ARKANSAS DEPARTMENT OF TRANSPORTATION

ART■I
 ARKANSAS DEPARTMENT
 OF TRANSPORTATION
 SUBSURFACE INVESTIGATION

STATE JOB NO.
BR2503
FEDERAL AID PROJECT NO.
STPB-0025(15)

SPRING RIVER STR. \& APPRS. (S)

COUNTY ROAD NO.
CR 42

IN
FULTON
COUNTY

The information contained herein was obtained by the Department for design and estimating purposes only. It is being furnished with the express understanding that said information does not constitute a part of the Proposal or Contract and represents only the best knowledge of the Department as to the location, character and depth of the materials encountered. The information is only included and made available so that bidders may have access to subsurface information obtained by the Department and is not intended to be a substitute for personal investigation, interpretation and judgment of the bidder. The bidder should be cognizant of the possibility that conditions affecting the cost and/or quantities of work to be performed may differ from those indicated herein.

ARKANSAS STATE HIGHWAY AND TRANSPORTATION DEPARTMENT

August 7, 2013
TO: Mr. Carl Fuselier, Bridge Engineer
SUBJECT: Job No. BR2503
Spring River Str. \& Apprs. (S)
County Road 42
Fulton County
Transmitted herewith is a brief summary of the geology and site conditions, unconfined compressive strength test results, D50 analysis test results, and logs of the borings conducted for the structures and approaches of the above referenced job. The samples obtained by the Standard Penetration Tests were brought to the laboratory and visually classified by experienced lab personnel to confirm the field identifications. The rock cores are available for inspection at the Materials Division.

All interior bents will be founded on drilled shafts. Drilled shafts socketed a minimum of 10 feet into competent, gray, slightly weathered, hard dolostone with chert layers should be designed based on the values provided in Table 1.

TABLE 1 - Bearing Resistance Recommendation for Drilled Shafts

Foundation Description	Nominal Shaft Side Resistance (ksf)	Factored Shaft Side Resistance (ksf)	Nominal Shaft Tip Resistance (ksf)	Factored Shaft Tip Resistance (ksf)
Drilled Shaft	17.5	9.6	27.8	13.9

It is anticipated that the end bents will be founded on trestle piles tipped in the competent, gray, slightly weathered, hard dolostone with chert layers.

If you have any questions concerning these recommendations, please contact the Geotechnical Section.

MCB:rpt

cc: State Construction Engineer - Master File Copy
District 9 Enginee

GEOLOGY AND SITE CONDITIONS
 Job No. BR2530
 Spring River Str. \& Apprs. (S)
 Fulton County
 County Road 42

Site Conditions

The structure to be replaced is a narrow, one-lane, low water bridge located over the Spring River. The bridge is constructed of concrete with no guardrails. Parts of the deck have curbs showing extensive damage. The roadway turns sharply to the south, east of the bridge. A railroad track parallels the east side of roadway, east of the bridge. An overhead power line parallels the north side of the bridge and is buried east and west of the bridge. The east side of the Spring River is moderately to heavily wooded. The southwest bank of the river is lined with trees, with a residence a short distance beyond. There is a canoe rental business to the northwest of the bridge with close cut grasses. There is a moderately wooded island just to the south of the bridge, in the river.

Site Geology

The project alignment is located in the mapped outcrop of the Cotter/Jefferson City Formation undifferentiated (Ocjc). The Cotter Dolomite is composed of dolostone of predominantly two types: a fine-grained, argillaceous, earthy textured, relatively soft, white to buff or gray dolostone locally called "cotton rock", and a more massive, medium-grained, gray dolostone that weathers to a somewhat hackly surface texture and becomes dark on exposure. The formation contains chert, some minor beds of greenish shale, and occasional thin interbedded sandstone. Due to similarities in composition, there has been no success in differentiating the Cotter Formation from the Jefferson City Formation in Arkansas, although the contact is considered disconformable. The thickness is about 340 feet in the vicinity of Cotter, but the interval may range up to 500 feet thick in places. The depth to bedrock in borings ranges in depth from 6.0 to 15.5 feet below ground level. Elevations to the top of bedrock range from 354.3 to 357 feet above mean seal level.

Subsurface Conditions

Based on the results of the borings, the subsurface stratigraphy may be generalized as follows:
0 to 6.0 Feet: Consists of moist, loose, brown clayey sand with gravel to moist to wet, medium dense, brown sand with gravel (chert fragments) to gravel.
6.0 to 15.5 Feet: Varies from moist, loose to very dense, brown sand with gravel to stiff, brown sandy clay with gravel (chert fragments) to moderately hard, gray, slightly weathered dolostone with frequent chert layers.
15.5 to 48.8 Feet: Consists of moderately hard, gray, slightly weathered dolostone with frequent chert layers. There are numerous vertical fractures.

Rock Core Unconfined Compression Test Summary

```
Project Number: BR2503 Project Name: SPRING RIVER STR. \& APPRS. Date Tested: 8/5/2013
```

Station	Location	Sample No.	Depth (ft)	$\begin{array}{\|c\|} \hline \text { Diameter } \\ \text { (in) } \end{array}$	Height (in)	$\begin{array}{\|c\|} \hline \text { Total Load } \\ (\mathrm{lbs}) \end{array}$	Correction	$\begin{gathered} \hline \text { Stress } \\ (\mathrm{psi}) \\ \hline \end{gathered}$	Remarks
102+88	C.L.	1	20.0	1.75	3.60	15,850	1.000	6590	
102+88	C.L.	2	30.5	1.75	3.60	38,880	1.000	16160	
104+17	C.L.	3	16.0	1.75	3.65	9,860	1.000	4100	
104+17	C.L.	4	24.0	1.75	3.80	10,520	1.000	4370	
104+98	C.L.	5	22.0	1.75	3.60	22,540	1.000	9370	
104+98	C.L.	6	31.0	1.75	3.65	22,840	1.000	9500	
106+94	C.L.	7	19.0	1.75	3.70	8,310	1.000	3460	
106+94	C.L.	8	28.0	1.75	3.80	13,120	1.000	5460	

[^0]| Job No. BR2503 | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Creek Name | Station | Sample Type | Location | Depth
 (FT) | Aggregate
 Size (D50) (IN) |
| Spring
 River | $106+94$ | River Bank | 5' Lt. C.L.
 Construction | NA | |

ROCK MASS RATING SUMMARY
 JOB \#
 BR2503

SAMPLE \#1

SAMPLE \#3

SAMPLE \#5

SAMPLE \#7

SAMPLE \#2

SAMPLE \#4

SAMPLE \#6

SAMPLE \#8

LEGEND

SOIL TYPES

GRANULAR SOIL		CLAY		CLAY-SHALE		SHALE
' N ' Value	Density	'N' Value	Consistency	' N ' Value	Consistency	' ${ }^{\prime}$ ' Value Consistency
0-4	Very Loose	0-1	Very Soft	0-1	Very Soft	
5-10	Loose	2-4	Soft	2-4	Soft	31-60 Soft
11-30	Medium Dense	5-8	Medium Stiff	5-8	Medium Stiff	Over 60
31-50	Dense	9-15	Stiff	9-15	Stiff	More than $\mathbf{2}^{\prime}$
Over 50	Very Dense	16-30	Very Stiff	16-30	Very Stiff	Penetration
		31-60	Hard	31-60	Hard	in 60 Blowsı Medium Hard
		Over 60	Very Hard	Over 60	Very Hard	Less than 2'
						Penetration
						in 60 Blows Hard

1. Ground water elevations indicated on boring logs represent ground water elevations at date or time shown on boring log. Absence of water surface implies that no ground water data is available but does not necessarily mean that ground water will not be encountered at locations or within the vertical reaches of these borings.
2. Borings represent subsurface conditions at their respective locations for their respective depths. Variations in conditions between or adjacent to boring locations may be encountered.
3. Terms used for describing soils according to their texture or grain size distribution are in accordance with the Unified Soil Classification System.

Standard Penetration Test - Driving a $2.0^{\prime \prime}$ O.D., 1-3/8" I.D. sampler a distance of 1.0 foot into undisturbed soil with a 140 pound hammer free falling a distance of 30 inches. It is customary to drive the spoon 6.0 inches to seat into undisturbed soil, then perform the test. The number of hammer blows for seating the spoon and performing the test are recorded for each 6 inches of penetration on the drill log. The field "N" Value $\left(\mathrm{N}_{\mathrm{f}}\right)$ can be obtained by adding the bottom two numbers for example: $\frac{6}{8-9} \Rightarrow 8+9=17 b l o w s / f t$. The " N " Value corrected to 60% efficiency $\left(\mathrm{N}_{60}\right)$ can be obtained by multiplying N_{f} by the hammer correction factor published on the boring log.

REMARKS: * A water stratum was encountered at 14.2'. ** Total water loss was encountered at 15.9'.

[^0]: * Please note any broken samples, fractures or other characteristics of sample in Remarks.

