3.9	3.7	0.2	0.00358	0.00045	8,187
Ice 14 2.0 8.0 89.9 85.8 4.1 7.4 7.1 0.3 Ice 15 2.0 10.0 111.6 105.1 6.6 9.2 8.7 0.5	Sequence 13	2.0	6.0	68.1	65.4	2.7	5.6	5.4	0.2	0.00572	0.00071	7,560
ce 15 2.0 10.0 111.6 105.1 6.6 9.2 8.7 0.5	Sequence 14	2.0	8.0	89.9	85.8	4.1	7.4	7.1	0.3	0.00813	0.00101	6,988
	Sequence 15	2.0	10.0	111.6	105.1	9.9	9.2	8.7	0.5	0.01095	0.00137	6,349
DALE	TESTED BY	GW			DATE N	May 8, 2019						

May 8, 2019

GW

REVIEWED BY


DATE DATE

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS RECOMPACTED / THINWALL TUBE SAMPLES

Job No.	020629	Material Code SSRVPS
Date Sampled:	4/10/19	Station No.: LM 6.10
Date Tested:	May 8, 2019	Location: 15'LT
Name of Project:	HWY. 65 - YELLOW BEND PORT (S)	
County:	Code: 9 Name: CHICOT	
Sampled By:	FRAZIER / BATES / JORDAN	Depth: 0-5
Lab No.:	20191103	AASHTO Class: A-7-6 (38)
Sample ID:	RV 203	Material Type (1 or 2): 2
LATITUDE:		LONGITUDE:

 $M_{R} = K1 (S_{C})^{K2} (S_{3})^{K5}$

K1 =	10,289
K2 =	-0.23052
K5 =	0.05616
$R^2 =$	0.85

ARKANSAS DEPARTMENT OF TRANSPORTATION

ARDOT.gov | IDriveArkansas.com | Scott E. Bennett, P.E., Director

MATERIALS DIVISION

11301 West Baseline Road | P.O. Box 2261 | Little Rock, AR 72203-2261 | Phone: 501.569.2185 | Fax: 501.569.2368

May 15, 2019

TO: Mr. Trinity Smith, Engineer of Roadway Design

SUBJECT: Job No. 020629 Hwy. 65 – Yellow Bend Port (S) Route 35 Sections 9, 10 & 11 Chicot and Desha Counties

Attached is the requested Soil Survey, strength data and Resilient Modulus test results for the above referenced job. The project consists of reconstructing approximately 9.5 miles of Highway 35. Samples were obtained in the existing travel lanes and ditch line. The shoulders were not paved within the project limits

Laboratory results indicate the subgrade soils consist primarily of highly plastic clay with some sand. The subgrade soils may not provide a stable working platform with conventional processing. Stabilization with lime is the most appropriate remediation technique. It is recommended the the addition of 8% lime (by dry weight) mixed to a depth of 16 inches be used for estimation purposes. If the Engineer determines that stabilization is necessary, field trial or local experience may dictate that a stable working platform can be achieved at a lower lime content.

Listed below is the additional information requested for use in developing the plans:

- 1. The Qualified Products List (QPL) indicates that Aggregate Base Course (Class CL-7) is available from commercial producers located at the river port of Yellow Bend.
- 2. Asphalt Concrete Hot Mix

Туре	Asphalt Cement %	Mineral Aggregate %
Surface Course	5.2	94.8
Binder Course	4.2	95.8
Base Course	3.5	96.5

Michael C. Benson

Materials Engineer

MCB:pt:bjj Attachment cc: State Constr. Eng. – Master File Copy District 2 Engineer System Information and Research Div. G. C. File ARKANSAS STATE HIGHWAY AND TRANSPORTATION DEPARTMENT - LITTLE ROCK, ARKANSAS MATERIALS DIVISION MICHAEL BENSON, MATERIALS ENGINEER *** SOIL SURVEY STRENGTH TEST REPORT ***

DATE - 05/13/2019		SEQUENCE NO.	- 1
JOB NUMBER - 020629		MATERIAL CODE	- SSRV
		SPEC. YEAR	- 2014
		SUPPLIER ID.	- 1
		COUNTY/STATE	- 21
		DISTRICT NO.	- 02
JOB NAME - HWY. 65 - YEL	LLOW BEND PORT(S)		
* * * * * * * * * * * * * * * * * * * *	****	* * * * * * * * * * * * * * *	* * * * * * * * * * * * *
* STATI	ON LIMITS R-VAL	UE AT 240 psi	*
* * * * * * * * * * * * * * * * * * * *	****	* * * * * * * * * * * * * * * *	* * * * * * * * * * * * *
BEGIN J	JOB – END JOB LES	s than 5	
RESILIE	ENT MODULUS		
STA. LM	1 0.20 690	7	
STA. LM	1 0.55 748	3	
STA. LM	1 1.70 775	8	
STA. LM	1 2.02 637	7	
STA. LM	1 2.95 614	8	

REMARKS -

-

AASHTO TESTS : T190

ARKANSAS STATE HIGHWAY AND TRANSPORTATION DEPARTMENT - LITTLE ROCK, ARKANSAS MATERIALS DIVISION MICHAEL BENSON, MATERIALS ENGINEER *** SOIL SURVEY STRENGTH TEST REPORT ***

SEQUENCE NO 2
MATERIAL CODE - SSRV
SPEC. YEAR - 2014
SUPPLIER ID 1
COUNTY/STATE - 21
DISTRICT NO 02
S)
* * * * * * * * * * * * * * * * * * * *
R-VALUE AT 240 psi *
* * * * * * * * * * * * * * * * * * * *
7309
5636

STA. LM 5.35 STA. LM 6.10 8417

6200

REMARKS -

AASHTO TESTS : T190

-

	HWAY AND TRANSPORTATI MATERIALS	DIVISION		ROCK, ARKANSAS
	AICHAEL BENSON, MATER DIL SURVEY / PAVEMENT			< *
DATE - 05/13/1 JOB NUMBER - 020629 FEDERAL AID NO TO BE A PURPOSE - SOIL SU SPEC. REMARKS - NO SPEC SUPPLIER NAME - STATE NAME OF PROJECT - HWY. PROJECT ENGINEER - NOT A PIT/QUARRY - ARKANSAS	ASSIGNED PRVEY SAMPLE CIFICATION CHECK 65 - YELLOW BEND PORT	F(S)	SPEC. YEA SUPPLIER COUNTY/ST	CODE - RV R - 2014 ID 1
LOCATION - DESHA, CO SAMPLED BY - FAULKNER/H SAMPLE FROM - TEST HOLE MATERIAL DESC SOIL SU	BATES	VALUE ACTUAL	DATE RECE DATE TESI	PLED - 04/10/19 CIVED - 04/15/19 CED - 05/13/19
LAB NUMBER SAMPLE ID TEST STATUS STATION LOCATION DEPTH IN FEET	 20191095 RV195 INFORMATION ONLY LM 0.20 15 RT 0-5 BROWN 	- RV196	– N ONLY –	20191097 RV197 INFORMATION ONLY LM 1.70 15 RT 0-5 BROWN
MAT'L COLOR MAT'L TYPE LATITUDE DEG-MIN-SEC LONGITUDE DEG-MIN-SEC	- - 33 32 3.20	- - 33 32 3	- - 11.10 - 4.60	33 32 9.30 91 19 16.50
<pre>% PASSING 2 IN. 1 1/2 IN. 3/4 IN. 3/8 IN. NO. 4 NO. 10 NO. 40 NO. 80 NO. 200</pre>	- - - 100	- - 100 - 98 - 93 - 88 - 80 - 76 72		100 98 92 89 83
LIQUID LIMIT PLASTICITY INDEX AASHTO SOIL UNIFIED SOIL % MOISTURE CONTENT	- 89 - 61 - A-7-6(70) -	- 41 - 23 - A-7-6(15) -		ND NP A-4 (0)
	-	- - - - -		
	-	-	-	
REMARKS - W=MULTIPLE LA - *CHICOT COUNT - - -	Hanney and Sanatana Sanatana and Sanatana Sanatana Sanatana Sanatana Sanatana Sanatana Sanatana Sanatana Sanata			
AASHTO TESTS : T24 T88 T89 T90 :	T265			

ARKANSAS STATE HIG	HWAY AND TRANSPORTATI MATERIALS 1	ON DEPARTMENT - 1 DIVISION	LITTLE ROCK, ARKANSAS
	MICHAEL BENSON, MATER DIL SURVEY / PAVEMENT		CPORT ***
DATE - 05/13/3 JOB NUMBER - 020629 FEDERAL AID NO TO BE A PURPOSE - SOIL SU SPEC. REMARKS - NO SPEC SUPPLIER NAME - STATE NAME OF PROJECT - HWY. PROJECT ENGINEER - NOT A PIT/QUARRY - ARKANSAS	ASSIGNED JRVEY SAMPLE CIFICATION CHECK 65 - YELLOW BEND POR APPLICABLE	MA SP SU CO DI T(S)	QUENCE NO 2 TERIAL CODE - RV EC. YEAR - 2014 PPLIER ID 1 UNTY/STATE - 21 STRICT NO 02
LOCATION - DESHA, CO SAMPLED BY - FAULKNER/ SAMPLE FROM - TEST HOLM MATERIAL DESC SOIL S	BATES E	DF DF	ATE SAMPLED - 04/10/19 ATE RECEIVED - 04/15/19 ATE TESTED - 05/13/19 SULTS
LAB NUMBER SAMPLE ID TEST STATUS STATION LOCATION DEPTH IN FEET	- INFORMATION ONLY	- RV199	- 20191100 - RV200 ONLY - INFORMATION ONLY - LM 3.70 - 15 RT - 0-5
MAT'L COLOR MAT'L TYPE	- 0-5 - BROWN -	_ U-5 _ BROWN	_ 0-5 _ BROWN _
LATITUDE DEG-MIN-SEC LONGITUDE DEG-MIN-SEC		- 33 32 15. 91 17 59.	
<pre>% PASSING 2 IN. 1 1/2 IN. 3/4 IN. 3/8 IN. NO. 4 NO. 10 NO. 40 NO. 80 NO. 200 LIQUID LIMIT PLASTICITY INDEX AASHTO SOIL UNIFIED SOIL % MOISTURE CONTENT</pre>	- - - 100 -	- - - - - - - - - - - - - -	- 100 99 96 94 90 88 87 62 43 A-7-6(40) -
	-	-	-
REMARKS - W=MULTIPLE LA - *CHICOT COUN - - AASHTO TESTS : T24 T88 T89 T90 :	ГҮ	×	

ARKANSAS STATE HI	GHWAY AND TRANSPORTATI MATERIALS MICHAEL BENSON, MATER	DIVISION	TLE ROCK, ARKANSAS
*** 5	SOIL SURVEY / PAVEMENT		RT ***
DATE - 05/13/ JOB NUMBER - 020629 FEDERAL AID NO TO BE PURPOSE - SOIL S SPEC. REMARKS - NO SPE SUPPLIER NAME - STATE NAME OF PROJECT - HWY. PROJECT ENGINEER - NOT PIT/QUARRY - ARKANSAS	9 ASSIGNED SURVEY SAMPLE ECIFICATION CHECK . 65 - YELLOW BEND POR APPLICABLE	MATEI SPEC SUPPI COUN DISTI	ENCE NO 3 RIAL CODE - RV YEAR - 2014 LIER ID 1 TY/STATE - 21 RICT NO 02
LOCATION – DESHA, C SAMPLED BY – FAULKNER, SAMPLE FROM – TEST HOI MATERIAL DESC. – SOIL S	/BATES LE	DATE DATE	SAMPLED - 04/10/19 RECEIVED - 04/15/19 TESTED - 05/13/19 TS
LAB NUMBER SAMPLE ID TEST STATUS STATION LOCATION DEPTH IN FEET MAT'L COLOR MAT'L TYPE	- RV201	- LM 5.35* - 15 RT - 0-5 _ BROWN -	- 20191103 - RV203 Y - INFORMATION ONLY - LM 6.10* - 15 LT - 0-5 - BROWN - - 33 32 2.50
LONGITUDE DEG-MIN-SEC		- 33 32 2.90 91 21 50.40	- 33 52 2.50 91 21 3.80
1 1/2 IN 3/4 IN 3/8 IN NO. 4 NO. 10 NO. 40	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	- 100 99 25 4 A-4(3) -	- - - - - - - - - - - - - -
REMARKS - W=MULTIPLE I - *CHICOT COUN - - AASHTO TESTS : T24 T88 T89 T9 :	NTY		

ARKANSAS STATE HIGHWAY AND TRANSPORTATIO MATERIALS I	DIVISION
MICHAEL BENSON, MATER: *** SOIL SURVEY / PAVEMENT	
DATE - 05/13/19 JOB NUMBER - 020629 FEDERAL AID NO TO BE ASSIGNED PURPOSE - SOIL SURVEY SAMPLE SPEC. REMARKS - NO SPECIFICATION CHECK SUPPLIER NAME - STATE NAME OF PROJECT - HWY. 65 - YELLOW BEND PORT PROJECT ENGINEER - NOT APPLICABLE PIT/QUARRY - ARKANSAS	SEQUENCE NO 1 MATERIAL CODE - SSRVPS SPEC. YEAR - 2014 SUPPLIER ID 1 COUNTY/STATE - 21 DISTRICT NO 02
LOCATION – DESHA, COUNTY SAMPLED BY – FAULKNER/BATES SAMPLE FROM – TEST HOLE MATERIAL DESC. – SOIL SURVEY – R VALUE– PAVI	DATE SAMPLED - 04/10/19 DATE RECEIVED - 04/15/19 DATE TESTED - 05/13/19 EMENT SOUNDINGS
SAMPLE ID - S125	- 20191026 - 20191027 - S126 - S127 - INFORMATION ONLY - INFORMATION ONLY - LM 0.20 - LM 0.30* - 15 RT - 05 RT - 0-5 - 0-5 - BROWN - BR/GR
LATITUDE DEG-MIN-SEC - 33 32 3.30 LONGITUDE DEG-MIN-SEC - 91 20 49.80	- 33 32 3.20 - 33 32 13.00 91 20 49.80 91 14 20.00
<pre>% PASSING 2 IN 1 1/2 IN 3/4 IN 3/8 IN NO. 4 - 100 NO. 10 - NO. 40 - NO. 80 - NO. 80 - NO. 200 - 94</pre>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
LIQUID LIMIT - 60 PLASTICITY INDEX - 43 AASHTO SOIL - A-7-6(44) UNIFIED SOIL -	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
<pre>% MOISTURE CONTENT - 43.3 ACHMSC (IN) - 9.0WX</pre>	- 24.1 33.3 8.5WX
PCCP (IN) - 4.0 GG BASE CRS CL-7 (IN) -	3.0

REMARKS - W=MULTIPLE LAYERS, X=STRIPPED

-

- *=CHICOT COUNTY

AASHTO TESTS : T24 T88 T89 T90 T265

:

ARKANSAS STATE HIGHWAY AND TRANSPORTATION DEPARTMENT - LITTLE ROCK, ARKANSAS MATERIALS DIVISION			
MATERIALS DIVISION MICHAEL BENSON, MATERIALS ENGINEER *** SOIL SURVEY / PAVEMENT SOUNDING TEST REPORT ***			
DATE - 05/13/19 JOB NUMBER - 020629 FEDERAL AID NO TO BE ASSIGNED PURPOSE - SOIL SURVEY SAMPLE SPEC. REMARKS - NO SPECIFICATION CHECK SUPPLIER NAME - STATE NAME OF PROJECT - HWY. 65 - YELLOW BEND PORT	SEQUENCE NO 2 MATERIAL CODE - SSRVPS SPEC. YEAR - 2014 SUPPLIER ID 1 COUNTY/STATE - 21 DISTRICT NO 02		
PROJECT ENGINEER - NOT APPLICABLE PIT/QUARRY - ARKANSAS LOCATION - DESHA, COUNTY SAMPLED BY - FAULKNER/BATES SAMPLE FROM - TEST HOLE MATERIAL DESC SOIL SURVEY - R VALUE- PAVI	DATE SAMPLED - 04/10/19 DATE RECEIVED - 04/15/19 DATE TESTED - 05/13/19 EMENT SOUNDINGS		
SAMPLE ID - S128			
% PASSING 2 IN 1 1/2 IN 3/4 IN NO. 4 - 100 NO. 10 - NO. 40 - NO. 80 - NO. 200 - 98			
LIQUID LIMIT - 60 PLASTICITY INDEX - 35 AASHTO SOIL - A-7-6(40) UNIFIED SOIL - % MOISTURE CONTENT - 36.7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
ACHM SC (IN) - - - - - - - - - - - - - - - -	- 19.0WX		
REMARKS - W=MULTIPLE LAYERS, X=STRIPPED - *CHICOT COUNTY - - AASHTO TESTS : T24 T88 T89 T90 T265 :			

ARKANSAS STATE	HIGHWAY	AND TRANSPORTATI MATERIALS			- LITI	ΊLΕ	ROCK, ARKANSAS
**		IAEL BENSON, MATER SURVEY / PAVEMENT				т *	* *
DATE - 05/ JOB NUMBER - 020 FEDERAL AID NO TO PURPOSE - SOI SPEC. REMARKS - NO SUPPLIER NAME - STA NAME OF PROJECT - H PROJECT ENGINEER - N PIT/QUARRY - ARKAN	629 BE ASSI L SURVE SPECIFI TE WY. 65 OT APPL	Y SAMPLE CATION CHECK - YELLOW BEND POR	T (S		MATERI SPEC. SUPPLI COUNTY	IAL YEA IER (/S)	NO 3 CODE - SSRVPS AR - 2014 ID 1 PATE - 21 NO 02
LOCATION – DESHA SAMPLED BY – FAULKN SAMPLE FROM – TEST MATERIAL DESC. – SOI	ER/BATE HOLE	S	'EME	ENT SOUNDIN	DATE DATE	RECI	PLED - 04/10/19 EIVED - 04/15/19 TED - 05/13/19
LAB NUMBER SAMPLE ID TEST STATUS STATION LOCATION DEPTH IN FEET MAT'L COLOR MAT'L TYPE LATITUDE DEG-MIN-: LONGITUDE DEG-MIN-:	- - - - SEC -	LM 0.55* 05 LT 0-5 BROWN 33 32 11.00		S132	11.10		20191033 S133 INFORMATION ONLY LM 0.70 05 RT 0-5 BR/GR 33 32 5.50 91 20 18.80
% PASSING 2 1 1/2 3/4 3/8	IN IN IN 4 - 10 - 40 - 80 -	100 97		100 98 95 94 91 90 86			100 98 96 93 85 80 78
LIQUID LIMIT PLASTICITY INDEX AASHTO SOIL UNIFIED SOIL % MOISTURE CONTENT		63 41 A-7-6(45) 29.4		38 20 A-6(17) 21.5			74 47 A-7-6(39) 54.0
	(IN) -						15.0WX 4.0
REMARKS - W=MULTIPL - *CHICOT C - - AASHTO TESTS : T24 T88 T89 :	OUNTY		_				

	WAY AND TRANSPORTATION DEPARTME MATERIALS DIVISION ICHAEL BENSON, MATERIALS ENGINE	
	IL SURVEY / PAVEMENT SOUNDING TH	
DATE - 05/13/1 JOB NUMBER - 020629 FEDERAL AID NO TO BE A PURPOSE - SOIL SU SPEC. REMARKS - NO SPEC SUPPLIER NAME - STATE NAME OF PROJECT - HWY. PROJECT ENGINEER - NOT A PIT/QUARRY - ARKANSAS	SSIGNED RVEY SAMPLE IFICATION CHECK 65 - YELLOW BEND PORT(S)	SEQUENCE NO 4 MATERIAL CODE - SSRVP. SPEC. YEAR - 2014 SUPPLIER ID 1 COUNTY/STATE - 21 DISTRICT NO 02
LOCATION – DESHA, CO SAMPLED BY – FAULKNER/E SAMPLE FROM – TEST HOLE		DATE SAMPLED - 04/10 DATE RECEIVED - 04/15 DATE TESTED - 05/13 INGS
LAB NUMBER SAMPLE ID TEST STATUS STATION LOCATION DEPTH IN FEET MAT'L COLOR MAT'L TYPE	- 20191034 - 20191035 - S134 - S135 - INFORMATION ONLY - INFORMAT - LM 0.70 - LM 0.807 - 15 RT - 05 RT - 0-5 - 0-5 - BROWN - BR/GR 	- S136 FION ONLY - INFORMATION O
LATITUDE DEG-MIN-SEC LONGITUDE DEG-MIN-SEC		2 19.90 - 33 32 20. 3 56.80 91 13 56.
<pre>% PASSING 2 IN. 1 1/2 IN. 3/4 IN. 3/8 IN. NO. 4 NO. 10 NO. 40 NO. 80 NO. 200</pre>	- 100 - 100 - 100 - 100 - 100	- - - - - - - - - - - - - - - - - - -
LIQUID LIMIT PLASTICITY INDEX AASHTO SOIL UNIFIED SOIL	- 90 - 60 - 57 - 39 - A-7-5(66) - A-7-6(4 	- 59 - 38 43 - A-7-6(39) -
% MOISTURE CONTENT ACHM SC (IN) AGG.BASE CRS.CL-7 (IN)	6.0W	- 33.1 -
REMARKS - W=MULTIPLE LA - *CHICOT COUNT - - -		_

ARKANSAS STATE		MAT	ERIALS I	DIV	ISION		LE	ROCK, ARKANSAS
*:					S ENGINEER UNDING TEST		r *	* *
DATE – 05, JOB NUMBER – 020 FEDERAL AID NO. – TO PURPOSE – SO SPEC. REMARKS – NO SUPPLIER NAME – STA NAME OF PROJECT – I PROJECT ENGINEER – I PIT/QUARRY – ARKAN	BE ASSI EL SURVE SPECIFI ATE HWY. 65 NOT APPL	Y SAMPLE CATION CHE - YELLOW BI	CK	- (S)	MATERI SPEC. SUPPLI COUNTY	AL YEA ER	NO 5 CODE - SSRVPS AR - 2014 ID 1 FATE - 21 NO 02
LOCATION – DESHA SAMPLED BY – FAULK SAMPLE FROM – TEST MATERIAL DESC. – SO	NER/BATE HOLE	S	UE- PAV	EME	NT SOUNDING	DATE I DATE 7	REC	PLED - 04/10/19 EIVED - 04/15/19 TED - 05/13/19
LAB NUMBER SAMPLE ID TEST STATUS STATION LOCATION DEPTH IN FEET MAT'L COLOR MAT'L TYPE		LM 0.95 15 LT 0-5			S138	N ONLY	-	20191039 S139 INFORMATION ONL LM 1.05* 15 LT 0-5 BR/GR
LATITUDE DEG-MIN- LONGITUDE DEG-MIN-				-	33 32 3 91 14		-	33 32 31.30 91 14 4.90
3/4 3/8 NO. NO. NO. NO.	IN IN IN 4 - 10 -	100 82 72 63 46 35 28			100 97			100 98 96 94 91 90 89
LIQUID LIMIT PLASTICITY INDEX AASHTO SOIL UNIFIED SOIL		30 16 A-2-6(0)			54 31 A-7-6(34)			54 34 A-7-6(32)
% MOISTURE CONTENT ACHM SC AGG.BASE CRS.CL-7	(IN) -				27.1 4.25W 5.0			28.6
	- - -			1 1 1			-	
REMARKS - W=MULTIP: - *CHICOT (- - AASHTO TESTS : T24 T88 T8	COUNTY		PED					

	HWAY AND TRANSPORTATIO MATERIALS I MICHAEL BENSON, MATERI	DIVISION		, ARKANSAS
	DIL SURVEY / PAVEMENT			
DATE - 05/13/1 JOB NUMBER - 020629 FEDERAL AID NO TO BE A PURPOSE - SOIL SU SPEC. REMARKS - NO SPEC SUPPLIER NAME - STATE NAME OF PROJECT - HWY. PROJECT ENGINEER - NOT A PIT/QUARRY - ARKANSAS LOCATION - DESHA, CO	SSIGNED RVEY SAMPLE IFICATION CHECK 65 - YELLOW BEND PORT PPLICABLE	Γ(S)	SEQUENCE NO. MATERIAL CODE SPEC. YEAR SUPPLIER ID. COUNTY/STATE DISTRICT NO.	E - SSRVPS - 2014 - 1 - 21 - 02 - 04/10/19
SAMPLED BY - FAULKNER/E SAMPLE FROM - TEST HOLE			DATE RECEIVE DATE TESTED	
MATERIAL DESC SOIL SU	JRVEY - R VALUE- PAVI	EMENT SOUNDIN	GS	
LAB NUMBER SAMPLE ID TEST STATUS STATION LOCATION DEPTH IN FEET MAT'L COLOR		- S141	- 201 - S14 DN ONLY - INF - LM - 05 - 0-5 - BR/	2 ORMATION ONLY 1.30* RT
MAT'L TYPE	-	_	_	
LATITUDE DEG-MIN-SEC LONGITUDE DEG-MIN-SEC		- 33 32 91 19		3 32 42.60 1 14 12.50
<pre>% PASSING 2 IN. 1 1/2 IN. 3/4 IN. 3/8 IN. NO. 4 NO. 10 NO. 40 NO. 80 NO. 200</pre>	- - - 100 -	- - - - - - - - - - - - - 91	- - - - - - 9	
LIQUID LIMIT PLASTICITY INDEX AASHTO SOIL UNIFIED SOIL	- 27 - 5 - A-4(4)	- ND - NP - A-4(0)	- 38 - 22 - A-	
% MOISTURE CONTENT	- 27.5	- 23.2	_	26.2
ACHM SC (IN) AGG.BASE CRS.CL-7 (IN)		 -		8.0WX .0
	-	-	_	
	-	-	_	
	-	-	-	
REMARKS - W=MULTIPLE LA - *CHICOT COUNT - - -	Ϋ́Υ			
AASHTO TESTS : T24 T88 T89 T90 :	T265			

ARKANSAS STATE HI	GHWAY AND TRANSPORTATI MATERIALS I MICHAEL BENSON, MATER	DIVISION		OCK, ARKANSAS
***	SOIL SURVEY / PAVEMENT			
SPEC. REMARKS - NO SPI SUPPLIER NAME - STATE NAME OF PROJECT - HWY PROJECT ENGINEER - NOT PIT/QUARRY - ARKANSAS LOCATION - DESHA, O SAMPLED BY - FAULKNER SAMPLE FROM - TEST HO	9 ASSIGNED SURVEY SAMPLE ECIFICATION CHECK . 65 - YELLOW BEND POR APPLICABLE S COUNTY /BATES LE		SPEC. YEAR SUPPLIER II COUNTY/STAT DISTRICT NO DATE SAMPL DATE RECEI DATE TESTE	DDE – SSRVPS – 2014 D. – 1 TE – 21
MATERIAL DESC SOIL				
LAB NUMBER SAMPLE ID TEST STATUS STATION LOCATION DEPTH IN FEET MAT'L COLOR MAT'L TYPE	- 20191043 - S143 - INFORMATION ONLY - LM 1.30* - 15 RT - 0-5 - BR/GR	- 20191044 - S144 - INFORMATIC - LM 1.45 - 05 LT - 0-5 - BROWN	- S N ONLY - I - L - 1 - 0	145
	C - 33 32 42.70 C - 91 14 12.40		- 8.30 - 32.00	33 32 8.40 91 19 32.00
<pre>% PASSING 2 IN 1 1/2 IN 3/4 IN 3/8 IN NO. 4 NO. 10 NO. 40 NO. 80 NO. 200</pre>	N. – N. – 4 – 100 0 – 0 –	- - - - - - - - - - - - - 92		100 88 81 77 72 68 64
LIQUID LIMIT PLASTICITY INDEX AASHTO SOIL UNIFIED SOIL	- 50 - 33 - A-7-6(35) - 26.6	- ND - NP - A-4(0) - 22.2	-	ND NP A-4(0) 24.8
ACHM SC (I	N) N) - - - - - - - - - - - - - - - -	- 10.0WX - 4.0 	-	
REMARKS - W=MULTIPLE - *CHICOT COU - - AASHTO TESTS : T24 T88 T89 T :	NTY			

ARKANSAS STATE		MAT	'ERIALS I	DIV		- LITT	LE	ROCK, ARF	ANSAS
**					UNDING TEST	REPOR	Г *	* *	
DATE - 05/ JOB NUMBER - 020 FEDERAL AID NO TO PURPOSE - SOI SPEC. REMARKS - NO SUPPLIER NAME - STA NAME OF PROJECT - H PROJECT ENGINEER - N PIT/QUARRY - ARKAN LOCATION - DESHA	629 3E ASSIG SURVEY SPECIFIC FE WY. 65 - DT APPLI SAS	SAMPLE ATION CHE YELLOW B CABLE	СК	[(S)	MATERI SPEC. SUPPLI COUNTY DISTRI	AL YEA ER /ST CT	NO 8 CODE - S NR - 2 ID 1 PATE - 2 NO 0	SRVPS 014 1 2
SAMPLED BY - FAULKN								PLED - 0 EIVED - 0	and a second a processor
SAMPLE FROM - TEST MATERIAL DESC SOI		– R VAI	JIE- PAVI	EME	NT SOUNDING		rest	red - 0	5/13/19
LAB NUMBER SAMPLE ID TEST STATUS STATION LOCATION DEPTH IN FEET MAT'L COLOR	- : - : - : - (- (20191046 S146		-	20191047		-	S148	
MAT'L TYPE LATITUDE DEG-MIN-S LONGITUDE DEG-MIN-S				-	33 32 5 91 14 2	53.70 20.60	-		9.50 16.50
3/8 NO. NO. NO. NO.	IN IN IN IN 4 - 10 - 40 - 80 - 200 -	100 98			100 97			100 98 98 97 97 88	
LIQUID LIMIT PLASTICITY INDEX AASHTO SOIL UNIFIED SOIL	-	39 21 A-6(21)			48 29 A-7-6(30)			ND NP A-4 (0)	
	- (IN) - - - - - - - - - - - - - - - - - - -	24.2 5.5W 4.0			29.4			21.6 6.5WX 3.0	
REMARKS - W=MULTIPL - *CHICOT C - - AASHTO TESTS : T24 T88 T89 :	DUNTY	, X=STRIE	PED						

MICHAEL BENSON, MATERIALS ENGINEER *** SOIL SURVEY / PAVEMENT SOUNDING TEST REPORT *** DATE - 05/13/19 SEQUENCE NO 9 JOB NUMBER - 020629 MATERIAL CODE - SSRVPS FEDERAL AID NO TO BE ASSIGNED SPEC. YEAR - 2014 PURPOSE - SOIL SURVEY SAMPLE SUPPLIER ID 1 SPEC. REMARKS - NO SPECIFICATION CHECK COUNTY/STATE - 21 SUPPLIER NAME - STATE DISTRICT NO 02 NAME OF PROJECT - HWY. 65 - YELLOW BEND PORT(S) PROJECT ENGINEER - NOT APPLICABLE PIT/QUARRY - ARKANSAS LOCATION - DESHA, COUNTY DATE SAMPLED - 04/10/19 SAMPLED BY - FAULKNER/BATES DATE RECEIVED - 04/15/19 SAMPLE FROM - TEST HOLE DATE TESTED - 05/13/19 MATERIAL DESC SOIL SURVEY - R VALUE- PAVEMENT SOUNDINGS LAB NUMBER - 20191049 - 20191050 - 20191051 SAMPLE ID - S149 - S150 - S151 TEST STATUS - INFORMATION ONLY - INFORMATION ONLY STATION - LM 1.70 - LM 1.80* - LM 1.80*
JOB NUMBER- 020629MATERIAL CODE - SSRVPSFEDERAL AID NOTO BE ASSIGNEDSPEC. YEAR- 2014PURPOSE- SOIL SURVEY SAMPLESUPPLIER ID 1SPEC. REMARKS - NO SPECIFICATION CHECKCOUNTY/STATE - 21SUPPLIER NAME - STATEDISTRICT NO 02NAME OF PROJECT - HWY. 65 - YELLOW BEND PORT(S)PROJECT ENGINEER - NOT APPLICABLEPIT/QUARRY - ARKANSASLOCATION - DESHA, COUNTYDATE SAMPLED - 04/10/19SAMPLED BY - FAULKNER/BATESDATE RECEIVED - 04/15/19SAMPLE FROM - TEST HOLEDATE TESTED - 05/13/19MATERIAL DESC SOIL SURVEY - R VALUE- PAVEMENT SOUNDINGSLAB NUMBER- 20191049- 20191049- 20191050SAMPLE ID- S149- S150- S151TEST STATUS- INFORMATION ONLY - INFORMATION ONLY - INFORMATION ONLY
LOCATION-DESHA, COUNTYDATESAMPLED-04/10/19SAMPLED BY-FAULKNER/BATESDATERECEIVED-04/15/19SAMPLE FROM-TEST HOLEDATETESTED-05/13/19MATERIAL DESCSOIL SURVEY-R VALUE-PAVEMENT SOUNDINGSLAB NUMBER-20191049-20191050-20191051SAMPLE ID-S149-S150-S151TEST STATUS-INFORMATION ONLY-INFORMATION ONLY-INFORMATION ONLY
LAB NUMBER - 20191049 - 20191050 - 20191051 SAMPLE ID - S149 - S150 - S151 TEST STATUS - INFORMATION ONLY - INFORMATION ONLY - INFORMATION ONLY
STATION $-$ LM 1.70LM 1.80*LM 1.80*LOCATION $-$ 15 RT 05 RT 15 RTDEPTH IN FEET $-$ 0-5 $0-5$ $0-5$ MAT'L COLOR $-$ BROWN BR/GR BR/GR
MAT L COLOR
% PASSING 2 IN - <
LIQUID LIMIT - ND - 54 - 37 PLASTICITY INDEX - NP - 31 - 19 AASHTO SOIL - A-4(0) - A-7-6(35) - A-6(18) UNIFIED SOIL - - - - - -
% MOISTURE CONTENT - 22.7 29.9 28.9
ACHM SC (IN) - - 3.75W - ACHM BC (IN) - - 2.0 - AGG.BASE CRS.CL-7 (IN) - - 4.0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<
REMARKS - W=MULTIPLE LAYERS, X=STRIPPED - *CHICOT COUNTY - -

AASHTO TESTS : T24 T88 T89 T90 T265 :

ARKANSAS STATE HIG	HWAY AND TRANSPORTATION MATERIALS I		- LITTLE ROCK, ARKANSAS
	MICHAEL BENSON, MATER: DIL SURVEY / PAVEMENT		
DATE - 05/13/ JOB NUMBER - 020629 FEDERAL AID NO TO BE PURPOSE - SOIL S SPEC. REMARKS - NO SPE SUPPLIER NAME - STATE NAME OF PROJECT - HWY. PROJECT ENGINEER - NOT PIT/QUARRY - ARKANSAS	ASSIGNED URVEY SAMPLE CIFICATION CHECK 65 - YELLOW BEND PORT APPLICABLE	ſ(S)	SEQUENCE NO 10 MATERIAL CODE - SSRVPS SPEC. YEAR - 2014 SUPPLIER ID 1 COUNTY/STATE - 21 DISTRICT NO 02
LOCATION - DESHA, C SAMPLED BY - FAULKNER/ SAMPLE FROM - TEST HOL MATERIAL DESC SOIL S	BATES E		DATE SAMPLED - 04/10/19 DATE RECEIVED - 04/15/19 DATE TESTED - 05/13/19 GS
LAB NUMBER SAMPLE ID TEST STATUS STATION LOCATION DEPTH IN FEET MAT'L COLOR MAT'L TYPE LATITUDE DEG-MIN-SEC LONGITUDE DEG-MIN-SEC	- LM 1.95 - 05 LT - 0-5 - BROWN - - 33 32 10.70	- S153 - INFORMATIC - LM 1.95 - 15 LT - 0-5 - BROWN -	
% PASSING 2 IN 1 1/2 IN 3/4 IN 3/8 IN NO. 4 NO. 10 NO. 40 NO. 80 NO. 200	 - 100 	- - - - - - - - - - - - - 96	- - - - - - - - - - - - - - - - - - -
LIQUID LIMIT PLASTICITY INDEX AASHTO SOIL UNIFIED SOIL % MOISTURE CONTENT	- 24 - 4 - A-4(2) - 25.2	- 32 - 14 - A-6(13) - 25.9	- 55 - 36 - A-7-6(39) - 29.3
ACHM BC (IN	() - 5.0W) - 1.5) - 4.0 - - - -		- 4.75W - 3.0
REMARKS - W=MULTIPLE I - *CHICOT COUN - - AASHTO TESTS : T24 T88 T89 T9 :	ТҮ		

ARKANSAS STATE HIGHWAY AND TRANSPORTATI MATERIALS	DIVISION
MICHAEL BENSON, MATER *** SOIL SURVEY / PAVEMENT	
DATE - 05/13/19 JOB NUMBER - 020629 FEDERAL AID NO TO BE ASSIGNED PURPOSE - SOIL SURVEY SAMPLE SPEC. REMARKS - NO SPECIFICATION CHECK SUPPLIER NAME - STATE NAME OF PROJECT - HWY. 65 - YELLOW BEND POR PROJECT ENGINEER - NOT APPLICABLE PIT/QUARRY - ARKANSAS	SEQUENCE NO 11 MATERIAL CODE - SSRVPS SPEC. YEAR - 2014 SUPPLIER ID 1 COUNTY/STATE - 21 DISTRICT NO 02
LOCATION – DESHA, COUNTY SAMPLED BY – FAULKNER/BATES SAMPLE FROM – TEST HOLE MATERIAL DESC. – SOIL SURVEY – R VALUE– PAV	DATE SAMPLED - 04/10/01 DATE RECEIVED - 04/15/19 DATE TESTED - 05/13/19 EMENT SOUNDINGS
SAMPLE ID - S155	- 20191056 - 20191057 - S156 - S157 - INFORMATION ONLY - INFORMATION ONLY - LM 2.20 - LM 2.20 - 05 RT - 15 RT - 0-5 - 0-5 - BR/GR - BR/GR
MAT'L TYPE – LATITUDE DEG-MIN-SEC – 33 33 11.20 LONGITUDE DEG-MIN-SEC – 91 14 28.00	
<pre>% PASSING 2 IN 1 1/2 IN 3/4 IN 3/8 IN NO. 4 - 100 NO. 10 - NO. 40 - NO. 80 - NO. 80 - NO. 200 - 91</pre>	
LIQUID LIMIT - 49 PLASTICITY INDEX - 30 AASHTO SOIL - A-7-6(29) UNIFIED SOIL - % MOISTURE CONTENT - 30.0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
ACHM SC (IN) AGG.BASE CRS.CL-7 (IN) 	- 14.0WX - 4.0
REMARKS - W=MULTIPLE LAYERS, X=STRIPPED - *CHICOT COUNTY - - AASHTO TESTS : T24 T88 T89 T90 T265 :	

ARKANSAS STATE HIGHWAY AND TRANSPORTAT MATERIALS MICHAEL BENSON, MATE	DIVISION RIALS ENGINEER
DATE - 05/13/19 JOB NUMBER - 020629 FEDERAL AID NO TO BE ASSIGNED PURPOSE - SOIL SURVEY SAMPLE SPEC. REMARKS - NO SPECIFICATION CHECK SUPPLIER NAME - STATE NAME OF PROJECT - HWY. 65 - YELLOW BEND POP PROJECT ENGINEER - NOT APPLICABLE	F SOUNDING TEST REPORT *** SEQUENCE NO 12 MATERIAL CODE - SSRVPS SPEC. YEAR - 2014 SUPPLIER ID 1 COUNTY/STATE - 21 DISTRICT NO 02 RT(S)
PIT/QUARRY - ARKANSAS LOCATION - DESHA, COUNTY SAMPLED BY - FAULKNER/BATES SAMPLE FROM - TEST HOLE MATERIAL DESC SOIL SURVEY - R VALUE- PA	DATE RECEIVED – 04/15/19 DATE TESTED – 05/13/19
SAMPLE ID - S158	- 20191059 - 20191060 - S159 - S160 - INFORMATION ONLY - INFORMATION ONLY - LM 2.45 - LM 2.70 - 15 LT - 05 RT - 0-5 - 0-5 - BR/GR - BROWN
LATITUDE DEG-MIN-SEC - 33 32 13.20 LONGITUDE DEG-MIN-SEC - 91 18 30.00	- 33 32 13.30 - 33 32 14.30 91 18 30.00 91 18 14.40
<pre>% PASSING 2 IN 1 1/2 IN 3/4 IN 3/8 IN NO. 4 - 100 NO. 10 - NO. 40 - NO. 80 - NO. 200 - 97</pre>	
LIQUID LIMIT - 36 PLASTICITY INDEX - 21 AASHTO SOIL - A-6(20) UNIFIED SOIL - % MOISTURE CONTENT - 23.1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
ACHM SC (IN) - 8.0W ACHM BC (IN) - 2.0 AGG.BASE CRS.CL-7 (IN) - 2.0 	7.0WX 4.0
- - - REMARKS - W=MULTIPLE LAYERS, X=STRIPPED	
- *CHICOT COUNTY - - AASHTO TESTS : T24 T88 T89 T90 T265	
1	

ARKANSAS STATE HIGHWAY AND TRANSPORTATIO MATERIALS D MICHAEL BENSON, MATERI	DIVISION
*** SOIL SURVEY / PAVEMENT	
DATE - 05/13/19 JOB NUMBER - 020629 FEDERAL AID NO TO BE ASSIGNED PURPOSE - SOIL SURVEY SAMPLE SPEC. REMARKS - NO SPECIFICATION CHECK SUPPLIER NAME - STATE NAME OF PROJECT - HWY. 65 - YELLOW BEND PORT PROJECT ENGINEER - NOT APPLICABLE PIT/QUARRY - ARKANSAS	SEQUENCE NO 13 MATERIAL CODE - SSRVPS SPEC. YEAR - 2014 SUPPLIER ID 1 COUNTY/STATE - 21 DISTRICT NO 02
LOCATION – DESHA, COUNTY SAMPLED BY – FAULKNER/BATES SAMPLE FROM – TEST HOLE MATERIAL DESC. – SOIL SURVEY – R VALUE- PAVE	DATE SAMPLED - 04/10/19 DATE RECEIVED - 04/15/19 DATE TESTED - 05/13/19
LAB NUMBER - 20191061 SAMPLE ID - S161	- 20191062 - 20191063 - S162 - S163 - INFORMATION ONLY - INFORMATION ONLY - LM 2.95 - LM 2.95 - 05 LT - 15 LT - 0-5 - 0-5 - BROWN - BROWN
MAT'L TYPE – LATITUDE DEG-MIN-SEC – 33 32 14.20 LONGITUDE DEG-MIN-SEC – 91 18 14.40	
<pre>% PASSING 2 IN 1 1/2 IN 3/4 IN 3/8 IN 100 NO. 4 - 96 NO. 10 - 94 NO. 40 - 88 NO. 80 - 84 NO. 200 - 79</pre>	
LIQUID LIMIT - 23 PLASTICITY INDEX - 3 AASHTO SOIL - A-4(0) UNIFIED SOIL -	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
% MOISTURE CONTENT - 22.4 ACHM SC (IN) - ACHM BC (IN) - AGG.BASE CRS.CL-7 (IN) -	- 23.1 20.1 - 3.5W - 1.0 - 4.0
- - - - - -	
REMARKS - W=MULTIPLE LAYERS, X=STRIPPED - *CHICOT COUNTY - -	

AASHTO TESTS : T24 T88 T89 T90 T265

:

ARKANSAS STATE HIGHWAY AND	MATERIALS DIVISION	
	BENSON, MATERIALS ENGINEER Y / PAVEMENT SOUNDING TES	
DATE - 05/13/19 JOB NUMBER - 020629 FEDERAL AID NO TO BE ASSIGNED PURPOSE - SOIL SURVEY SAM SPEC. REMARKS - NO SPECIFICATIO SUPPLIER NAME - STATE NAME OF PROJECT - HWY. 65 - YEL PROJECT ENGINEER - NOT APPLICABL PIT/QUARRY - ARKANSAS LOCATION - DESHA, COUNTY SAMPLED BY - FAULKNER/BATES	N CHECK LOW BEND PORT(S)	SEQUENCE NO 14 MATERIAL CODE - SSRVPS SPEC. YEAR - 2014 SUPPLIER ID 1 COUNTY/STATE - 21 DISTRICT NO 02 DATE SAMPLED - 04/10/19 DATE RECEIVED - 04/15/19
SAMPLE FROM - TEST HOLE MATERIAL DESC SOIL SURVEY -	R VALUE- DAVEMENT SOUNDIN	DATE TESTED - 05/13/19
LAB NUMBER - 2019 SAMPLE ID - S164	1064 - 20191065 - S165 RMATION ONLY - INFORMATIO .20 - LM 3.20 T - 15 RT - 0-5 N - BROWN -	- 20191066 - S166 DN ONLY - INFORMATION ONLY - LM 3.45 - 05 LT - 0-5 - BROWN
LONGITUDE DEG-MIN-SEC - 91		
<pre>% PASSING 2 IN 1 1/2 IN 3/4 IN 100 3/8 IN 90 NO. 4 - 85 NO. 10 - 81 NO. 40 - 76 NO. 80 - 73 NO. 200 - 66</pre>	_ 97	- - - - - - - - - 94
LIQUID LIMIT - 29 PLASTICITY INDEX - 14 AASHTO SOIL - A-6 UNIFIED SOIL -	- 31 - 13 (7) - A-6(9) -	- 26 - 10 - A-4(8)
% MOISTURE CONTENT - 1		20.3
ACHM SC (IN) - 6. ACHM BC (IN) AGG.BASE CRS.CL-7 (IN) - 4.		- 3.0W - 1.0 - 3.0 -
		- - -
REMARKS - W=MULTIPLE LAYERS, X= - *CHICOT COUNTY - -	STRIPPED	

AASHTO TESTS : T24 T88 T89 T90 T265 :

-

	MATERIALS I		
	MICHAEL BENSON, MATER: DIL SURVEY / PAVEMENT	SOUNDING TEST REPORT ***	
DATE - 05/13/1 JOB NUMBER - 020629 FEDERAL AID NO TO BE A PURPOSE - SOIL SU SPEC. REMARKS - NO SPEC SUPPLIER NAME - STATE NAME OF PROJECT - HWY. PROJECT ENGINEER - NOT A PIT/QUARRY - ARKANSAS LOCATION - DESHA, CO SAMPLED BY - FAULKNER/E	ASSIGNED JRVEY SAMPLE CIFICATION CHECK 65 - YELLOW BEND PORT APPLICABLE DUNTY	DISTRICT NO 02	
SAMPLE FROM - TEST HOLE MATERIAL DESC SOIL SU		DATE TESTED - 05/13/19	
LAB NUMBER SAMPLE ID TEST STATUS STATION LOCATION DEPTH IN FEET MAT'L COLOR MAT'L TYPE	- 20191070 - S170		
LATITUDE DEG-MIN-SEC LONGITUDE DEG-MIN-SEC		- 33 32 20.70 - 33 32 21.70 91 16 56.70 91 16 41.40	
NO. 40 NO. 80 NO. 200	- - 98 - 95 - 91 - 88 - 76	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
LIQUID LIMIT PLASTICITY INDEX AASHTO SOIL UNIFIED SOIL % MOISTURE CONTENT ACHM SC (IN) AGG.BASE CRS.CL-7 (IN)	9.0WX	- 36 - 48 - 18 - 28 - A-6(12) - A-7-6(25) - 36.8 - 31.7 13.0WX - 3.0	
	-		
REMARKS - W=MULTIPLE LA - *CHICOT COUNT - - AASHTO TESTS : T24 T88 T89 T90 :	ΓY		

ARKANSAS STATE HIGHWAY AND TRANSPORTAT MATERIALS	DIVISION
MICHAEL BENSON, MATE *** SOIL SURVEY / PAVEMENT	
DATE - 05/13/19 JOB NUMBER - 020629 FEDERAL AID NO TO BE ASSIGNED PURPOSE - SOIL SURVEY SAMPLE SPEC. REMARKS - NO SPECIFICATION CHECK SUPPLIER NAME - STATE NAME OF PROJECT - HWY. 65 - YELLOW BEND POP PROJECT ENGINEER - NOT APPLICABLE PIT/QUARRY - ARKANSAS	SEQUENCE NO 17 MATERIAL CODE - SSRVPS SPEC. YEAR - 2014 SUPPLIER ID 1 COUNTY/STATE - 21 DISTRICT NO 02
LOCATION – DESHA, COUNTY SAMPLED BY – FAULKNER/BATES SAMPLE FROM – TEST HOLE MATERIAL DESC. – SOIL SURVEY – R VALUE– PA	DATE SAMPLED - 04/10/19 DATE RECEIVED - 04/15/19 DATE TESTED - 05/13/19
LAB NUMBER - 20191073 SAMPLE ID - S173	- 20191074 - 20191075 - S174 - S175 - INFORMATION ONLY - INFORMATION ONLY - LM 4.45 - LM 4.45 - 05 LT - 15 LT - 0-5 - 0-5 _ BROWN _ BROWN
MAT'L TYPE - LATITUDE DEG-MIN-SEC - 33 32 21.70 LONGITUDE DEG-MIN-SEC - 91 16 41.40	33 32 23.10 - 33 32 23.20 91 16 25.90 91 16 26.00
<pre>% PASSING 2 IN 1 1/2 IN 3/4 IN 100 3/8 IN 99 NO. 4 - 98 NO. 10 - 97 NO. 40 - 94 NO. 80 - 91 NO. 200 - 85 LIQUID LIMIT - 43 PLASTICITY INDEX - 29 AASHTO SOIL - % MOISTURE CONTENT - 25.0 ACHM SC (IN) AGG.BASE CRS.CL-7 (IN) </pre>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
REMARKS - W=MULTIPLE LAYERS, X=STRIPPED - *CHICOT COUNTY - - -	
AASHTO TESTS : T24 T88 T89 T90 T265 :	

MAT MICHAEL BENSON	SPORTATION DEPARTMENT - LITTLE ROCK, ARKANSAS TERIALS DIVISION N, MATERIALS ENGINEER
DATE - 05/13/19 JOB NUMBER - 020629 FEDERAL AID NO TO BE ASSIGNED PURPOSE - SOIL SURVEY SAMPLE SPEC. REMARKS - NO SPECIFICATION CHE SUPPLIER NAME - STATE NAME OF PROJECT - HWY. 65 - YELLOW E PROJECT ENGINEER - NOT APPLICABLE PIT/QUARRY - ARKANSAS LOCATION - DESHA, COUNTY	ECK COUNTY/STATE - 21 DISTRICT NO 02
SAMPLED BY – FAULKNER/BATES SAMPLE FROM – TEST HOLE MATERIAL DESC. – SOIL SURVEY – R VAI	DATE RECEIVED - 04/15/19 DATE TESTED - 05/13/19 LUE- PAVEMENT SOUNDINGS
SAMPLE ID - S176	- 20191077 - 20191078 - S177 - S178 TON ONLY - INFORMATION ONLY - INFORMATION ONLY - LM 4.70 - LM 4.95 - 15 RT - 05 LT - 0-5 - 0-5 - BROWN - BROWN
LATITUDE DEG-MIN-SEC - 33 32 LONGITUDE DEG-MIN-SEC - 91 16	
<pre>% PASSING 2 IN 1 1/2 IN 3/4 IN 3/8 IN NO. 4 - 100 NO. 10 - NO. 40 - NO. 80 - NO. 80 - NO. 200 - 98</pre>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
LIQUID LIMIT - 53 PLASTICITY INDEX - 32 AASHTO SOIL - A-7-6(35 UNIFIED SOIL - % MOISTURE CONTENT - 33.2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
ACHM SC (IN) - 7.5WX AGG.BASE CRS.CL-7 (IN) - 4.0 - - - - - - - - - - - - - -	7.0WX 4.0
REMARKS - W=MULTIPLE LAYERS, X=STRIN - *CHICOT COUNTY - - AASHTO TESTS : T24 T88 T89 T90 T265 :	PPED

	HWAY AND TRANSPORTATIO MATERIALS D MICHAEL BENSON, MATERI OIL SURVEY / PAVEMENT	DIVISION IALS ENGINEER	LITTLE ROCK, ARKANSAS REPORT ***
DATE - 05/13/ JOB NUMBER - 020629 FEDERAL AID NO TO BE PURPOSE - SOIL S SPEC. REMARKS - NO SPE SUPPLIER NAME - STATE NAME OF PROJECT - HWY. PROJECT ENGINEER - NOT PIT/QUARRY - ARKANSAS	ASSIGNED URVEY SAMPLE CIFICATION CHECK 65 - YELLOW BEND PORT APPLICABLE	M S S C D	SEQUENCE NO 19 MATERIAL CODE - SSRVPS SPEC. YEAR - 2014 SUPPLIER ID 1 COUNTY/STATE - 21 DISTRICT NO 02
LOCATION – DESHA, C SAMPLED BY – FAULKNER/ SAMPLE FROM – TEST HOL MATERIAL DESC. – SOIL S	BATES E	I I	DATE SAMPLED - 04/10/19 DATE RECEIVED - 04/15/19 DATE TESTED - 05/13/19
LAB NUMBER SAMPLE ID TEST STATUS STATION LOCATION DEPTH IN FEET MAT'L COLOR MAT'L TYPE	- 20191079 - S179 - INFORMATION ONLY - LM 4.95 - 15 LT - 0-5 - BROWN	- S180	- 20191081 - S182 ONLY - INFORMATION ONLY - LM 5.20 - 15 RT - 0-5 - BR/GR
LATITUDE DEG-MIN-SEC LONGITÜDE DEG-MIN-SEC		- - 33 32 24 91 15 39	
1 1/2 IN 3/4 IN 3/8 IN NO. 4	- 100 - 99 - 98 - 96 - 94 - 92	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -
LIQUID LIMIT PLASTICITY INDEX AASHTO SOIL UNIFIED SOIL % MOISTURE CONTENT	- 38 - 21 - A-6(18) - 25.9	- 42 - 22 - A-7-6(22) - 37.8	- 63 - 45 - A-7-6(47) - 32.8
)	- 11.0W - 4.0 -	
REMARKS - W=MULTIPLE I - *CHICOT COUN - - AASHTO TESTS : T24 T88 T89 T9 :	ТҮ	-	-

ARKANSAS STATE HI	GHWAY AND TRANSPORTATI MATERIALS MICHAEL BENSON, MATER	DIVISION	- LITTLE ROCK,	ARKANSAS		
* * *	MICHAEL BENSON, MATERIALS ENGINEER *** SOIL SURVEY / PAVEMENT SOUNDING TEST REPORT ***					
*** SOIL SURVEY / PAVEMENT SOUNDING TEST REPORT ***DATE- 05/13/19SEQUENCE NO 20JOB NUMBER- 020629MATERIAL CODE - SSRVPSFEDERAL AID NOTO BE ASSIGNEDSPEC. YEAR - 2014PURPOSE- SOIL SURVEY SAMPLESUPPLIER ID 1SPEC. REMARKS- NO SPECIFICATION CHECKCOUNTY/STATE - 21SUPPLIER NAME- STATEDISTRICT NO 02NAME OF PROJECT- HWY. 65 - YELLOW BEND PORT(S)DATE SAMPLEDPROJECT ENGINEER - NOT APPLICABLEPIT/QUARRY- ARKANSASLOCATION- DESHA, COUNTYDATE SAMPLED - 04/10/1SAMPLED BY- FAULKNER/BATESDATE RECEIVED - 04/15/1						
SAMPLE FROM - TEST HO MATERIAL DESC SOIL		EMENT SOUNDING	DATE TESTED S	- 05/13/19		
LAB NUMBER SAMPLE ID TEST STATUS STATION LOCATION DEPTH IN FEET MAT'L COLOR		- 20191083 - S183	- 20191 - S184	MATION ONLY 45		
MAT'L TYPE	- C - 33 32 3.00 C - 91 21 50.30	- - 33 32 91 21 5		32 22.20 15 24.10		
1 1/2 IN 3/4 IN 3/8 IN NO. 4 NO. 10 NO. 40	N. – N. – 4 – 100 0 – 0 – 0 –	- - - 100 - 99	- - - - - - - - - - - - - - - 98			
LIQUID LIMIT PLASTICITY INDEX AASHTO SOIL UNIFIED SOIL % MOISTURE CONTENT	- 34 - 16 - A-6(16) - 26.1	- 31 - 13 - A-6(12) - 20.4	-	-6(46) 1.9		
	N) - 9.0WX N) - 6.0 - - - - - -	 	- 7. - 4. - - - - - - - - - -			
REMARKS - W=MULTIPLE : - *CHICOT COU - - AASHTO TESTS : T24 T88 T89 T :	NTY					

	MICHAN	AND TRANSPORTATI MATERIALS I EL BENSON, MATER JRVEY / PAVEMENT	DIVISION IALS ENGINEER		
DATE – 05/ JOB NUMBER – 020 FEDERAL AID NO TO PURPOSE – SOI SPEC. REMARKS – NO SUPPLIER NAME – STA NAME OF PROJECT – H PROJECT ENGINEER – N	13/19 629 BE ASSIGN L SURVEY SPECIFICA FE WY. 65 - OT APPLIC	IED SAMPLE TION CHECK YELLOW BEND PORT		SEQUENCE MATERIAL SPEC. YEA SUPPLIER COUNTY/ST	NO 21 CODE - SSRVPS AR - 2014 ID 1 FATE - 21 NO 02
PIT/QUARRY - ARKAN LOCATION - DESHA SAMPLED BY - FAULKN SAMPLE FROM - TEST MATERIAL DESC SOI	, COUNTY ER/BATES HOLE	- R VALUE- PAV	EMENT SOUNDING	DATE REC DATE TES	PLED - 04/10/19 EIVED - 04/15/19 TED - 05/13/19
LAB NUMBER SAMPLE ID TEST STATUS STATION LOCATION DEPTH IN FEET MAT'L COLOR MAT'L TYPE	- S - I - L - 1 - 0	M 5.45 5 LT -5 R/GR	- S186 - INFORMATIC - LM 5.60* - 15 LT - 0-5 - BROWN -	ON ONLY - - - - - - - - - -	20191087 S187 INFORMATION ONLY LM 5.75 05 RT 0-5 BR/GR
3/8 NO. NO.	SEC - IN IN IN IN		- 33 32 91 21 - 100 - 98 - 93 - 91 - 86	3.00 - 34.40 - - - - -	33 32 19.40 91 15 5.50 100
		89 88 59 38	- 91 83 - 32 - 14	-	97 56 34
AASHTO SOIL UNIFIED SOIL % MOISTURE CONTENT	-	A-7-6(36) 33.3	- A-6(10) - 35.3	- -	A-7-6(37) 30.7
	(IN) - (IN) - - - - - - - - - -		 		9.5WX 4.0
REMARKS - W=MULTIPL - *CHICOT C - - AASHTO TESTS : T24 T88 T85	OUNTY ,	X=STRIPPED	-	_	

MICHAEL BENSON, MATERIALS ENGINEER					
*** SOIL SURVEY / PAVEMENT SOUNDING TEST REPORT ***					
JOB NUMBER - 020629 FEDERAL AID NO TO BE ASSIGNED PURPOSE - SOIL SURVEY SAMPLE SPEC. REMARKS - NO SPECIFICATION CHECK SUPPLIER NAME - STATE NAME OF PROJECT - HWY. 65 - YELLOW BEND PORT(S) PROJECT ENGINEER - NOT APPLICABLE PIT/QUARRY - ARKANSAS LOCATION - DESHA, COUNTY SAMPLED BY - FAULKNER/BATES SAMPLE FROM - TEST HOLE	SEQUENCE NO 22 MATERIAL CODE - SSRVPS SPEC. YEAR - 2014 SUPPLIER ID 1 COUNTY/STATE - 21 DISTRICT NO 02 DATE SAMPLED - 04/10/19 DATE RECEIVED - 04/15/19 DATE TESTED - 05/13/19				
MATERIAL DESCSOIL SURVEY-RVALUE-PAVEMENT SOUNDINGSLAB NUMBER-20191088-20191089SAMPLE ID-S188-S189TEST STATUS-INFORMATION ONLY-INFORMATIONSTATION-LM 5.75-LM 5.85*LOCATION-15 RT-05 RTDEPTH IN FEET-0-50-5MAT'L COLOR-BR/GR_MAT'L TYPE	- 20191090 - S190 ONLY - INFORMATION ONLY				
LATITUDE DEG-MIN-SEC - 33 32 19.40 - 33 32 2 LONGITUDE DEG-MIN-SEC - 91 15 5.50 91 21 1					
<pre>% PASSING 2 IN</pre>	- - - - - - - - - - - - - -				
REMARKS - W=MULTIPLE LAYER, X=STRIPPED - *CHICOT COUNTY - - AASHTO TESTS : T24 T88 T89 T90 T265 :					

AEL BENSON, MA SURVEY / PAVEMI SNED SAMPLE CATION CHECK - YELLOW BEND 1 CABLE 20191091 S191 INFORMATION ON LM 5.95 05 LT 0-5 BR/GR 33 32 17.8 91 14 53.2	PORT (S PAVEM) 	S) ENT SOU 20191 S192 INFOR LM 5. 15 LT 0-5 BR/GR	UNDIN 092 MATIC 95	I REPOR SEQUEN MATERI SPEC. SUPPLI COUNTY DISTRI DATE S DATE S DATE S DATE S	ICE AL YEA ER C/ST CT SAM REC TES	<pre>** NO 23 CODE - SSRVPS AR - 2014 ID 1 PATE - 21 NO 02 PLED - 04/10/ EIVED - 04/15/ TED - 05/13/ 20191093 S193 INFORMATION O LM 6.10* 05 LT 0-5 BROWN</pre>
Y SAMPLE CATION CHECK - YELLOW BEND F CABLE Y - R VALUE- 20191091 S191 INFORMATION ON LM 5.95 05 LT 0-5 BR/GR 33 32 17.8	PAVEMI PAVEMI 	S) ENT SOU 20191 S192 INFOR LM 5. 15 LT 0-5 BR/GR	092 MATI(95	MATERI SPEC. SUPPLI COUNTY DISTRI DATE S DATE S DATE S DATE S GS	AL YEA ER (/ST CT SAM REC TES	CODE - SSRVPS AR - 2014 ID 1 FATE - 21 NO 02 PLED - 04/10/ EIVED - 04/15/ TED - 05/13/ 20191093 S193 INFORMATION O LM 6.10* 05 LT 0-5
S Y - R VALUE- 20191091 S191 INFORMATION ON LM 5.95 05 LT 0-5 BR/GR 33 32 17.8	- NLY - - - - - - - - - - - - - - - - - - -	20191 S192 INFOR LM 5. 15 LT 0-5 BR/GR	092 MATI(95	DATE H DATE 1 GS	REC TES - -	EIVED - 04/15/ TED - 05/13/ 20191093 S193 INFORMATION O LM 6.10* 05 LT 0-5
S191 INFORMATION ON LM 5.95 05 LT 0-5 BR/GR 33 32 17.8		S192 INFOR LM 5. 15 LT 0-5 BR/GR	MATI(95		-	S193 INFORMATION O LM 6.10* 05 LT 0-5
S191 INFORMATION ON LM 5.95 05 LT 0-5 BR/GR 33 32 17.8		S192 INFOR LM 5. 15 LT 0-5 BR/GR	MATI(95		-	S193 INFORMATION O LM 6.10* 05 LT 0-5
LM 5.95 05 LT 0-5 BR/GR 33 32 17.8	- - - - - - - - - - - - - - - - - - -	LM 5. 15 LT 0-5 BR/GR	95	ON ONLY		LM 6.10* 05 LT 0-5
05 LT 0-5 BR/GR 33 32 17.8	- - - - - - - - - - - - - - - - - - -	15 LT 0-5 BR/GR				05 LT 0-5
0-5 BR/GR 33 32 17.8	:0	0-5 BR/GR			_	0-5
33 32 17.8	:0				-	BROWN
	:0	33			-	DIVOWIN
		91		17.90 53.20		33 32 2.4 91 21 3.8
					-	
	-				_	1.0.0
	-				_	100 99
100	-	100			-	96
	_				_	91
	-				-	86
98	_	91			-	83 83
64	-	58			-	63
44	-	38	100 D 101 DD1			38
A-7-6(48)	_	A-7-	6(38)	_	A-7-6(36)
33.4	-	34	.3		-	44.2
11.5WX					_	11.OW
2.0	-				-	5.0
	_				_	
	-				-	
					-	
	-				-	
	-				-	
	98 64 44 A-7-6(48) 33.4 11.5WX	100 98 64 44 A-7-6(48) 33.4 11.5WX 2.0	100 - 100 - 98 91 64 - 58 44 - 38 A-7-6(48) - A-7- - 33.4 - 34 11.5WX 2.0	100 98 98 91 64 44 - 58 - 38 A-7-6(48) - 33.4 33.4 11.5WX 2.0 	100 - 100 - 98 91 64 - 58 44 - 38 A-7-6(48) - A-7-6(38) - 33.4 34.3 11.5WX 2.0	100 98 91 64 44 A-7-6(48) 33.4 11.5WX 2.0

λ

	MATERIALS	DIVISION	- LITTLE ROCK, ARKANSAS			
MICHAEL BENSON, MATERIALS ENGINEER *** SOIL SURVEY / PAVEMENT SOUNDING TEST REPORT ***						
DATE - 05/13/1 JOB NUMBER - 020629 FEDERAL AID NO TO BE A PURPOSE - SOIL SU SPEC. REMARKS - NO SPEC SUPPLIER NAME - STATE NAME OF PROJECT - HWY. PROJECT ENGINEER - NOT A PIT/QUARRY - ARKANSAS	SSIGNED RVEY SAMPLE IFICATION CHECK 65 - YELLOW BEND PORT	Γ(S)	SEQUENCE NO 24 MATERIAL CODE - SSRVPS SPEC. YEAR - 2014 SUPPLIER ID 1 COUNTY/STATE - 21 DISTRICT NO 02			
LOCATION – DESHA, CO SAMPLED BY – FAULKNER/B SAMPLE FROM – TEST HOLE MATERIAL DESC. – SOIL SU	ATES	EMENT SOUNDING	DATE SAMPLED - 04/10/19 DATE RECEIVED - 04/15/19 DATE TESTED - 05/13/19 SS			
LAB NUMBER	- 20191094	-	_			
SAMPLE ID	- \$194	_	_			
TEST STATUS	- INFORMATION ONLY	_	_			
STATION	- LM 6.10*	-	_			
LOCATION	- 15 LT	-	-			
DEPTH IN FEET	- 0-5	-	-			
MAT'L COLOR	- BROWN	-	_			
MAT'L COLOR MAT'L TYPE	- Ditowit	-	_			
LATITUDE DEG-MIN-SEC	- 33 32 2 50	-	-			
LONGITUDE DEG-MIN-SEC						
% PASSING 2 IN.	-	_	_			
1 1/2 IN.	_	-	_			
3/4 IN.		-	-			
3/8 IN.		-	-			
NO. 4		-	-			
	- 88	-	_			
NO. 40		-	-			
NO. 80		_	_			
NO. 200			_			
LIQUID LIMIT	- 43	-	-			
PLASTICITY INDEX	- 24	-	-			
AASHTO SOIL	- A-7-6(16)	-	-			
UNIFIED SOIL	_	-	-			
% MOISTURE CONTENT	- 42.3	-	-			
	-	-	-			
	-	-	-			
	_	-	-			
	_	_	-			
	-	_	-			
	-	_	_			
	-	-	_			
	-	-	-			
	-	_	-			
REMARKS - W=MULTIPLE LA - *CHICOT COUNT - -						
AASHTO TESTS : T24 T88 T89 T90 :	T265					