TRANSPORTATION RESEARCH COMMITTEE

TRC8801

Asphalt Gradation Variation

R.P. Elliott, M.C.Ford, Jr., M. Ghanim, Y.F. Tu

Final Report

Arkansas Highway and Transportation Research Center

> Dept. of Civil Engineering College of Engineering University of Arkansas Fayetteville, Arkansas

31,50 A

ASPHALT GRADATION VARIATION

Final Report TRC-8801 1989

RESEARCH

SECTION

LIBRARY

Technical Report Documentation Page

1 Decent No.	2 6	N 2		
I. Report No.	2. Government Acce	ssion No. 3.	Recipient's Catalog I	NO.
FHWA/AR-90/004				
A Title and Subside			Pagast Data	• • • • • • • • • • • • • • • • • • • •
4. The and Subme		Δ	uquet 1989	
FINAL REPORT		4	Bastania O	
TRC - 8801		0.	Ferforming Urganizat	ion Lode
ASPHALT GRADATION VARIATI	ON			
7. Author(s) R P Filiott M C	Ford Ir . M	Chanime 1	Performing Organizati	on Report No.
V F Tu	.roru, Jr., m		Ar-Anike-09-0	01
1.1.1				
9. Performing Organization Name and Addres	s rtation Decen	10.	Work Unit No. (TRA	IS)
Depentment of Civil Engineer	flation Resear	ch Center		
University of Anhances	ing	11.	Contract or Grant No	.
Turiversity of Arkansas			TRC-8801	·
Fayetteville, Arkansas /2/01		13.	Type of Report and F	Period Covered
12. Sponsoring Agency Name and Address		-		
Arkansas State Highway and T	ransportation	Department	Final Report	
Materials and Research Divis	ion			
P.O. Box 226		14.	Sponsoring Agency (Code
Little Rock, Arkansas 72203				
15. Supplementary Notes				
Study conducted in cooperati	on with the U.	S. Department of	Transportatio	n,
Federal Highway Administrati	on			
16. Abstract		and a second a second consideration of the second		
Six asphalt concrete mi	xes were teste	d to examine the	effect of var	iations
in aggregate gradations. Th	e properties i	nvestigated were	creep behavio	r as a
measure of rutting potential	, spit tensile	strength as an i	ndicator of f.	atigue
resistance, and the Marshall	mix parameter	s. Each mix was	tested with f	ive gra-
dation variations that were	selected to re	present the maxim	um variations	typically
encountered on a paving proj	ect. The job	mix formula (IMF)	gradation se	rved as the
control. Two other gradatio	ns represented	the extreme fine	(FINE) and a	
(COARSE) deviations from the	IMF The ren	aining two gradat	iona areaad	from one
extreme (a g coarse) on the	largost agar	aining two gradat	tolls clossed	
on the smallest (#200 sieve)	aigest aggre	gate size to the	COADCE EINE	(e.g. line)
EINE COARSE and ations	size). Inese	were called the	CUARSE-FINE as	na
FINE-COARSE gradations.				
The greatest effect to	mix properties	was observed wit	h the COARSE-	FINE and
FINE-COARSE gradations that	caused a chang	e in the shape of	the gradation	n curves.
This suggests that, in addit	ion to the ind	ividual sieve siz	e tolerance l	imits
normally included in asphalt	construction	specifications, c	onsideration	should be
given to including a control	on the shape	of the gradation	curve.	
Also included in the st	udy are relati	ve life analyses	that can be u	sed as
the basis for the developmen	t of pay adjus	tment schedules for	or Quality As:	surance
specifications and for mix t	nat does not o	uite comply with	the tolerance	limits
under traditional specificat	ions.			
_				
17. Key Words		18. Distribution Statement		
Asphalt Concrete Gradation V	ariation,			
Creep, Split Tensile Strengt	n, Marshall	No Restriction	ns	
Properties. Relative Life An	alvsis			
	,			
	20 5		21. No. of P	22 Price
in Security Classif. (of this report)	20. Security Clas	sii. (or mis page/	Zie no. of Fages	22. I IICE
	Unalagai	fied		

Form DOT F 1700.7 (8-72)

٠

Reproduction of completed page authorized

FINAL REPORT

TRC-8801

ASPHALT GRADATION VARIATION

PRINCIPAL INVESTIGATOR - Robert P. Elliott ASSOCIATE INVESTIGATOR - Miller C. Ford, Jr.

GRADUATE ASSISTANTS - Maher Ghanim and Yui Fee Tu

Conducted by

Arkansas Highway and Transportation Research Center Department of Civil Engineering Engineering Experiment Station University of Arkansas

in cooperation with

Arkansas State Highway and Transportation Department

and

U.S. Department of Transportation Federal Highway Administration

Report No. UAF-AHTRC-89-001

University of Arkansas Fayetteville, Arkansas 72701

August, 1989

ACKNOWLEDGEMENTS/DISCLAIMER

This report is based on the findings of Project TRC-8801, Asphalt Gradation Variation.

TRC-8801 is sponsored by the Arkansas State Highway and Transportation Department and the U.S. Department of Transportation, Federal Highway Administration.

The contents of this report reflect the view of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Arkansas State Highway and Transportation Department or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

SI CONVERSION FACTORS

1 inch = 25.4 mm 1 foot = 0.305 m 1 pcf = 16 kg/m² 1 psi = 6.9 kN/m^2 1 ksi = 6.9 kN/m^2 1 lb = 4.45 N

-ii-

TABLE OF CONTENTS

ACKNO	WLEDGEMENTS	Page ii
LIST OF	TABLES	V
LIST OF	FIGURES	viii
EXECU	TIVE SUMMARY	ix
Chapter		
1	PROBLEM STATEMENT AND STUDY OBJECTIVES	1
	PROBLEM STATEMENT STUDY OBJECTIVES	$\frac{1}{1}$
2	LITERATURE REVIEW	3
	GRADATION VARIATION STUDIES OTHER STUDIES RELATED TO GRADATION EFFECTS	3 9
3	TESTING PROGRAM	12
	SIGNIFICANCE OF TESTS SELECTION OF MIXES AND GRADATION VARIATIONS SPECIMEN PREPARATION MARSHALL SPECIMEN TESTING 4X4 SPECIMEN TESTING	12 12 17 20 20
4	DATA ANALYSES	23
	ANALYSES OF MARSHALL SPECIMEN DATA Methods of Analysis Air Void Analyses VMA Analyses Stability Analyses Flow Analyses Resilient Modulus Analyses	23 23 24 26 26 29 29
	ANALYSES OF 4X4 SPECIMEN DATA Methods of Analysis Split Tensile Strength Analyses Creep Data Analyses Comments on Air Voids	32 32 33 35 38
	RELATIVE LIFE EFFECTS Fatigue Life Analyses Rut Depth Analyses Comments Regarding Relative Life Analyses	40 41 41 46

Chapter 5 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS	Page 49
IMPLEMENTATION RECOMMENDATIONS Quality Control Practices Specification Maximum Tolerance Limits Gradation Adjustment Decisions Pay Adjustments	50 51 51 51 51 51
Appendix A - Marshall Specimen Data	55
Appendix B - Analyses of Marshall Specimen Data	62
Appendix C - Split Tensile and Creep Data	78
Appendix D - Analyses of Split Tensile and Creep Data	83
	·

.

•

			÷
	Table	LIST OF TABLES	Page
	2-1	ASTM Tolerances Used in Study by McLeod	4 4
	2-2	Mixture Property Variations Found by McLeod	6
	2-3	Range of Mixture Property Values Found by McLeod	7
	2-4	Example Gradation Variation Used by Elliott and Herrin	8
	2-5	Significant Standard Deviations of Mix Properties Identi- fied in Study of Pavements by Zenewitz and Welborn	10
	3-1	Job Mix Formulas of Mixes Tested	14
	3-2	Selection of Gradation Variations	15
	3-3	Gradation Variations Used in Study	19
	4-1	Analyses of Air Voids in All Marshall Specimens	25
i	4-2	Analyses of VMA in All Marshall Specimens	27
	4-3	Analyses of Stability Data from All Marshall Specimens	28
	4-4	Analyses of Flow Data from All Marshall Specimens	30
	4-5	Analyses of Resilient Modulus Data from All Mixes	31
	4-6	Split Tensile Strength Data Analyses for All Mixes	34
	4-7	Split Tensile Strengths Adjusted for Air Void Content	36
	4-8	Analysis of Covariance of 60 Minute Creep Data	37
	4-9	Analyses of 60 Minute Creep Data from All Mixes	39
	4-10	Relative fatigue Life Analyses Using Mean Strength Data and Predicted Strength at 5% Air Voids	42
	4-11	Relative Rut Depth Prediction Analyses	47
	A-1	Marshall Specimen Test Results - Limestone Surface Mix	56
	A-2	Marshall Specimen Test Results - Syenite Surface Mix	57
	A-3	Marshall Specimen Test Results - Gravel Surface Mix	58
	A-4	Marshall Specimen Test Results - Limestone Binder Mix	59
	A-5	Marshall Specimen Test Results - Syenite Binder Mix	60
	A-6	Marshall Specimen Test Results - Gravel Binder Mix	61.

.

-v-

· · ·

	•		
			LIST OF TABLES
			(continued)

.

Table	LIST OF TABLES (continued)	
		Page
B-1	Analyses of Air Voids in Limestone Mixes	63
B-2	Analyses of Air Voids in Syenite Mixes	64
B-3	Analyses of Air Voids in Gravel Mixes	65
B-4	Analyses of VMA in Limestone Mixes	66
B-5	Analyses of VMA in Syenite Mixes	67
B-6	Analyses of VMA in Gravel Mixes	68
B- 7	Analyses of Stability Data from Limestone Mixes	69
B-8	Analyses of Stability Data from Syenite Mixes	70
B-9	Analyses of Stability Data from Gravel Mixes	71
B- 10	Analyses of Flow Data from Limestone Mixes	. 72
B- 11	Analyses of Flow Data from Syenite Mixes	73
B-12	Analyses of Flow Data from Gravel Mixes	74
B-13	Analyses of Resilient Modulus Data Limestone Mixes	75
B- 14	Analyses of Resilient Modulus Data Syenite Mixes	76
B-15	Analyses of Resilient Modulus Data Gravel Mixes	77
C-1	Split Tensile Strength Data - Surface Mixes	79
C-2	Split Tensile Strength Data - Binder Mixes	80
C-3	Creep Stiffness Data - Surface Mixes	81
C-4	Creep Stiffness Data - Binder Mixes	82
D- 1	Split Tensile Strength Analyses for Limestone Mixes	83
D-2	Split Tensile Strength Analyses for Syenite Mixes	84
D-3	Split Tensile Strength Analyses for Gravel Mixes	85
D-4	Analyses of 30 Minute Creep Data from All Mixes	86
D-5	Analyses of 2 Minute Creep Data from All Mixes	87
D-6	Analyses of 30 Second Creep Data from All Mixes	. 88

× .

-vi-

LIST OF TABLES (continued)

Table		Page
D- 7	Analyses of 5 Second Creep Data from All Mixes	89
D-8	T Groupings of Creep Stiffnesses of Limestone Mixes	90
D-9	T Groupings of Creep Stiffnesses of Syenite Mixes	91
D- 10	T Groupings of Creep Stiffnesses of Gravel Mixes	92

Table

-vii-

Figure	LIST OF FIGURES	
2-1	Gradation Variations Tested by McLeod	Page 5
3-1	Illustration of Gradation Variations Tested	16
3-2	Method Used to Prorate FINE-COARSE and COARSE-FINE Gradations	18
3-3	Apparatus Used for Testing	21
4-1	Fatigue Relative Life Effects of Gradation and Air Voids	43
4-2	Van der Poel's Nomograph for Asphalt Stiffness	45

EXECUTIVE SUMMARY FINAL REPORT, TRC-8801 ASPHALT GRADATION VARIATION

This study was performed to investigate the effect of variations in the gradation of aggregates on the properties of asphalt concrete mixes. The specific properties investigated were the creep behavior as it relates to rutting, split tensile strength as an indicator of mix fatigue resistance, the mix resilient modulus, and the Marshall mix properties.

Six mixes were tested. These were selected by AHTD as representative of the mixes commonly used on Arkansas highways. The mixes were identified by the type of coarse aggregate used. These were: 1) limestone, 2) syenite, and 3) gravel. For each coarse aggregate type, a surface mix and a binder mix were tested.

Each mix was tested with five gradation variations. The gradation variations were selected after an analysis of field extraction data to be representative of the maximum variation typically encountered in the field. These variations were generally about the same as the AHTD specification limits.

The job mix formula (JMF) served as the control gradation. Two other gradations represented the extreme fine (FINE) and coarse (COARSE) gradations. The remaining two gradations were categorized as crossover gradations in that they crossed from one extreme (e.g. coarse) on the largest aggregate size to the other extreme (e.g. fine) on the smallest aggregate size. These were called COARSE-FINE and FINE-COARSE gradations.

The study provided information and findings that should be useful in four areas: 1) the review and modification of quality control practices, 2) specification maximum tolerance levels, 3) mix design gradation adjustments, and 4) pay adjustments for mix produced that does not quite comply with the specification tolerance limits.

-ix-

Quality Control Practices

The data and analyses from the study demonstrate that improvements in construction quality control that would result in a reduction in gradation variability should also result in an improvement in pavement performance. However, the data also suggests that, within the range of variability normally encountered, improved density control is more critical than improved gradation control.

Specification Maximum Tolerance Limits

In general, the mix properties tested in this study were not drastically affected by the gradation variations. The greatest effect was observed with the gradation variations that changed the shape of the gradation curve (i.e. FINE-COARSE and COARSE-FINE). This suggests that the current AHTD maximum tolerance limits are reasonable but that some additional requirement to control the shape of the gradation curve would be beneficial.

Gradation Adjustment Decisions

The results of the study suggest that care should be exercised in making decisions regarding mix gradation adjustment without first performing mix design tests. In particular, no change should be made that results in a change in the shape of the gradation curve unless backed up by laboratory test results:

Pay Adjustments

Relative life analyses were performed to examine the predicted effects of gradation variation on pavement life. These analyses can be used as the basis for the development of pay adjustment schedules for Quality Assurance specifications and for mix produced under current specifications that does not quite comply with the gradation maximum tolerance limits. However, the analyses cannot be applied directly but must consider both the normal degree of construction variability and the degree of variability on the job in question. Additional analyses are needed to develop technically sound, defensible pay adjustment schedules.

-X-

CHAPTER 1

PROBLEM STATEMENT AND STUDY OBJECTIVES

PROBLEM STATEMENT

All highway agencies recognize the need to control the degree of variability of asphalt pavement construction. Specifications controlling the quality of construction typically include limits of acceptability on factors such as asphalt content, density, and gradation. These limits have generally been established over many years and represent the collective experience and opinions of many engineers. Nevertheless, the relationship between mix variation and service life is not well known and has not been studied extensively. Such relationships are needed to assure that specification limits are realistic and consistent. The relationships are also needed to establish pay adjustments for construction that does not meet the specification requirements but is not so poor as to warrant removal and replacement.

One study⁽¹⁾ developed a procedure for estimating the relative effect of variations in asphalt concrete mix composition and density. This procedure was used to examine the effect of variations in asphalt content, density, and gradation. From the study significant relationships were identified between relative life and variations in asphalt content and density. However, because only a limited amount of testing included gradation variations, no significant relationship was found for the gradation variation.

STUDY OBJECTIVES

This study was performed to investigate the effect of variations in the gradation of aggregates on the properties of asphalt concrete mixes. In accordance with the procedures from a previous study for estimating relative life effects, specific objectives of the study were:

-1-

- 1) Determine the effect of gradation variation on the creep behavior of six selected asphalt concrete mixes.
- 2) Use the creep behavior relationships to identify the relative life effects of gradation variation in terms of rutting.
- 3) Determine the effect of gradation variation on the split tensile strength of six selected asphalt concrete mixes.
- 4) Use the split tensile strength relationships to identify the relative life effects of gradation variation in terms of fatigue.

In addition to these specific objectives, the study also examined the effect of gradation variation on the Marshall mix design properties (stability, flow, air voids, and VMA) and on resilient modulus.

CHAPTER 2 LITERATURE REVIEW

GRADATION VARIATION STUDIES

A review of the literature reveals that little research has been reported dealing directly with the effect of gradation variation on asphalt mix behavior. Many studies report on the relative differences between different gradations but these typically deal with mixes of different gradation not with gradation variations within a given mix. Two studies that did deal specifically with gradation variation were reported by $McLeod^{(2)}$ and Elliott and Herrin⁽¹⁾.

McLeod tested asphalt concrete mixtures with the aggregate gradations and asphalt contents varying between the upper and lower limits of the ASTM specifications (Table 2-1). Marshall mix design tests were performed on specimens prepared with gradation variations as illustrated in Figure 2-1 and with asphalt contents at the job mix formula and at the upper and lower extremes permitted by the tolerances. The results from one of the mixes tested is shown in Table 2-2.

Mcleod made no attempt to relate the results to mix behavior or to examine the results in terms of the specific variations. Instead he examined the ranges of test results for each mix. Table 2-3 lists the mean and standard deviation of the range of test values. Based on these ranges, McLeod concluded that the ASTM tolerances are too broad.

Elliott and Herrin⁽¹⁾ examined the effect of gradation variation on split tensile strength and creep behavior. The objective of their study was to identify relative pavement life effects and to develop a rational basis for quality assurance pay adjustment schedules. The gradation variations used in the study (Table 2-4) were based on the 90% pay limits included in the Illinois Department of Transportation quality assurance pay schedule. Elliott and Herrin did not find any consistent or significant relationship between gradation

-3-

Table 2-1. ASTM Tolerances Used in Study by McLeod (2).

Sieve Size Fraction	Tolerance, Aggregate Weight Basis
Greater than 1/2"	+/- 8%
3/8" to #4	+/- 7%
#8 to #16	+/- 6%
#30 to #50	+/- 5%
Passing #200	+/- 3%
Asphalt Content, Total Mix Weight Basis	+/- 0.5%

.

•

Figure 2-1. Gradation Variations Tested by McLeod (2).

-5-

Table 2-2. Mixture Property Variations Found by McLeod (2).

×

Test Gradation	To .	-Mix Fol	mula		Lower			Upper			ower - Ur	ber		boer-Loi	fer
Asphalt Cantert X (total mix)	5.15	5.65	6.15	5.15	5.45	6.15	5.15	5.65	6.15	5.15	5.66	6.15	5.15	5.65	6.15
* Air Wids X	3.5	2.9	2.5	5.2	3.9	2.6	3.5	2.6	1.8	3.3	2.6	2.5	5.1	4.0	3.0
*** VMV **	13.3	13.9	н.7	14.7	14.8	14.8	13.6	¥.0	¥.4	13.2	13.7	14.8	15.0	15.2	15.4
Bulk Specific Gravity	2.420	2.416	2.408	2.379	2.389	2.401	2.416	2.417	2.418	2.435	2.424	2.406	2.373	2.381	2.309
100K Lab. Density lb/ft ³	151.1	150.8	150.3	148.5	149.1	149.9	150.8	150.9	150.9	151.4	151.3	150.2	148.1	148.6	149.1
Theor. Max. Spec. Grav.	2.509	2.489	2.468	2.509	2.487	2,466	2.508	2.483	2.462	2.507	2.489	2.468	2.501	2.481	2.464
Marshall Stability lb at 140°F	3690	2183	1653	1811	7 99	180	2952	3047	1567	2822	302	335	7861	1845	2407
Flow Index (units of 0.01 inch)	10.8	10.3	12.8	8.8	9.3	10.3	9.3	12.0	17.0	10.3	12.5	16.5	8.6	8.7	11.3
www.Stiffress Modulus at 140 F, psi	39 63	84,78	5791	223	7105	7363	10181	883	3687	ୟି	6480	3164	2465	8483	829
Me. Aggregate Spec. Gr.	2.648	2.648	2.648	2.65	2.665	2.65	2.661	2.661	2.661	2.661	2.661	2.661	2.649	2.649	2.649
X Aerhalt Absorption (Mt. of aggregate)	1:1	1	1.1	1.2	11	1.1	0.99	0.97	0.94	1	1	1.1	0.84	0.96	0.99
Filler/Bitumen Ratioby weight	0.66	09.0	0.55	0.11	0.10	0.092	1.22	1.10	1.01	1.22	1.10	1.01	0.11	0.10	0.092

-6-

* X Air Voids derived from ratio of bulk specific gravity to theoretical maximum specific gravity.
** X VM based on the aggregate's ASIM bulk specific gravity.
*** Calculated from - Module of stiffness = 40 Marshall Stability / Flow Index

NOTE - Compaction by 75 blows on each face by Marshall chuble compactor.

,

Table 2-3. Range of Mixture Property Values Found by McLeod (2).

Mixture Test Property	Mean Range of Measured Values	Standard Deviation of Measured Values
Air Voids, %	3.76	0.93
VMA, %	2.77	0.90
Marshall Stability	937	235
Marshall Flow	7.7	1.25
Marshall Density, po	cf 4.6	1.6
Theoretical Maximum Specific Gravity	0.047	0.005
Bulk Specific Gravity	0.074	. 0.026

2

Table 2-4. Example Gradation Variation Used by Elliott and Herrin (1).

Sieve Size Fraction	Percent Pass- Job Mix Formula	-Retain, Total Coarse Gradation	Weight Basis Fine Gradation
1/2" to #4	38.2	43.9	32.5
#4 to #10	21.5	25.3	17.7
#10 to #40	12.0	10.6	14.7
#40 to #80	11.0	6.8	14.2
#80 to #200	5.9	3.9	7.8
passing #200	5.7	3.8	7.6

variation and the creep behavior. However, they did report that the average tensile strength of the fine and coarse mixes were about 10% lower than the tensile strength of the job mix formula gradations.

A study of construction variability was reported by Zenewitz and Welborn⁽³⁾. Data from 53 asphalt pavement projects in 19 states were analyzed. At the time of the study the pavements were 11 to 13 years old. The pavements were categorized as "survivors" and "nonsurvivors" depending upon whether or not they had been overlaid or had received a surface treatment since the time of their construction. The data were analyzed to identify statistically significant differences between the two categories. No significant relationships were identified for the average values of mix properties; but there were several significant relationships identified relative to the variability (standard deviation) of mix properties (Table 2-5).

Because no relationships were identified based on average values, Zenewitz and Welborne concluded that the average mix design requirements for the projects were generally satisfactory but that the degree of deviation from those requirements substantially affected performance. Based on their finding, they recommended that asphalt mix specifications include controls on uniformity.

OTHER STUDIES RELATED TO GRADATION EFFECTS

Many other studies have examined the differences between mixes of different gradation. These have led to conclusions regarding the effect of gradation on stiffness, rut resistance, and fatigue resistance. In general these may be summarized as:

- 1. Fine graded mixes tend to rut more rapidly than do coarser graded mixes⁽⁴⁾.
- 2. Increasing the maximum aggregate size increases the stiffness of dense graded mixes^(5,6) and may improve the fatigue resistance slightly⁽⁷⁾.
- 3. Reducing the quantity of coarse aggregate in the mix reduces the fatigue resis-

-9-

Table 2-5. Significant Standard Deviations of Mix Properties Identified in Study of Pavement Performance by Zenewitz and Welborn (3).

MIX PROPERTY	SURVIVING PAVEMENTS	NON-SURVIVING PAVEMENTS	PROBABILITY OF CHANCE OCCURRENCE	
Asphalt Content, %	0.1 or less	0.3 or more	< 0.01	
Air Voids, %	none	1.5 or more	0.02 to 0.05	
VMA, %	0.6 or less	0.7 or more	< 0.01	
Bulk Specific Gravity	0.17 or less	0.34 or more	0.05	
Maximum Specific Gravity	.001 or less	.013 or more	0.01 to 0.02	
Effective Aggregate Specific Gravity	.010 or less	.011 or more	0.05	
Gradatiion, % Passing		•		
3/8"	2.0 or less	2.1 or more	< .01	
#4	1.6 or less	none	0.02 to 0.05	
#8	1.0 or less	none	0.01 to 0.02	
#16	1.2 or less	1.3 or more	0.05	

-10-

.

 $tance^{(6)}$.

- 4. Increasing the filler content (% passing the #200 sieve) up to a filler:bitumen ratio of 2 increases the fatigue resistanc^(6,8) and stiffness^(9,10,11).
- 5. Dense graded mixes possess better fatigue resistance than do open graded mixes⁽¹²⁾.
- 6. Gap graded mixes may exhibit better fatigue resistance than do dense graded mixes⁽¹²⁾.

CHAPTER 3 TESTING PROGRAM

SIGNIFICANCE OF TESTS

The tests performed in this study were: 1) split tensile strength, 2) simple creep, 3) resilient modulus, and 4) Marshall mix stability, flow, air voids, and VMA. The split tensile and simple creep tests were performed to provide the basis for the relative life analyses as established by Elliott and Herrin⁽¹⁾.

The relative life analyses are based on the two most prevalent load associated modes of failure in asphalt pavements - fatigue cracking and surface rutting. The split tensile strenght test was selected as an indicator of fatigue characteristics based on research by Maupin and Freeman⁽¹⁶⁾. The simple creep was selected as measure of rut resistance based on the procedures used in the Shell Pavement Design Manual⁽¹⁷⁾.

The Marshall mix and resilient modulus tests were performed to provide additional information on the effect of gradation variation in terms consistent with the pavement design and mix design processes used by AHTD. AHTD uses the Marshall method of mix design and the AASHTO Guide for Design of Pavement Structures. In the AASHTO Guide resilient modulus is used as the basis for selecting the structural layer coefficient for asphalt concrete. The data from these tests provide information more familiar to AHTD engineers than would be provided by the spit tensile and creep tests.

SELECTION OF MIXES AND GRADATION VARIATIONS

Six asphalt concrete mixes were tested in the study. Three were surface mixes and three were binder mixes. The mixes were selected by the project subcommittee to be representative of mixes typically used in Arkansas. The principal difference between the mixes was in the type of coarse aggregate.

-12-

Three types of coarse aggregate were used with one surface and one binder using each type. The three coarse aggregates were: 1) crushed limestone, 2) crushed syenite, and 3) crushed gravel. Consequently, the mixes are hereafter referred to as limestone surface. limestone binder, syenite surface, syenite binder, gravel surface, and gravel binder. The job mix formulas for the mixes are listed in Table 3-1.

The gradation variations used in the study were selected to represent the extreme variations typically encountered in construction. To identify "typical, maximum" variations, field extraction data were obtained from 11 surface mixes and 10 binder mixes. Standard deviations of the gradation percentage for each sieve size were computed for each mix. From these the "typical" standard deviations were selected and "typical, maximum" variations were calculated as three standard deviations. The variations to be used in the test program (Table 3-2) were selected based on these and an examination of the actual maximum variations from the field data. The selected variations are generally about the same as the AHTD specification limits.

Each of the six mixes included in the study was tested with 5 variations in the aggregate gradation (Figure 3-1). The control gradation for each mix was the job mix formula (JMF) supplied by AHTD. Two other gradations were the job mix formula plus or minus the maximum variations described above. These produced gradation variations that are referred to as FINE and COARSE. The remaining two gradations were crossover gradations that were categorized as FINE-COARSE and COARSE-FINE.

The FINE-COARSE gradation had the maximum gradation variation to the fine side for the largest aggregate size fraction (1/2" for surface and 3/4" for binder) and the maximum gradation variation to the coarse side for the smallest size fraction (#200 sieve). The variations from the job mix formula for the other sieve sizes were prorated based on the 0.45 power gradation scale. The COARSE-FINE gradation was similar to the FINE-COARSE gradation but with the sign of the deviations from the job mix formula reversed.

-13-

Table 3-1. Job Mix Formulas of the Mixes Tested.

AGGREGATE GRADATION, % PASSING AGGREGATE ONLY SIEVE SURFACE COURSE MIXES SIZE, LIMESTONE SYENITE GRAVEL 3/4" 100 100 100 1/2" 93 93 96 3/8" 81 84 81 #4 60 61 60 #10 45 42 43 #20 36 28 31 #40 28 21 22 #80 13 12 12 #200 6 7 7 ASPHALT CONTENT % OF TOTAL MIX 5.6 5.3 5.4 SIEVE BINDER COURSE MIXES SIZE LIMESTONE SYENITE GRAVEL 1" 100 100 100 3/4" 88 90 88 1/2" 66 75 69 3/8" 56 62 59 #4 43 40 44 #10 31 30 32 #20 23 25 26 #40 18 19 21 #80 10 11 11 #200 6 6 6 ASPHALT CONTENT % OF TOTAL MIX 4.3 4.5 4.4

Table 3-2. Selection of Gradation Variations.

SIEVE SIZE		SPEC.	FIELD VARIATIONS THREE STANDARD STD. DEV. DEVIATIONS		SELECTED VARIATIONS			
	SURFACE	BINDER	SURFACE	<u>BINDER</u>	<u>SURFACE</u>	<u>BINDER</u>	SURFACE	<u>BINDER</u>
3/4"	-	+/- 7	-	2.5	-	7.5	-	+/- 8
1/2"	-	-	1.8	3.5	5.4	10.5	+/- 6	+/- 12
3/8"	-	-	2.5	3.5	7.5	10.5	+/- 8	+/- 12
#4	+/- 5	+/- 5	2.0	2.7	6.0	8.1	+/- 6	+/- 8
#10	+/- 5	+/- 5	1.6	2.0	4.8	6.0	+/- 5	+/- 6
#20	-	-	1.5	1.8	4.5	5.4	+/- 5	+/- 6
#40	+/- 4	+/- 4	1.2	1.5	3.6	4.5	+/- 4	+/- 5
#80	-	-	1.0	1.0	3.0	3.0	+/- 3	+/- 4
#200	+/- 2	+/- 2	0.6	0.8	1.8	2.4	+/- 2	+/-2.5

NOTE: Based on analysis of data on a total percent passing basis.

The method of prorating is depicted in Figure 3-2 for the FINE-COARSE gradation. In the figure, the X axis represents the sieve size scale, the Y axis represents the deviation from the job mix formula, and F represents the full deviation from the job mix formula for the sieve being prorated. Note that Y is equal to -F at X = 0 and +F at X = A. These points on the X axis represent the smallest and largest sieve size respectively. The prorated deviations from the job mix formula used in the study are listed in Table 3-3.

SPECIMEN PREPARATION

To control the gradation of the test specimens, all aggregates were separated into the various size fractions (i.e. 1/2" to 3/8", 3/8" to #4, etc.) and stored in metal buckets. When preparing test specimens, the aggregates were recombined to provide the desired gradation. In the recombination, the composition of each size fraction relative to aggregate sources was held constant. Thus, if the #4 to #10 material of the job mix formula was composed of 18% from the coarse aggregate source, 37% from the coarse sand, and 45% from the fine sand, these same percentages were used for the #4 to #10 fraction in all gradation variations of that mix. In this manner, all effects observed from the testing are the result of variations in the gradation rather than the result of variations in aggregate composition.

The mix for each test specimen was batched separately. The aggregate and asphalt were heated to approximately 300° F for mixing and molding.

Two types of test specimens were prepared - standard Marshall specimens and 4X4 (4" diameter by 4" high) cylindrical specimens. The Marshall specimens were molded in accordance with AASHTO T245⁽¹³⁾ using 75 blows of the compaction hammer on each face of the specimens. The 4X4 specimens were prepared using rodding and static compaction.

The cylindrical molds for the 4X4 specimens were designed to provide a fixed volume for density control. This was accomplished by having end caps that extended into the mold a

-17-

PRORATION EQUATION:

$$Y = -F + 2F \qquad \frac{(z/L)^{.+3} - (S/L)^{.+3}}{1 - (S/L)^{.45}}$$

15

Figure 3-2. Method Used to Prorate FINE-COARSE and COARSE-FINE Gradations.

Table 3-3. Gradation Variations Used in Study.

CHANGE IN PERCENT PASSING FROM JOB MIX FORMULA

SIEVE SIZE	FINE	SURFACE FINE-COARSE	COURSE JMF	MIXES COARSE-FINE	COARSE
1/2"	+6	+6	0	- 6	-6
3/8"	+8	+5.93	0	-5.93	-8
#4	+6	+1.29	0	-1.29	-6
#10	+5	-1.24	0	+1.24	-6
#20	+5	-2.80	0	+2.80	- 5
#40	+4	-2.95	0	+2.95	- 4
#80	+3	-2.68	0	+2.68	-3
#200	+2	-2	0	+2	- 2
SIEVE SIZE	FINE	BINDER C FINE-COARSE	OURSE M JMF	IXES COARSE-FINE	COARSE
3/4"	+8	+8	0	-8	-8
1/2"	+12	+7.51	0	-7.51	-12
3/8"	+12	+4.99	0	-4.99	-12
#4	+8	-0.10	0	+0.10	-8
#10	+6	-2.33	0	+2.33	-6
#20	+6	-3.85	0	+3.85	-6
#40	+5	-3.93	0	+3.93	- 5
#80	+4	-3.65	0	+3.65	- 4
#200	+2.5	-2.50	0	+2.50	-2.5

-19-

fixed distance. The distance was controlled by a lip extending beyond the cap. A spacer was used with the bottom end cap to hold it partially out of the mold during rodding. This provided for both end caps to be pushed into the mold during the static compaction. In this way compaction was obtained from both ends.

In preparing the 4X4 specimens, the amount of mix required to produce a specimen having 5% air voids was weighed out and divided into thirds. Each third was placed in the mold and rodded in place. After all three layers had been rodded, compaction was completed on a compression test device by pushing the end caps until the volume control lips were seated on the mold. The objective was to produce specimens having 5% air voids that were uniform top to bottom. As will be shown later, this objective was not achieved.

MARSHALL SPECIMEN TESTING

Four Marshall specimens were made of each gradation variation for each mix. These specimens were tested for air voids, VMA, resilient modulus, Marshall stability, and Marshall flow. Air voids and VMA were determined based on specimen bulk specific gravities (AASHTO T166) and Rice maximum specific gravities (AASHTO T209).

Resilient modulus was determined using the diametral test developed by Schmidt⁽¹⁴⁾. The test temperature was 77° F. The dynamic pulse load was 75 pounds and the radial displacement due to the load was measured at 0.05 seconds of loading. Measurements were made on three axes 120 degrees apart and the average was used as the specimen resilient modulus.

4X4 SPECIMEN TESTING

Two 4X4 specimens were made for each gradation variation. These specimens were used for creep testing and split tensile strength testing.

The creep testing was conducted at 104° F using the apparatus depicted in Figure 3-3.

-20-

Figure 3-3. Apparatus Used for Creep Testing.

The specimens were placed in an oven set at 104^o F for at least 24 hours prior to testing. For temperature control during testing, an insulated chamber was placed on the test apparatus around the loading head. Temperature was controlled using a thermal couple temperature probe which was attached as a thermostat to a hair dryer. The test specimens were stored in the chamber at least one hour prior to testing for temperature stabilization.

The top and bottom surfaces of the specimens were coated with graphite prior to testing to reduce surface friction. Prior to creep testing, each specimen was conditioned with a set loading history to reduce any influence due to small surface irregularities. The conditioning consisted of applying the creep loading (15 psi) for 10 minutes followed by 10 minutes of no load.

The creep load (15 psi) was then applied for one hour with the creep deformation being measured at 5 seconds, 30 seconds, 2 minutes, 30 minutes, and 60 minutes. The creep stiffness was calculated for each measurement time as:

 $S_x = l^*h/d$

where

 S_x = the creep stiffness at time x

l = the creep loading stress, 15 psi

h = the original height of the specimen

d = the specimen vertical deformation at time x.

After creep testing, each 4X4 specimen was sawed in half to provide two specimens for the split tensile strength test. The split tensile strength was determined at 77° F using the Marshall test apparatus but with the Marshall breaking head replaced by loading caps that would apply the diametral load over a half-inch bearing width. The rate of loading was the same as the Marshall loading rate, 2 inches per minute.

CHAPTER 4

DATA ANALYSES

ANALYSES OF MARSHALL SPECIMEN DATA

Methods of Analysis

The data from testing the Marshall specimens are listed in Appendix A. These data were analyzed to identify the effect of gradation variation. Two types of analyses were used - analysis of variance and T-test groupings.

Analysis of variance examines the variation in the test parameters (i.e. air voids, VMA, stability, flow, and resilient modulus). It compares the variation observed between replicate mix specimens (specimens having the same gradation) with the variation observed between mix specimens having the different gradations. If gradation has no effect, the degree of variation will be the same for both replicate specimens and for specimens of different gradation. However, if gradation does affect the value of the test parameter, the degree of variation for all the test specimens will be greater than the degree of variation for test specimens from a single gradation.

The measure of statistical significance in the analysis of variance is the F ratio. The level of significance is indicated by the probability of finding a higher F ratio when in fact no effect due to gradation exists. Low probabilities of a higher F indicate a high probability of an effect attributable to gradation. In this study, probabilities less than 0.05 were judged as being indicative of a statistically significant effect due to gradation.

Analysis of variance provides a statistical determination of whether or not differences exist in the test parameter values that might be due to the gradation variation. However, if differences are identified, analysis of variance does not indicate where those differences occur (i.e. which gradations cause the differences). To make this type of determination, the T-test groupings were employed.

-23-
The T-test groupings examine the mean values of the test parameters relative to the various mix gradation categories. The means are compared one by one using the standard T-test. Based on the individual comparisons the gradations are are placed in groups having similar means. The separation of the various gradations into two or more groups indicate a significant difference between the mean values of the test parameter being examined. This, then, is an indication of an effect attributable to the gradation variation.

These two methods of analysis were used to analyze the Marshall specimen data from each of the mixes individually and to analyze all of the data together. When all of the data were analyzed together, the analysis of variance was performed to also identify effects attributable to the type of aggregate (limestone, gravel, and syenite) and the type of mix (surface and binder). The analyses for all the data are presented with the following discussions. The individual mix analyses are listed in Appendix B.

Air Void Analyses

Analysis of variance (Table 4-1) showed that air voids were affected by gradation variation, mix type, and aggregate type. The T-test groupings (Table 4-1 and Tables A-1 through A-3) showed that the FINE-COARSE gradation had the highest air voids for each of the 6 mixes while the COARSE-FINE mix had the lowest. The other gradation variations (i.e. FINE, COARSE, and JMF) tended to have nearly equal air void contents.

These data show that the crossover gradation variations (i.e. COARSE-FINE or FINE-COARSE) have the greatest effect on air voids. Gradation variations that tend to parallel the job mix gradation do not cause significant changes in the mix air void contents. However, gradation variations that cross from coarse on the large size fractions to fine on the small size fractions cause a significant decrease in air voids. Conversely, gradation variations that cross from fine to coarse cause an increase in the air voids. For the mixes tested, the COARSE-FINE gradation would be judged to be most detrimental since it

-24-

Table 4-1. Analyses of Air Voids in All Marshall Specimens.

ANALYSIS OF VARIANCE

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square	F	Prob. of > F
Gradation (G) Aggregate (A) Mix Type (M) G*A G*M A*M G*A*M Error Total	4 2 1 8 4 2 8 90 119	60.102 29.119 7.047 4.450 1.061 2.347 4.913 15.911 124.950	15.025 14.559 7.047 0.556 0.265 1.173 0.614 0.177	84.99 82.35 39.86 3.15 1.50 6.64 3.47	0.0001 0.0001 0.0035 0.2088 0.0020 0.0016

The level of significance is indicated by the probability of greater F. Probabilities less than 0.05 are generally judged as being indicative of a significant effect.

T-TEST GROUPINGS .

T Grouping	Mean	Gradation Variation
	(%)	
A	3.591	FINE-COARSE
В	2.298	FINE
В	2.202	JOB MIX FORMULA
В	2.126	COARSE
С	1.405	COARSE-FINE

Means in the same T Grouping are not significantly different at alpha equal to 0.05.

resulted in air void contents that would be unacceptably low.

VMA Analyses

Analyses of the VMA data produced results nearly identical to the air void analyses. VMA was found to be affected by gradation variation, mix type, and aggregate type (Table 4-2). The T-test groupings for each of the 6 mixes (Tables B-4 through B-6) showed the FINE-COARSE gradation to have the highest VMA with COARSE-FINE having the lowest. The other gradation variations (i.e. FINE, COARSE, and JMF) tended to have nearly equal VMA contents.

Similar to the air void analyses, the crossover gradation variations are seen to (i.e. COARSE-FINE or FINE-COARSE) have the greatest effect on VMA. No significant changes in VMA were observed for gradation variations that tend to parallel the job mix gradation. However, COARSE-FINE gradations cause a significant decrease in VMA while FINE-COARSE gradations cause an increase in VMA. The COARSE-FINE gradation would be judged to be most detrimental since it resulted in VMA content that would be unacceptably low.

Stability Analyses

Analysis of variance (Table 4-3) of the Marshall stability data from all the mixes showed significant effects due to gradation, aggregate type, and mix type. In general, the FINE gradation had the highest stability and the FINE-COARSE gradation had the lowest stability.

These trends, however, were not observed in every mix (Tables B-7 through B-9). The highest stability occurred with the FINE gradation in 5 of the 6 mixes and was second highest in the sixth mix. Similarly, the FINE-COARSE gradation had the lowest stability in 4 of the 6 mixes and was second lowest in the other two.

-26-

Table 4-2. Analyses of VMA of All Marshall Specimens.

ANALYSIS OF VARIANCE

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square	F	Prob. of > F
Gradation (G) Aggregate (A) Mix Type (M) G*A G*M A*M G*A*M Error Total	4 2 1 8 4 2 8 90 119	45.101 17.834 226.051 4.712 0.877 1.718 3.548 12.193 312.033	11.275 8.917 226.051 0.589 0.219 0.859 0.443 0.135	83.23 65.82 1668.61 4.35 1.62 6.34 3.27	0.0001 0.0001 0.0002 0.1764 0.0027 0.0025

The level of significance is indicated by the probability of greater F. Probabilities less than 0.05 are generally judged as being indicative of a significant effect.

T-TEST GROUPINGS

۲

I Grouping	Mean	Gradation Variation
А	(%) 14 721	FINE COADSE
B	13.575	FINE
В	13.508	JOB MIX FORMULA
B	13.454	COARSE
U U	12.829	CUARSE-FINE

Means in the same T Grouping are not significantly different at alpha equal to 0.05.

Table 4-3. Analyses of Stability Data from All Marshall Specimens.

ANALYSIS OF VARIANCE

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square	F	Prob. of > F
Gradation (G) Aggregate (A) Mix Type (M) G*A G*M A*M G*A*M Error Total	4 2 1 8 4 2 8 90 119	12869657 18954544 9403521 2741912 1249571 4854283 1550071 11268529 62892086	3217414 9477272 9403521 342739 312393 2427141 193759 125206	25.70 75.69 75.10 2.74 2.50 19.39 1.55	0.0001 0.0001 0.0095 0.0484 0.0001 0.1522

The level of significance is indicated by the probability of greater F. Probabilities less than 0.05 are generally judged as being indicative of a significant effect.

T-TEST GROUPINGS

T Grouping	Mean	Gradation Variation
	(1b)	
A	4206.7	FINE
A & B	3966.5	COARSE-FINE
B & C	3807.3	JOB MIX FORMULA
C & D	3471.8	COARSE
D	3302.8	FINE-COARSE

Means in the same T Grouping are not significantly different at alpha equal to 0.05.

It should be noted that the stabilities of all the mixes were quite high and that the lowest stabilities observed would not be considered to be indicative of a mixture problem. Consequently, the effect of gradation variation on the stability of these mixes does not appear to be significant.

Flow Analyses

Marshall flow was also found to be affected by gradation, aggregate type, and mix type (Table 4-4). The T-test groupings showed that for 5 of the 6 mixes the COARSE-FINE gradation had the highest flow while the FINE-COARSE gradation had the lowest flow (Tables B-10 through B-12). The other gradation variations (i.e. FINE, JMF, and COARSE) did not show any consistent pattern.

The T grouping analysis for all the data showed the flow data to fit into three gradation groups. The COARSE-FINE gradations were alone in the high flow group and the FINE-COARSE gradations were alone in the low flow group. The other gradations were grouped together.

Thus, similar to the air voids and VMA data, the flow data suggests that gradation variations that parallel the job mix gradation do not significantly affect the mix. The crossover variations that change the shape of the gradation curve do have a significant affect. It should also be pointed out that the flow values of some of the COARSE-FINE gradations approached and exceeded the maximum value⁽¹⁶⁾ generally considered to be acceptable for heavy traffic conditions.

Resilient Modulus Analyses

Analysis of variance found no significant differences in the resilient modulus values that might be attributed to the gradation variation. Analysis of all the data (Table 4-5) indicated significant effects attributable to aggregate type and mix type but no significant effect

-29-

Table 4-4. Analyses of Flow Data from All Marshall Specimens.

ANALYSIS OF VARIANCE

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square	F	Prob. of > F
Gradation (G) Aggregate (A) Mix Type (M) G*A G*M -A*M G*A*M Error Total	4 2 1 8 4 2 8 90 119	221.686 86.565 71.765 70.329 33.529 25.817 15.674 252.430 777.795	55.421 43.283 71.765 8.791 8.382 12.909 1.959 2.805	19.76 15.43 25.59 3.13 2.99 4.60 0.70	0.0001 0.0001 0.0001 0.0036 0.0229 0.0125 0.6920

The level of significance is indicated by the probability of greater F. Probabilities less than 0.05 are generally judged as being indicative of a significant effect.

T-TEST GROUPINGS

Т	Grouping	Mean	Gradation Variation
		(.01")	
	А	15.893	COARSE-FINE
	В	13.858	JOB MIX FORMULA
	В	13.554	FINE
	В	13.346	COARSE
	С	11.633	FINE-COARSE

Means in the same T Grouping are not significantly different at alpha equal to 0.05.

Table 4-5. Analyses of Resilient Modulus Data from All Mixes.

ANALYSIS OF VARIANCE

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square	F	Prob. of > F
Gradation (G) Aggregate (A) Mix Type (M) G*A G*M A*M G*A*M Error Total	4 2 1 8 4 2 8 90 119	54785 521449 4443671 283344 52188 275998 266125 860602 6758162	13696 260724 4443671 35418 13047 137999 33266 9562	1.43 27.27 464.71 3.70 1.36 14.43 3.48	0.2298 0.0001 0.0001 0.0009 0.2526 0.0001 0.0015

The level of significance is indicated by the probability of greater F. Probabilities less than 0.05 are generally judged as being indicative of a significant effect.

T-TEST GROUPINGS

i Grouping. M	ean, KS1 G	radation Variation
A A A A	812 809 803 780 755	JOB MIX FORMULA FINE COARSE COARSE-FINE FINE-COARSE

Means in the same T Grouping are not significantly different at alpha equal to 0.05.

due to gradation. Although analyses of the individual mixes (Tables B-13 through B-15) indicated some effects attributable to gradation, no general trends were apparent. Overall, within the range used in this study gradation variation appears to have little affect on the resilient modulus of the mix.

ANALYSES OF 4X4 SPECIMEN DATA

Methods of Analysis

The data from the 4X4 specimens are listed in Appendix C. These data were analyzed in much the same manner as used with the Marshall specimen data. However, analysis of covariance was used in lieu of analysis of variance for some of the analyses.

Analysis of covariance is quite similar to analysis of variance except that it is used when some of the variables being analyzed are continuous, measured values as opposed to classifications. Gradation category, aggregate type, and mix type are all classification variables. Data from a given mix fits into specific categories of gradation, mix, and aggregate. Air voids, on the other hand, is a measured value that covers a continuous range.

Because air voids could not be controlled precisely but have a strong impact on strength, the analyses of the 4X4 specimen data included examination of the effects of air voids. This was done using the analysis of covariance which, in effect, provides a means to compensate for the influence of differences in air void contents.

The analyses of covariance listings are somewhat different from the listings for analysis of variance. The analyses of covariance show both Type I and Type III sums of squares. The Type I sums of squares pertain to the model analysis and the corresponding F ratios relate to the significance of the mix parameters as they are added sequentially in the analysis. In this respect, they do not necessarily reflect the level of significance for the individual parameters (i.e. gradation, mix type, or aggregate type). The Type III sums of squares and corresponding F ratios provide a measure of the significance of the individual parameters.

-32-

Similar to the analysis of variance, the measure of statistical significance in the analysis of covariance is the F ratio. However, for the individual mix parameters the F ratio from the Type III sums of squares should be examined. The level of significance is indicated by the probability of finding a higher F ratio when in fact no effect due to gradation exists. Low probabilities of a higher F indicate a high probability of an effect attributable to gradation. In this study, probabilities less than 0.05 were judged as being indicative of a statistically significant effect due to gradation.

The analysis of covariance was used primarily with the split tensile strength data. Preliminary analyses of the creep data using analysis of covariance revealed that air void variation did not have a significant effect on the creep stiffnesses. Therefore, analysis of variance was used and is reported for the creep data.

The T-test groupings were again used to examine the mean values of the test parameters relative to the various mix gradation categories. In addition, the split tensile strength data were examined with the mean strengths adjusted for the effects of density.

These methods of analysis were used to analyze the 4X4 specimen data from each of the mixes individually and to analyze all of the data together. When all of the data were analyzed together, the analysis was performed to also identify effects attributable to the type of aggregate (limestone, gravel, and syenite) and the type of mix (surface and binder). The analyses for all the data are presented with the following discussions. Individual mix analyses are listed in Appendix D.

Split Tensile Strength Analyses

The analysis of covariance showed split tensile strength to be affected by gradation variation and air void content (Tables 4-6 and D-1 through D-3). Aggregate type and mix type were not found to be significant as individual parameters but the interaction between them (A^*M) was found to be significant. An examination of the strength data reveals the

-33-

Table 4-6. Split Tensile Strength Data Analyses for All Mixes.

•

ANALYSIS OF COVARIANCE

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square	F	Prob. of >	F
Model Gradation (G) Aggregate (A) Mix Type (M) G*A G*M A*M G*A*M Air Voids Error	4 2 1 8 4 2 8 1 87	6781.7 9084.8 3809.4 1253.1 591.6 5632.7 696.9 19022.5 9818.7	1695.4 4542.4 3809.4 156.6 147.9 2816.4 87.1 19022.5 122.9	15.02 40.25 33.75 1.39 1.31 24.95 0.77 168.55	0.0001 0.0001 0.2131 0.2725 0.0001 0.6284 0.0001	
TYPE ITT SUM OF		50091.5				
Gradation (G) Aggregate (A) Mix Type (M) G*A G*M A*M G*A*M	4 2 1 8 4 2 8	9864.2 25.5 25.7 371.1 1064.5 3800.2 703.4	2466.0 12.7 25.7 46.4 266.1 1900.1 87.9	21.85 0.11 0.23 0.41 2.36 16.84 0.78	0.0001 0.8935 0.6347 0.9115 0.0597 0.0001 0.6222	
ATT VOIUS	1	19022.5	19022.5	108.55	0.0001	

The level of significance is indicated by the probability of greater F. The Type III sum of squares is indicative of individual effects. Probabilities less than 0.05 are generally judged as being indicative of a significant effect.

T-TEST GROUPINGS

T Grouping	Mean	Gradation Variation
•	(psi)	
А	144.1	JOB MIX FORMULA
A & B	139.0	COARSE-FINE
B & C	134.8	FINE
С	129.5	FINE-COARSE
D	122.0	COARSE

Means in the same T Grouping are not significantly different at alpha equal to 0.05.

reason for this. With the limestone and gravel aggregate, the binder mixes had higher strengths than did the surface mixes. However, the surface mix was stronger with the syenite aggregate. Also, the syenite aggregate had the highest strength for surface mixes but the lowest for binder mixes.

The T groupings from all the data (Table 4-6) show the JMF gradation to have the highest strength. The COARSE gradation had the lowest strength and is grouped alone indicating that its strength is significantly lower than any of the other gradation variations. In the individual mix analyses, JMF was found to have the highest strength for 4 of the 6 mixes and COARSE was found to be lowest for 5 of the 6. However, because of the very strong influence of air void content on strength, additional analyses were performed to compensate for the influence of differences in air void content.

This was done by performing regression analyses on the data for each gradation variation. These analyses produced a series of equations that can be used to predict the split tensile strength for any given air void content. The regression equations and the predicted strengths for air void contents of 4 to 7 percent air voids are shown in Table 4-7. Note that at 6 and 7 percent air voids the FINE gradation is predicted to have the highest strength and the JMF gradation is second highest. The COARSE gradation has the lowest predicted strength at each air void content.

Creep Data Analyses

Preliminary analyses of the creep data examined the effect of air voids. These analyses showed that air void content variation was not a significant factor relative to creep stiffness. As an example, the analysis of covariance for the 60 minute creep stiffness for all the data had a probability of greater F of 0.1474 (Table 4-8). Similar results were obtained for each of the other time intervals and in the analyses of the data from the individual mixes.

Subsequent analyses employed analysis of variance and examined the influence of

-35-

Table 4-7. Split Tensile Strengths Adjusted for Air Void Content.

Gradation Variation	4%	Mix Air 5%	Void Content 6%	7%
	Predict	ed Split	Tensile Strength,	psi
JMF	181	164	148	132
FINE	172	161	150	139
FINE-COARSE	171	158	144	130
COARSE-FINE	167	154	140	126
COARSE	142	133	124	114

Prediction Equation: ST = a + b*AV

where

ST = predicted strength
a & b = regression constants that have the following
values

	a	b
JMF	245.8	-16.30
FINE	215.5	-10.92
FINE-COARSE	226.0	-13.65
COARSE-FINE	222.7	-13.81
COARSE	180.1	- 9.41

 $(R^2 = .74, Std. Error of Est. = 11.7)$

Table 4-8. Analysis of Covariance of 60 Minute Creep Data.

ANALYSIS OF COVARIANCE

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square	F	Prob. of > F
Model Gradation (G) Aggregate (A) Mix Type (M) G*A	4 2 1 8	2933400 24890594 372740 3493348	733350 12445297 372740 436668	2.84 48.21 1.44 1.69	0.0421 0.0001 0.2392 0.1430
G*M A*M G*A*M Air Voids Error Total	4 2 8 1 29 59	287244 800213 6545629 572154 7486454 47381776	71811 400107 818204 572154 258154	0.28 1.55 3.17 2.22	0.8897 0.2293 0.0105 0.1474
TYPE III SUM OF Gradation (G) Aggregate (A) Mix Type (M) G*A G*M A*M G*A*M	F SQUARES 4 2 1 8 4 2 8	3026974 2947324 139284 4065483 566694 538552 7063870	756744 1473662 139284 508185 141673 269276 882984	2.93 5.71 0.54 1.97 0.55 1.04 3.42	0.0376 0.0081 0.4685 0.0871 0.7013 0.3652 0.0069
AIT VOIDS	1	5/2154	5/2154	2.22	0.1474

The level of significance is indicated by the probability of greater F. The Type III sum of squares is indicative of individual effects. Probabilities less than 0.05 are generally judged as being indicative of a significant effect. gradation variation, aggregate type, and mix type. Table 4-9 displays the analyses for the 60 minute creep stiffness. The analysis of variance shows that gradation variation and aggregate type have a significant effect on creep stiffness but that mix type is not significant. Analyses of the creep stiffnesses at the other time intervals (Tables D-4 through D-7) were similar except gradation was not significant at the 5 second interval and mix type was significant at 2 minutes, 30 seconds, and 5 seconds.

For each time interval, the T groupings for all the data show that the JMF had the highest creep stiffness and the COARSE-FINE and FINE-COARSE gradations had the lowest creep stiffnesses. FINE and COARSE had about the same stiffnesses and alternated with one another for second and third highest. Thus, similar to the results from the Marshall specimens, the crossover gradation variations were found to have greater impact on the properties of the mix than do gradation variations that result simply in a finer or coarser mix.

However, the differences between creep stiffnesses for the various gradations are not great and the relative rankings are not consistent when the data from the individual mixes are examined. At the 60 minute, 30 second, and 5 second intervals four gradations are placed in a single group indicating no significant difference. When the individual mixes are examined (Table D-8), JMF is found to have the highest creep stiffness only in 2 cases; COARSE-FINE is lowest or second lowest in 4 cases; and FINE-COARSE is lowest or second lowest in only 3 cases.

Comments on Air Voids

Although this study was not intended to study the effect of air voids, the inability to control the air voids in the 4X4 specimens and the impact of air voids on the test results warrant comment. The 4X4 specimens were molded in a manner intended to produce uniform specimens of controlled (5%) air void content. Examination of the creep data (Tables

-38-

Table 4-9. Analyses of 60 Minute Creep Data from All Mixes.

•

ANALYSIS OF VARIANCE

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square	F	Prob. of > F
Gradation (G) Aggregate (A) Mix Type (M) G*A G*M A*M G*A*M Error Total	4 2 1 8 4 2 8 30 59	2933400 24890594 372740 3493348 287244 800213 6545629 8058608 47381776	733350 12445297 372740 436668 71811 400107 818204 268620	2.73 46.33 1.69 1.63 0.27 1.49 3.05	0.0475 0.0001 0.2481 0.1592 0.8966 0.2417 0.0125

The level of significance is indicated by the probability of greater F. Probabilities less than 0.05 are generally judged as being indicative of a significant effect.

T-TEST GROUPINGS

T Grouping	Mean, psi	Gradation Variation
A & B	5994	JOB MIX FORMULA
A & B	5702	FINE
A & B	5680	COARSE
B	5442	COARSE-FINE
B	5367	FINE-COARSE

Means in the same T Grouping are not significantly different at alpha equal to 0.05.

-39-

C-3 and C-4) shows that the control of air voids was not successful. After the creep testing the 4X4 specimens were sawed in half and used for the split tensile testing. The split tensile data (Tables C-1 and C-2) shows that the specimens were also not uniform. In all cases, the top half of the specimen had lower air voids than did the bottom half. In all cases, the top half also had the higher split tensile strength.

Regression analysis of all the split tensile strength data showed that in general a 1% decrease in air voids results in a 12.7 psi increase in split tensile strength. For the individual gradation variations (Table 4-7), this effect ranged from 9.4 psi/% for the COARSE gradations to 16.3 psi/% for the JMF gradations. This suggests that, within the typical range of variation encountered on asphalt construction projects, split tensile strength (and by extension fatigue life) is more sensitive to the density achieved than it is to gradation variation.

Although air voids was not found to be significant in the creep data analyses, the creep data do indicate an effect due to air voids (and density). Correlation analyses of the creep data reveal a significant negative correlation between creep stiffness at each of the testing time intervals and air void content. The negative correlations mean that lower air voids (higher density) result in a higher creep stiffness or lower rut development potential. However, since air voids was not found to be a significant parameter in the creep data analyses (Table 4-8), creep stiffness appears to be less sensitive to density variation than it is to gradation variation.

RELATIVE LIFE EFFECTS

The split tensile strength and creep tests were performed to provide data that could be used to examine the relative effects of gradation variation on the life of an asphalt pavement. The relative life analyses were to follow procedures established by Elliott and Herrin⁽¹⁾. Since the various gradations were examined relative to the job mix formula, the JMF gradation was assigned a relative life of 100%.

-40-

Fatigue Life Analyses

The split tensile strength data was to be used to estimate the effect of gradation variation on the fatigue life of an asphalt pavement. The fatigue procedure is based on work by Maupin⁽¹⁶⁾ who showed that the split tensile strength can provide a reasonable estimate of the fatigue properties of a mix. Using Maupin's relationships, Elliott and Herrin developed the following relative life equation:

 $\log (N_a/N_b) = SF * (ST_a - ST_b)$

where

 N_a/N_b = the relative life ratio for two mix variations, a and b ST_a and ST_b = the split tensile strengths of the two mix variations SF = a strain factor which Elliott and Herrin found to be 0.0163 for typical asphalt pavements. The relative life equation was applied to both the mean strength data and to the split

The relative life equation was applied to both the mean strength data and to the split tensile strengths adjusted for air void content. Table 4-10 lists the relative life predictions based on the mean strength data and on the strengths predicted for 5% air voids which was the target air voids for the study. The relative life predictions for air void contents of 4 to 7 percent are shown in Figure 4-1.

These results indicate that the relative life prediction is quite sensitive to variations in split tensile strength. They show that the COARSE gradation variation can be expected to have a significantly greater detrimental impact on fatigue life than do the other variations. The results also suggest that, within the normal range of air void and gradation variation, fatigue life is generally more sensitive to air void content (i.e. compaction) than it is to gradation.

Rut Depth Analyses

The creep data were to be used to examine relative life effects in terms of rut development. The simple creep data are used in the Shell method⁽¹⁷⁾ of asphalt pavement design Table 4-10. Relative Fatigue Life Analyses Using Mean Strength Data and . Predicted Strength at 5% Air Voids.

Gradation	Mean	Relative	Predicted	Relative
Variation	Strength	Life	Strength, 5% AV	Life
JMF	144 psi	100%	164 psi	100%
FINE	139 psi	83%	161 psi	88%
FINE-COARSE	135 psi	71%	158 psi	78%
COARSE-FINE	130 psi	58%	154 psi	67%
COARSE	122 psi	44%	133 psi	31%

0

Figure 4-1. Fatigue Relative Life Effects of Gradation and Air Voids.

to predict rutting in asphalt layers. In its simplest form, the Shell rut prediction equation is:

where

 $RD = h * s/S_{mix}$

 $\begin{array}{l} RD = \mbox{the predicted depth of rutting} \\ h = \mbox{the thickness of the asphalt layer} \\ s = \mbox{the average load induced stress in the layer} \\ S_{mix} = \mbox{the stiffness of the mix at the total (accumulated) time of all axle loadings applied.} \\ The stiffness of the mix used in the prediction is for the mix at a temperature "repre-$

sentative" of local climatic conditions and at the accumulated total time of heavy vehicle applications. The stiffness is selected based on a relationship developed from the simple creep test between the stiffness of the mix and the stiffness of the asphalt cement.

Shell has shown that a linear logarithmic relationship exists between mix stiffness and asphalt stiffness. The specific relationship for a given mix is developed by: 1) measuring the mix stiffness at various time intervals using the simple creep test, 2) determining the asphalt stiffness at those time intervals and the creep test temperature using Van der Poel's nomo-graph (Figure 4-2), and 3) performing a best fit linear logarithmic regression analysis on the stiffness values.

In the rut depth prediction for a given mix, the total time of axle loading and the "representative" mix temperature are determined. These are used with Van der Poel's nomograph to determine the asphalt cement stiffness. This asphalt mix stiffness is then used with the linear logarithmic relationship to determine the mix stiffness that goes into the rut depth prediction equation.

The data from this study were analyzed to develop the "typical" linear logarithmic relationships for each gradation variation. The resulting relationships were subsequently used with the Shell method of rut prediction to examine the effect of the gradation variations on rut development in a 6 inch asphalt layer. Two types of analyses were made: 1) relative depth of rutting for a fixed number of axle loads and 2) relative life in terms of the number of axle loads to a fixed depth of rutting. Both analyses were made for two levels of

-44-

Figure 4-2. Van der Poel's Asphalt Stiffness Nomograph (17).

-45-

traffic - 1 million and 50 million axle applications. The rut depth in the JMF gradation at the two traffic levels served as the fixed depth of rutting for the relative life analysis.

The results of the rut depth analyses are presented in Table 4-11. The upper portion of the table shows the relative depth of rutting for the two traffic levels (one million and fifty million axle applications). These analyses indicate that, in comparison with the JMF gradation, the FINE and COARSE gradation variations would experience 7 to 10% greater depth of rutting and the COARSE-FINE and FINE-COARSE gradation variations would experience 13 to 19% greater depth of rutting.

The lower half of Table 4-11 displays the results of the relative life analyses. The relative life is based on the number of load applications to fixed depths of rutting. The depths of rutting in these analyses were the depths predicted in the JMF mix for one million and fifty million axle applications. These analyses indicate that the relative life of the FINE and COARSE gradations are only 30 to 40% that of the JMF gradation and that the COARSE-FINE and FINE-COARSE relative lives are only 11 to 23%.

Comments Regarding Relative Life Analyses

The relative life analyses demonstrate that predicted fatigue life and rut development is quite sensitive to seemingly minor variations in split tensile strength and creep behavior. For example, the difference between the creep stiffnesses of the JMF, FINE and COARSE gradations are not statistically significant; yet, the relative life analysis indicates a 60 to 70% reduction in relative life based on rut development. Similarly, the differences in the split tensile strengths of the JMF and FINE gradations are not statistically significant; and the relative life analysis indicates a fatigue life reduction of 17% for the FINE gradation.

This does not suggest that the relative life analyses are in error but it does show that they must be viewed with caution and should not be applied to an individual case without due consideration of the influence of normal construction variability. Bear in mind that the Table 4-11. Relative Rut Depth Prediction Analyses.

Gradation Variation	DEPTH OF RU <u>One Million</u> <u>Rut Depth</u>	JTTING TO FIX <u>Axle Loads</u> <u>% of JMF</u>	ED NUMBER OF Fifty Millio Rut Depth	AXLE LOADS <u>n Axle Loads</u> <u>% of JMF</u>
JOB MIX FORMULA	.160"	100	.210"	100
FINE	.172"	107	. 230"	109
COARSE	.172"	107	.232"	110
COARSE-FINE	.180"	113	.246"	117
FINE-COARSE	.186"	116	.249"	119

Gradation Variation	PREDICTED APP <u>Rut Depth =</u> <u>Applications</u>	LICATIONS <u>.160"</u> % of JMF	TO FIXED DEPTH <u>Rut Depth =</u> Applications	OF RUTTING .210" % of JMF
JOB MIX FORMULA	1,000,000	100	50,000,000	100
FINE	401,000	40	14,960,000	30
COARSE	389,000	39	13,540,000	27
COARSE-FINE	226,000	23	6,810,000	14
FINE-COARSE	165,500	17	5,360,000	11

-47-

variability tested in this study reflects the extremes encountered on typical construction projects. Consequently the extremes of relative life predicted should also represent typical extremes. The observed sensitivity may account for the variability of performance that is normal to most pavements.

CHAPTER 5

.

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

This study investigated the effect of aggregate gradation variation on the behavior of asphalt concrete hot mixes. The gradation variations tested were selected to represent the extremes typically encountered on actual construction projects. Six mixes were tested, three surfaces and three binders. Each mix was tested at 5 different aggregate gradations (Figure 3-1) - 1) the job mix formula (JMF), 2) a coarse gradation (COARSE), 3) a fine gradation (FINE), 4) a gradation that crossed from coarse on the large size fractions to fine on the small size fractions (COARSE-FINE), and 5) a gradation that crossed from fine on the large size fractions to coarse on the small size fractions (FINE-COARSE).

The measures of effect were the Marshall mix design parameters (i.e. stability, flow, air voids, and VMA), resilient modulus, tensile strength, and creep stiffness. The tensile strength data and creep stiffness data were used to estimate the relative pavement life effects of the variations.

Based on analysis of the data from this study, the following conclusions are in order.

- Gradation variations within the magnitude tested have the greatest effect when they result in a change in the general shape of the gradation curve (i.e. the FINE-COARSE and COARSE-FINE gradations).
- FINE-COARSE gradation variations cause the highest Marshall air voids and VMA. COARSE-FINE gradation variations cause the lowest Marshall air voids and VMA.
- 3) COARSE-FINE gradation variations produce the highest Marshall flow and FINE-COARSE gradation variations produce the lowest.
- Creep stiffness is lowest for COARSE-FINE and FINE-COARSE gradation variations.

-49-

- 5) Relative to air voids, VMA, and flow, the COARSE-FINE gradation produced the most detrimental effect on the mixes tested. Some of the air void and VMA values were less than those normally considered to be acceptable and some of the flow values were greater than those normally acceptable.
- 6) Marshall stability is affected by gradation variations with the FINE gradations producing the highest stability and the FINE-COARSE gradations producing the lowest. However, for the mixes tested all of the gradations were found to have stabilities that are considered to be more than adequate.
- 7) COARSE gradation variations produce the lowest tensile strengths. The JMF gradation generally produced the highest strength but, when adjusted for differences in air voids, all gradations except COARSE had about the same strength.
- 8) Within the range of variations normally encountered, tensile strength is more sensitive to air void content (i.e. compaction) than it is to gradation variation.

IMPLEMENTATION RECOMMENDATIONS

This study has provided information and findings that should be useful in four areas: 1) the review and modification of quality control practices, 2) specification maximum tolerance levels, 3) mix design gradation adjustments, and 4) pay adjustments for mix produced that does not quite comply with the specification tolerance limits. The following are brief discussions regarding each of these potential uses.

Quality Control Practices

The data and analyses from this study demonstrate that improvements in construction quality control that would result in a reduction in gradation variability should also result in an improvement in pavement performance. However, the data also suggests that, within the range of variability normally encountered, improved density control is more critical than improved gradation control.

Specification Maximum Tolerance Limits

The gradation variations tested in this study represent the maximum variations typically encountered on construction projects and closely correspond with the AHTD specification maximum tolerance limits. In general, the mix properties tested in this study were not drastically affected by these variations and the greatest effect was observed with the gradation variations that changed the shape of the gradation curve (i.e. FINE-COARSE and COARSE-FINE). This suggests that the current AHTD maximum tolerance limits are reasonable but that some additional requirement to control the shape of the gradation curve would be beneficial. Some thought was given to the form such a requirement could take, but no satisfactory form was identified.

Gradation Adjustment Decisions

The results of this study suggest that care should be exercised in making decisions regarding mix gradation adjustment without first performing mix design tests. In particular, no change should be made that results in a change in the shape of the gradation curve unless backed up by laboratory test results.

Pay Adjustments

The relative life analyses can be used as the basis for the development of pay adjust-

-51-

ment schedules for Quality Assurance specifications and for mix produced under current specifications that does not quite comply with the gradation maximum tolerance limits. However, the analyses cannot be applied directly but must consider both the normal degree of construction variability and the degree of variability on the job in question.

For the proper development of a pay adjustment schedule, analyses must be performed to identify the degree and sources of variation under current construction and material testing practices. From these analyses, a statistically sound acceptance sampling plan would need to be established. The plan must be designed to assure that the pay schedule and its use are unbiased ("fair" to both AHTD and the contractor) and technically defensible. The effort needed to develop such schedules is beyond the scope of this project.

REFERENCES

- Elliott, R.P. and Herrin, M., "Relative Life Effects of Mix Composition and Density Variation," Proceedings, Association of Asphalt Paving Technologists, 1985.
- McLeod, N.W., "Influence of Tolerances from the Job-Mix Formula on Properties of Paving Mixtures," Proceedings, Canadian Technical Asphalt Association, 1976.
- 3. Zenewitz, J.A. and Welborn, J.Y., "Predicting Asphalt Performance," Federal Highway Administration, Report No. FHWA-RD-76-133, November, 1976.
- 4. Barksdale, R.D., "Practical Application of Fatigue and Rutting Tests on Bituminous Base Mixes," Proceedings, Association of Asphalt Paving Technologists, 1978.
- 5. Khalifa, M.O. and Herrin, M., "The Behavior of Asphaltic Concrete Constructed with Large Sized Aggregate," Proceedings, Association of Asphalt Paving Technologists, 1970.
- 6. Nichols, Jr., F.P., and Kalcheff, I.P., "Asphalt Aggregate Mix Evaluation from Repetitive Compression and Indirect Tensile Splitting Tests," Status Summary, National Crushed Stone Association, 1979.
- 7. Kirk, J.M., "Relations between Mix design and Fatigue Properties of Asphaltic Concrete," Proceedings, Third International Conference on the Structural Design of Asphalt Pavements, London, England, 1972.
- 8. Walter, J., Hicks, R.G., Mahoney, J.P., and Wilson, Jr., J., "Effect of Mix Variations on Asphalt Pavement Life: North Oakland-Sutherlin Project," Transportation Research Record 843, 1982.
- 9. Finn, F.N., "Factors Involved in the Design of Asphaltic Pavement Surfaces," National Cooperative Highway Research Program, Report 39, 1967.
- Epps, J.A. and Monismith, C.L., "Influence of Mixture Variables on the Direct Tensile Properties of Asphalt Concrete," Proceedings, Association of Asphalt Paving Technologists, 1970.
- 11. Pell, P.S. and Taylor, I.F., "Asphaltic Road Materials in Fatigue," Proceedings, Association of Asphalt Paving Technologists, 1969.
- 12. Monismith, C.L., Epps, J.A., Kasianchuk, D.A., and McLean, D.B., "Asphalt Mixture Behavior in Repeated Flexure," Report No. TE 70 J, Institute of Transportation and Traffic Engineering, University of California, 1970.
- 13. "Standard Specifications for Transportation Materials and Methods of Sampling and Testing", Part II, Methods of Sampling and Testing, The American Association of State Highway and Transportation Officials, 1986.

-53-

- 14. Schmidt, R.J., "A Practical Method for Measuring the Resilient Modulus of Asphalt-Treated Mixes," Highway Research Record 404, 1972.
- 15. "Mix Design Methods for Asphalt Concrete and Other Hot-Mix Types," The Asphalt Institute, Manual Series No. 2, 1984.
- Maupin, Jr., G.W. and Freeman, Jr., J.R., "Simple Procedure for Fatigue Characterization of Bituminous Concrete," Federal Highway Administration, Report No. FHWA-RD-76-102, 1976.
- 17. "Shell Pavement Design Manual," Shell International Petroleum Company, London, England, 1978.

APPENDIX A

MARSHALL SPECIMEN DATA

Table A-1. Marshall Specimen Test Results - Limestone Surface Mix.

0

1989		IN.)	1				
DATE: 10 MAY	2.600	FLOW (1/100	14.2 14.8 13.7 13.7	11.0 13.6 12.5 11.5	15.0 15.1 14.9 13.9	14.0 15.0 15.5	11.5 11.4 11.4 10.2
	AVG:	(LB.) ADJ.	3328 3201 2982 3015	2957 3391 3191 3198	3084 3450 3464 3336	3032 2800 3132 2752	3114 2985 2950 3083
2.600 2.590	2.598 2.598	STAB. MEAS.	3375 3280 3030 3070	3030 3460 3300 3230	3090 3450 3635 3380	3050 2800 3095 2680	3240 3080 3070 3140
IF ARSE ME	SE-FIN N-CRSE	VOIDS FILLED	88.6 87.4 85.1 89.6	84.7 89.0 88.7 91.0	89.5 89.1 88.9 88.9	91.2 90.8 94.2 96.4	81.6 81.2 81.9 86.2
AG: JM CO CO	IRE	IDS	14.5 14.6 15.0 14.3	15.4 14.7 14.8 14.5	14.2 14.2 13.6 14.3	14.2 14.2 13.8 13.5	15.5 15.6 15.5 14.8
SP. GR.		% VO AIR	1.65 1.84 2.23 1.50	2.35 1.62 1.68 1.30	1.49 1.55 0.84 1.58	$\begin{array}{c} 1.25\\ 1.31\\ 0.80\\ 0.49\end{array}$	2.84 2.93 2.79 2.04
U	0	AGG. %VOL.	85.5 85.4 85.0 85.7	84.6 85.3 85.2 85.5	85.8 85.8 86.4 85.7	85.8 85.8 86.2 86.2	84.5 84.5 84.5 85.2
AC-30 1.029 75 BLOU		AVITY THEOR.	2.395 2.395 2.395 2.395	2.387 2.387 2.387 2.387	2.399 2.399 2.399 2.399	2.402 2.402 2.402 2.402	2.394 2.394 2.394 2.394
DE AC: R. AC: TTOM:		SP. GR. ACTUAL	2.356 2.351 2.351 2.359	2.331 2.348 2.347 2.356	2.364 2.362 2.379 2.361	2.372 2.370 2.382 2.390	2.326 2.323 2.327 2.345
GRAI SP. GF		AMS) SSD	1213.6 1214.1 1205.5 1214.4	1200.9 1217.0 1213.8 1207.4	1211.7 1214.1 1211.2 1216.2	1215.3 1212.1 1210.5 1208.4	1222.0 1210.2 1215.7 1193.0
ш		HT (GR/ WATER	698.5 697.9 690.9	686.4 699.0 697.1 695.2	699.2 700.2 702.2 701.3	703.1 700.9 702.5 702.8	696.7 689.5 693.3 682.2
01 LIMESTON		WEIGAIR	1213.4 1213.7 1205.1 1213.9	1199.4 1216.5 1212.8 1206.8	1211.3 1213.8 1210.9 1215.8	1214.7 1211.6 1210.3 1208.3	1221.6 1209.8 1215.5 1197.7
TRC-88 PE: SURFACF	90043	HT. CORR.	0.986 0.976 0.984 0.982	0.976 0.980 0.967 0.990	0.998 1.000 0.953 0.987	0.994 1.000 1.012 1.027	0.961 0.969 0.982 0.982
T NO. AL TY	08 #	% A.C.	5.6 5.6		5.6 5.6	IN: 5.6 5.6	SE: 5.6 5.6
PROJEC MATERI/ MIX_TVI	AHTD JU	GRAD.	JMF :	COARSE	FINE:	CRSE-F1	FIN-CRS

0

-56-

Table A-2. Marshall Specimen Test Results - Syenite Surface Mix.

1989.	IN.)					
DATE: 10 MAY	2.62/ FLOW. (1/100	11.6 12.8 12.4 14.0	10.5 10.2 12.5	14.5 15.0 12.5	15.5 15.6 16.6 13.0	10.2 13.0 11.5
	AVG: (LB.) ADJ.	3490 2727 2847 3471	3235 3049 3000 3270	3500 4114 4230 3920	3654 3570 3432 3266	2651 2890 2704 2955
2.628 2.628 2.630	2.62/ STAB. MEAS.	3490 2730 2850 3390	3090 3055 2930 3280	3500 4110 4230 3920	3470 3390 3300 3140	2670 2890 2740 2900
4F DARSE INE RSE-FIN	IN-CRSE VOIDS FILLED	82.4 78.4 78.8 83.8	84.3 78.8 81.9 81.2	77.4 80.4 81.1 82.0	90.4 88.2 88.5 88.7	72.6 74.1 74.7
	IDS VMA	14.8 15.4 15.4	14.5 15.3 14.8 15.0	15.6 15.1 15.0 14.8	13.7 14.0 13.9 13.9	16.4 16.2 16.1 16.1
SP. GR.	% VO AIR	2.60 3.33 3.26 2.35	2.28 3.26 2.69 2.82	3.53 2.95 2.84 2.67	1.30 1.64 1.60 1.57	4.49 4.18 4.06 4.16
(0	AGG. %VOL.	85.2 84.6 84.6 85.4	85.5 84.7 85.2 85.0	84.4 84.9 85.0 85.2	86.3 86.0 86.1 86.1	83.6 83.8 83.9 83.9
AC-30 1.029 75 BLOWS	AVITY THEOR.	2.428 2.428 2.428 2.428	2.424 2.424 2.424 2.424	2.429 2.429 2.429 2.429	2.430 2.430 2.430 2.430	2.427 2.427 2.427 2.427
DE AC: R. AC: CTION:	SP. GR ACTUAL	2.365 2.347 2.349 2.371	2.369 2.345 2.356 2.356	2.343 2.357 2.360 2.364	2.398 2.390 2.391 2.392	2.318 2.326 2.329 2.329
GRAI SP. GI COMPA	MS) SSD	1195.1 1194.1 1197.7 1199.8	1184.9 1195.1 1193.0 1201.0	1191.1 1208.2 1197.4 1200.0	1195.1 1192.1 1197.2 1200.7	1189.3 1187.4 1192.8 1180.9
	HT (GRA WATER	689.9 685.8 688.1 694.0	684.8 685.9 687.4 691.3	683.0 695.8 690.3 692.7	696.8 693.6 698.8 698.8	676.6 677.1 680.9 673.5
301 SYENITE E	WEIG	1194.7 1193.1 1193.1 1197.0 1199.2	1184.6 1194.1 1192.6 1200.7	1190.5 1207.8 1196.7 1199.3	1194.9 1191.3 1196.4 1200.3	1188.5 1186.8 1192.1 1180.3
TRC-88 PE: SURFACI 60275	HT. CORR.	1.000 0.999 0.999 1.024	1.047 0.998 1.024 0.997	1.000 1.001 1.000 1.000	1.053 1.053 1.040 1.040	0.993 1.000 0.987 1.019
CT NO. [AL TY (PE:]0B #	% A.C.	 		ບັບບັບ ບັບບັບ	IN: 5.3 5.3	SS 55.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.
PROJEC MATERI MIX TY AHTD J	GRAD.	JMF:	COARSE	FINE:	CRSE - F	FIN-CR

-57-

Table A-3. Marshall Specimen Test Results - Gravel Surface Mix.

FLOW (1/100 IN.) DATE: 10 MAY 1989 12.4 12.8 12.2 12.0 11.8 12.7 14.5 14.0 11.0 12.1 11.1 12.5 11.8 13.0 10.3 11.1 11.6 10.4 2.61 AVG: (LB.) ADJ. (3950 4047 3892 3423 3504 3870 3771 3625 4050 4515 4830 4085 4964 4449 4864 4774 3123 3502 3487 3120 STAB. MEAS. 2.611 2.599 2.617 2.619 2.619 2.604 3970 4100 3900 3500 3590 3870 3730 3680 4050 4475 4830 4110 3200 3625 3640 3250 4900 4340 4750 4680 VOIDS FILLED COARSE FINE CRSE-FIN FIN-CRSE 81.3 81.6 79.3 77.9 78.9 83.0 86.2 81.2 78.0 78.9 78.5 84.5 85.6 85.7 87.4 85.0 72.3 71.3 72.9 69.6 M % VOIDS AIR VMA 15.1 15.1 15.4 15.7 15.4 14.8 15.1 15.7 15.5 15.6 14.7 14.5 14.5 14.3 14.6 16.7 16.8 16.5 17.2 GR. AG: 2.83 2.77 3.19 3.47 3.262.52 1.98 2.83 3.44 3.28 3.36 2.27 2.08 2.07 2.19 4.62 4.82 4.48 5.22 SP. 84.9 84.9 84.6 84.3 AGG. %VOL 84.6 85.2 85.7 84.9 84.3 84.5 84.4 85.3 85.5 85.5 85.7 85.4 83.3 83.5 82.8 AC-30 1.029 75 BLOWS 2.416 2.416 2.416 2.416 SP. GRAVITY ACTUAL THEOR. 2.405 2.405 2.405 2.405 2.401 2.401 2.401 2.401 2.417 2.417 2.417 2.417 2.411 2.411 2.411 2.411 2.343 2.344 2.334 2.327 2.323 2.341 2.354 2.333 2.332 2.336 2.334 2.361 2.367 2.367 2.374 2.364 2.294 2.289 2.298 2.280 GRADE AC: SP. GR. AC: COMPACTION: 1193.0 1194.4 1192.0 1197.7 1190.6 1189.2 1190.4 1190.4 1193.1 1188.6 1193.9 1191.0 1196.6 1182.4 1195.6 1187.6 1188.2 1194.5 1202.9 1187.8 WEIGHT (GRAMS) AIR WATER SSD 683.9 685.2 681.5 683.6 678.4 681.4 684.7 680.5 681.8 680.0 682.6 686.7 691.3 683.2 692.0 685.5 670.5 673.0 679.6 667.1 1192.6 1193.6 1191.5 1196.4 1189.8 1188.6 1190.2 1189.7 1192.6 1188.3 1193.6 1190.6 1196.0 1181.7 1195.4 1187.1 1187.7 1193.8 1202.3 1187.0 GRAVEL PROJECT NO. TRC-8801 MATERIAL TYPE: GRA MIX TYPE: SURFACE AHTD JOB # 3989 1.000 1.009 1.000 0.994 1.013 1.025 1.024 1.020 0.995 0.987 0.998 0.978 0.976 1.000 1.011 0.985 0.976 0.966 0.958 0.960 HT. CORR. % А.С. CRSE-FIN: 5.4 5.4 5.4 5.4 FIN-CRSE: 5.4 5.4 5.4 5.4 5.4.4 4.4.4 5.44 5.44 55554 4444 COARSE GRAD. FINE: JMF

-58-

Table A-4. Marshall Specimen Test Results - Limestone Binder Mix.

.

PROJEC MATERI/ MIX_TYI	L NO.	TRC-88(PE: 1 BINDER	JI .IMESTON	ш	GRAI SP. GF COMPAC	DE AC: R. AC: CTION:	AC-30 1.029 75 BLOWS		SP. GR.	AG: JM CO FII	F ARSE NE EF FIN	2.581 2.573 2.594		DATE: 10 MAY 1989
	#	90043/B								FIL	N-CRSE	2.578	AVG:	2.583
GRAD.	% A.C.	HT. CORR.	WEIG	HT (GR/ WATER	AMS) SSD	SP. GR ACTUAL	AVITY THEOR.	AGG. %VOL.	% VO AIR	IDS VMA	VOIDS FILLED	STAB. MEAS.	(LB.) ADJ.	FLOW (1/100 IN.)
JMF :	44.4	1.012 1.031 1.021 1.039	1186.0 1186.5 1185.4 1188.5	697.8 692.0 692.3 692.3	1187.9 1188.1 1188.1 1187.5 1189.6	2.420 2.392 2.402 2.390	2.424 2.424 2.424 2.424	89.7 88.7 89.1 88.6	0.16 1.33 0.90 1.40	10.3 11.3 11.9 11.4	98.4 88.3 91.8 87.7	3825 3825 4040 4750 4500	3871 3871 4165 4850 4676	16.0 14.7 22.0 14.6
COARSE		$\begin{array}{c} 0.982\\ 0.991\\ 1.000\\ 1.000\end{array}$	1184.9 1180.4 1180.7 1190.1	685.0 684.2 686.5 696.4	1187.7 1183.7 1183.9 1192.7	2.357 2.363 2.374 2.398	2.417 2.417 2.417 2.417	87.7 87.9 88.3 89.2	2.48 2.23 1.79 0.79	12.3 12.1 11.7 10.8	79.9 81.6 84.7 92.7	4180 3600 3845 3075	4105 3568 3845 3075	19.1 14.4 16.0
FINE:	4 4 4 4 .0.0 .0 .0	1.030 1.037 1.026 1.047	1186.8 1197.5 1190.0 1189.3	693.3 701.3 694.6 697.0	1188.0 1198.3 1191.4 1190.6	2.399 2.409 2.395 2.409	2.435 2.435 2.435 2.435	88.5 88.9 88.4 88.9	1.47 1.04 1.62 1.04	11.5 11.1 11.6 11.1	87.2 90.6 86.1 90.6	3850 4000 5025 4350	3966 4148 5156 4554	15.5 15.5 15.1 13.1
CRSE-F	4 4 4 . 3 4 . 3 4 . 3 4 . 3	1.030 1.057 1.042 1.055	1185.2 1180.2 1186.5 1186.8	694.3 694.0 696.5 696.9	1187.5 1181.6 1188.3 1187.9	2.403 2.420 2.413 2.417	2.431 2.431 2.431 2.431	88.8 89.4 89.1 89.3	$\begin{array}{c} 1.16\\ 0.45\\ 0.77\\ 0.59\end{array}$	11.2 10.6 10.9 10.7	89.6 95.7 92.9	4330 3765 4500 4190	4460 3980 4689 4420	16.0 18.7 22.5 26.0
F IN-CR:	бЕ: 4.3 4.3	$\begin{array}{c} 0.972\\ 1.000\\ 0.966\\ 0.999\end{array}$	1183.1 1182.2 1189.1 1180.1	679.7 682.1 684.2 680.3	1185.9 1185.0 1192.2 1183.4	2.337 2.351 2.341 2.346	2.421 2.421 2.421 2.421	86.8 87.3 86.9 87.1	3.47 2.91 3.33 3.12	13.2 12.7 13.1 12.9	73.8 77.1 74.6 75.8	3720 4230 4150 3900	3616 4230 4009 3896	12.1 15.5 13.9

-59-
Syenite Binder Mix. Marshall Specimen Test Results Table A-5.

DATE: 10 MAY 1989 IN.) FLOW 1/100 1 12.2 12.2 11.0 15.0 14.3 12.3 11.6 14.0 12.6 13.4 16.6 17.8 14.8 13.7 111.4 112.4 112.0 110.0 AVG: 2.615 (LB.) ADJ. 3598 3760 3901 3303 2897 3400 2445 3423 3443 4467 3427 3997 3142 4004 3468 3202 2737 3119 2799 2584 2.614 2.610 2.617 2.617 2.616 2.616 STAB. MEAS. 3580 3760 3870 3245 2900 3400 2390 3500 3520 4480 3430 3950 3050 3880 3420 3130 2845 3170 2845 2680 VOIDS JMF COARSE FINE CRSE-FIN FIN-CRSE 86.7 85.8 85.1 85.9 69.8 81.9 83.4 73.3 75.9 77.0 77.3 87.1 89.4 85.2 86.0 90.8 89.3 88.1 87.3 % VOIDS AIR VMA 12.3 12.1 11.8 12.3 12.2 14.7 12.8 12.8 12.6 11.7 11.8 12.0 12.1 14.1 13.6 13.5 13.4 AG: GR. 1.561.251.821.714.43 2.31 2.31 2.08 1.611.741.831.731.081.271.421.533.76 3.29 3.09 3.04 SP. 87.9 87.8 87.7 87.8 87.9 88.2 87.7 87.8 AGG. %VOL 85.3 87.2 87.2 87.4 88.3 88.2 88.0 87.9 85.9 86.4 86.5 86.5 AC-30 1.029 75 BLOWS SP. GRAVITY ACTUAL THEOR. 2.445 2.445 2.445 2.445 2.441 2.441 2.441 2.441 2.447 2.447 2.447 2.447 2.446 2.446 2.446 2.446 2.446 2.446 2.446 2.446 2.405 2.402 2.400 2.400 2.4032.4112.3972.3992.339 2.391 2.391 2.396 2.420 2.415 2.411 2.409 2.354 2.366 2.371 2.372 GRADE AC: SP. GR. AC: COMPACTION: 1202.8 1203.9 1206.7 1206.7 1204.2 1205.3 1172.1 1211.2 1205.0 1217.2 1206.9 1206.7 1202.1 1206.7 1207.5 1205.9 1203.9 1203.3 1206.5 1208.6 WEIGHT (GRAMS) AIR WATER SSD 703.5 703.3 704.9 701.2 703.9 705.9 684.0 707.4 690.0 708.5 702.6 703.5 705.8 707.4 707.5 705.8 693.3 695.4 698.3 700.0 1200.9 1202.4 1204.2 198.5 1202.3 1203.9 1169.9 1208.8 201.0 205.9 205.7 204.6 204.4 216.1 205.6 205.7 202.1 201.6 204.7 206.3 SYENITE PROJECT NO. TRC-8801 MATERIAL TYPE: SYEI MIX TYPE: BINDER AHTD JOB # 60280 0.978 0.997 0.992 1.012 1.005 1.000 1.008 1.018 $\begin{array}{c} 0.999\\ 1.000\\ 1.023\\ 0.978 \end{array}$ $\begin{array}{c} 0.962 \\ 0.984 \\ 0.984 \\ 0.964 \end{array}$.030 .032 .014 .023 HT. CORR. A.C. 4 4 4 5 5 5 5 5 ບບບບ ບຸບຸບຸບ 4 4 4 4 CRSE-FIN FIN-CRSE COARSE GRAD. FINE: JMF

-60-

	1989	IN.)	1 1 1				
	DATE: 10 MAY 2.565	FLOW (1/100	13.0 12.1 13.2 14.0	14.8 19.3 13.7 13.6	13.4 14.0 12.1 11.9	16.8 16.6 13.8	13.4 11.5 10.9 10.4
	AVG:	(LB.) ADJ.	4514 4388 4431 5544	4699 4425 3054 4326	5112 5112 5115 4958	5095 4965 4010 5072	4099 3982 3961 3670
	2.563 2.558 2.570 2.569 2.563	STAB. MEAS.	4460 4410 4400 5500	4880 4465 3120 4410	4930 5900 4875	5060 4820 4010 4910	4145 3950 3730 3730
	MF COARSE FIN FIN FIN FIN FIN-CRSE	VOIDS FILLED	76.6 79.1 78.9 78.3	84.3 82.4 80.1 81.5	84.3 83.4 80.1 79.1	81.0 89.4 83.7 84.8	74.0 76.5 73.8 73.3
	AG: J	IDS VMA	13.0 12.7 12.7 12.8	12.0 12.5 12.3	12.0 12.1 12.5 12.7	12.4 11.4 12.1 11.9	13.4 13.6 13.5 13.5
2	SP. GR.	% VO AIR	3.04 2.64 2.78	1.88 2.14 2.28	$\begin{array}{c} 1.88\\ 2.02\\ 2.50\\ 2.65\end{array}$	2.36 1.21 1.96 1.82	3.49 3.51 3.51
		AGG. %VOL.	87.0 87.3 87.3 87.3 87.2	88.0 87.8 87.5 87.7	88.0 87.9 87.5 87.3	87.6 88.6 87.9 88.1	86.6 87.0 86.5 86.5
	AC-30 1.029 75 BLOWS	AVITY THEOR.	2.405 2.405 2.405 2.405	2.401 2.401 2.401 2.401	2.411 2.411 2.411 2.411	2.410 2.410 2.410 2.410	2.405 2.405 2.405 2.405
	DE AC: R. AC: CTION:	SP. GR ACTUAL	2.332 2.342 2.341 2.338	2.356 2.350 2.341 2.346	2.366 2.362 2.351 2.347	2.353 2.381 2.363 2.366	2.321 2.332 2.332 2.318
	GRA SP. G COMPA	MS) SSD	1169.6 1166.6 1171.3 1169.6	1165.7 1163.8 1165.7 1166.4	1163.1 1174.0 1172.6 1168.8	1170.0 1171.0 1168.2 1169.0	1162.2 1166.6 1158.0 1173.5
		HT (GRA WATER	669.0 669.5 672.8 671.1	672.3 669.9 669.4 670.9	672.2 677.7 674.2 671.6	674.5 679.8 674.8 674.8 676.2	662.6 667.0 659.7 668.5
•	01 GRAVEL	WEIG	1167.4 1164.1 1167.0 1165.7	1162.4 1160.5 1161.9 1162.6	1161.4 1172.5 1171.7 1167.0	1166.1 1169.6 1165.9 1166.2	1159.7 1164.9 1156.4 1170.7
	TRC-88 PE: BINDER 3857	HT. CORR.	1.012 0.995 1.007 1.008	0.963 0.991 0.979 0.981	1.037 1.024 1.023 1.017	$\begin{array}{c} 1.007\\ 1.030\\ 1.030\\ 1.003\end{array}$	$\begin{array}{c} 0.989\\ 1.008\\ 1.008\\ 0.984\\ 0.984 \end{array}$
	.T NO. [AL TY (PE: 00B #	% A.C.	4444	4444	4444	1N: 44.44 4.44.4	SE: 4.4 4.4 4.4
	PROJEC MATERI MIX TY AHTD J	GRAD.	JMF :	COARSE	FINE:	CRSE - F	FIN-CR

Table A-6. Marshall Specimen Test Results - Gravel Binder Mix.

-61-

APPENDIX B

0

ANALYSES OF MARSHALL SPECIMEN DATA

ANALYSIS OF VARIANCE

Source of	Degrees of	Sum of	Mean		
Variation	Freedom	Squares	Square	F	Prob > F
Gradation	4	6.023	1.506	9.41	0.0005
Error	15	2.399	0.160		
Total	19	8.422			

T-TEST GROUPINGS

T Grouping	Mean	Gradation Variation
A B B B & C C	2.615 1.805 1.737 1.365 0.963	Fine-Coarse Job Mix Formula Coarse Fine Course-Fine

Means with the same T Grouping letter are not significantly different.

BINDER MIX

ANALYSIS OF VARIANCE

Source of	Degrees of	Sum of	Mean	F	Prob > F
Valiation	ricedom	Oquales	Oquale	1	F100 > F
Gradation	4	15.557	3.889	17.31	0.0001
Error	15	3.369	0.225		
Total	19	18.926			

T-TEST GROUPINGS

r Grouping Mean Gradation va	ariation
A 3.208 Fine-Coarse	
B 1.822 Coarse	
B & C 1.292 Fine	
C 0.947 Job Mix Forr	nula
C 0.742 Coarse-Fine	

Means with the same T Grouping letter are not significantly different.

Table B-1. Analysis of Air Void Data from Limestone Mixes.

ANALYSIS OF VARIANCE

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square	F.	Prob > F
Gradation	4	14.637	3.659	30.70	0.0001
Error	15	1.788	0.119		
Total	19	16.425			

T-TEST GROUPINGS

T Grouping	Mean	Gradation Variation
A B	4.222 2.998	Fine-Coarse Fine
В	2.885	Job Mix Formula
В	2.762	Coarse
С	1.528	Coarse-Fine

Means with the same T Grouping letter are not significantly different.

BINDER MIX

ANALYSIS OF VARIANCE

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square	F	Prob > F
Gradation	4	11.557	2.889	10.08	0.0004
Error	15	4.300	0.287		
Total	19	15.857			

T-TEST GROUPINGS

T Grouping	Mean	Gradation Variation
A	3.295	Fine-Coarse
A	2.783	Fine
В	1.727	Job Mix Formula
В	1.585	Coarse
В	1.325	Coarse-Fine

Means with the same T Grouping letter are not significantly different.

Table B-2. Analysis of Air Void Data from Syenite Mixes.

ANALYSIS OF VARIANCE

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square	F	Prob > F
Gradation	4	16.707	4.177	25.17	0.0001
Error	15	2.489	0.166		
Total	19	19.196			

T-TEST GROUPINGS

T Grouping	Mean	Gradation Variation
А	4.785	Fine-Coarse
B	3.088	Fine
В	3.065	Job Mix Formula
B & C	2.648	Coarse
С	2.035	Coarse-Fine

Means with the same T Grouping letter are not significantly different.

BINDER MIX

ANALYSIS OF VARIANCE

Source of Variation	Degrees of Freedom	Sum of	Mean	F	Prob > F
variation	ricedom	Oquales	Oquale		1100 - 1
Gradation	4	6.046	1.512	14.48	0.0001
Error	15	1.567	0.104		
Total	19	7.612			

T-TEST GROUPINGS

T Grouping	Mean	Gradation Variation
А	3.420	Fine-Coarse
В	2.782	Job Mix Formula
C	2.263	Fine
С	2.200	Coarse
С	1.837	Coarse-Fine

Means with the same T Grouping letter are not significantly different.

Table B-3. Analysis of Air Void Data from Gravel Mixes.

ANALYSIS OF VARIANCE

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square	F	Prob > F
Gradation	4	5.553	1.388	12.45	0.0001
Error	15	1.673	0.112		
Total	19	7.226			

T-TEST GROUPINGS

T Grouping	Mean	Gradation Variation
A	15.375	Fine-Coarse
В	14.850	Coarse
В	14.600	Job Mix Formula
С	14.075	Fine
С	13.925	Coarse-Fine

Means with the same T Grouping letter are not significantly different.

BINDER MIX

ANALYSIS OF VARIANCE

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square	F	Prob > F
Gradation	4	11.278	2.820	15.66	0.0001
Error	15	2.700	0.180		
Total	19	13.978			

T-TEST GROUPINGS

T Grouping	Mean	Gradation Variation
A	12.975	Fine-Coarse
В	11.725	Coarse
B & C	11.325	Fine
С	11.075	Job Mix Formula
С	10.850	Coarse-Fine

Means with the same T Grouping letter are not significantly different.

Table B-4. Analysis of VMA Data from Limestone Mixes.

ANALYSIS OF VARIANCE

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square	F	Prob > F
Gradation	4	10.917	2.730	31.37	0.0001
Error	15	1.305	0.087		
Total	19	12.222			

T-TEST GROUPINGS

T Grouping	Mean	Gradation Variation	
А	16.200	Fine-Coarse	
В	15.125	Fine	
В	15.050	Job Mix Formula	
В	14.900	Coarse	
С	13.875	Coarse-Fine	

Means with the same T Grouping letter are not significantly different.

BINDER MIX

ANALYSIS OF VARIANCE

Source of	Degrees of	Sum of	Mean		
Variation	Freedom	Squares	Square	F	Prob > F
Gradation	4	9.568	2.392	10.32	0.0003
Error	15	3.478	0.232		
Total	19	13.046			

T-TEST GROUPINGS

A 13.650 Fine-Coarse	
A 13.225 Fine	
B 12.200 Job Mix Formula	
B 12.100 Coarse	
B 11.900 Coarse-Fine	

Means with the same T Grouping letter are not significantly different.

Table B-5. Analysis of VMA Data from Syenite Mixes.

ANALYSIS OF VARIANCE

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square	F	Prob > F
Gradation	4	12.275	3.069	24.98	0.0001
Error	15	1.843	0.123		
Total	19	14.118			

T-TEST GROUPINGS

T Grouping	Mean	Gradation Variation
А	16.800	Fine-Coarse
В	15.375	Fine
В	15.325	Job Mix Formula
B & C	14.900	Coarse
С	14.475	Coarse-Fine

Means with the same T Grouping letter are not significantly different.

BINDER MIX

ANALYSIS OF VARIANCE

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square	F	Prob > F
Gradation	4	4.647	1.162	14.58	0.0001
Error	15	1.195	0.080		
Total	19	5.842			

T-TEST GROUPINGS

.

. .

adation variation
e-Coarse
o Mix Formula
е
arse
arse-Fine

Means with the same T Grouping letter are not significantly different.

Table B-6. Analysis of VMA Data from Gravel Mixes.

ANALYSIS OF VARIANCE

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square	F	Prob > F
Gradation	4	375469.00	93867.25	3.66	0.0285
Error	15	384888.75	25659.25		
Total	19	670357.75			

T-TEST GROUPINGS

T Grouping	Mean	Gradation Variation
A A & B A, B & C B & C	3333.5 3184.3 3131.5 3033.0,	Fine Coarse Job Mix Formula Fine-Coarse
С	2929.0	Coarse-Fine

Means with the same T Grouping letter are not significantly different.

BINDER MIX

ANALYSIS OF VARIANCE

Source of Variation	Degrees o Freedom	of Sum of Squares	Mean Square	F	Prob > F
Gradation	4	2014375.70	503593.93	3.03	0.0510
Error	15	2489359.25	165975.28		
Total	19	4503734.95			

T-TEST GROUPINGS

l Grouping	Mean	Gradation Variation
A A A A & B	4456.0 4390.5 4387.3 3937.8	Fine Job Mix Formula Coarse-Fine Fine-Coarse
В	3648.3	Coarse

Means with the same T Grouping letter are not significantly different.

Table B-7. Analysis of Stability Data from Limestone Mixes.

ANALYSIS OF VARIANCE

Source of Variation	Degrees o Freedom	of Sum of Squares	Mean Square	F	Prob > F
Gradation	4	2988699.00	747174.75	11.20	0.0002
Error	15	1000508.75	66700.58		
Total	19	3989207.75			

T-TEST GROUPINGS

r Grouping Mean Gradation V	/ariation
A 3941.0 Fine	
B 3480.5 Coarse-Fine	9
B & C 3138.5 Coarse	
B & C 3133.8 Job Mix Fo	rmula
C 2800.0 Fine-Coarse	9

Means with the same T Grouping letter are not significantly different.

BINDER MIX

ANALYSIS OF VARIANCE

Source of Variation	Degrees o Freedom	of Sum of Squares	Mean Square	F	Prob > F
Gradation	4	286427.70	716006.93	4.86	0.0103
Error	15	2209947.50	147329.83		
Total	19	5073975.20			

T-TEST GROUPINGS

T Grouping	Mean	Gradation Variation
A A A & B B & C C	3833.5 3640.5 3454.0 3041.3 2809.8	Fine Job Mix Formula Coarse-Fine Coarse Fine-Coarse
0	2009.0	Fille-Cuarse

Means with the same T Grouping letter are not significantly different.

Table B-8. Analysis of Stability Data from Syenite Mixes.

ANALYSIS OF VARIANCE

Source of Variation	Degrees o Freedom	of Sum of Squares	Mean Square	F	Prob > F
Gradation	4	5285566.00	1321391.50	19.56	0.0001
Error	15	1013537.75	67569.18		
Total	19	6299103.75			

T-TEST GROUPINGS

T Grouping	Mean	Gradation Variation
А	4762.8	Coarse-Fine
В	4370.0	Fine
С	3828.0	Job Mix Formula
C & D	3692.5	Coarse
D	3308.0	Fine-Coarse

Means with the same T Grouping letter are not significantly different.

BINDER MIX

ANALYSIS OF VARIANCE

Source of Variation	Degrees o Freedom	of Sum of Squares	Mean Square	F	Prob > F
Gradation	4	4883073.30	1220768.33	4.39	0.0151
Error	15	4170286.50	278019.10		
Total	19	9053359.80			

T-TEST GROUPINGS

T Grouping	Mean	Gradation Variation
A	5306.8	Fine
A & B	4785.5	Coarse-Fine
A, B & C	4719.3	Job Mix Formula
B & C	4126.0	Coarse
C	3928.0	Fine-Coarse

Means with the same T Grouping letter are not significantly different.

Table B-9. Analysis of Stability Data from Gravel Mixes.

ANALYSIS OF VARIANCE

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square	F	Prob > F
Gradation	4	49.572	12.393	19.16	0.0001
Error	15	9.700	0.647		
Total	19	59.272			

T-TEST GROUPINGS

T Grouping	Mean	Gradation Variation	
A A B B	15.225 14.725 14.175 12.150 11.125	Coarse-Fine Fine Job Mix Formula Coarse Fine-Coarse	

Means with the same T Grouping letter are not significantly different.

BINDER MIX

ANALYSIS OF VARIANCE

Source of Variation		Degrees of Freedom	Sum of Squares	Mean Square	F	Prob > F
Gradation		4	127.508	31.877	3.55	0.0313
Error		15	134.518	8.968		
Total	, i	19	262.026			

T-TEST GROUPINGS

Mean	Gradation Variation
20.800	Coarse-Fine
16.825	Job Mix Formula
15.300	Coarse
14.800	Fine
13.450	Fine-Coarse
	Mean 20.800 16.825 15.300 14.800 13.450

Means with the same T Grouping letter are not significantly different.

Table B-10. Analysis of Flow Data from Limestone Mixes.

ANALYSIS OF VARIANCE

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square	F	Prob > F
Gradation	4	50.907	12.727	8.93	0.0007
Error	15	21.375	1.425		
Total	19	72.282			

T-TEST GROUPINGS

T Grouping	Mean	Gradation Variation
А	15.175	Coarse-Fine
A & B	14.000	Fine
B & C	12.700	Job Mix Formula
C & D	11.375	Fine-Coarse
D	10.900	Coarse

Means with the same T Grouping letter are not significantly different.

BINDER MIX

ANALYSIS OF VARIANCE

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square	F	Prob > F
Gradation	4	42.797	10.699	5.76	0.0052
Error	15	27.865	1.858		
Total	19	70.662			

T-TEST GROUPINGS

T Grouping	Mean	Gradation Variation
A A & B B & C B & C C	15.725 14.075 12.900 12.500 11.450	Coarse-Fine Job Mix Formula Fine Coarse Fine-Coarse

Means with the same T Grouping letter are not significantly different.

Table B-11. Analysis of Flow Data from Syenite Mixes.

ANALYSIS OF VARIANCE

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square	F	Prob > F
Gradation	4	18.973	4.743	3.31	0.0394
Error	15	21.515	1.434		
Total	19	40.488			

T-TEST GROUPINGS

Г Grouping	Mean	Gradation Variation
A A & B A & B B B	13.875 12.625 12.300 12.050 ⁻ 10.850	Coarse Coarse-Fine Job Mix Formula Fine Fine-Coarse

Means with the same T Grouping letter are not significantly different.

BINDER MIX

ANALYSIS OF VARIANCE

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square	F	Prob > F
Gradation	4	51.460	12.865	5.15	0.0082
Error	15	37.458	2.497		
Total	19	88.918			

T-TEST GROUPINGS

T Grouping	Mean	Gradation Variation
A A & B B & C	15.800 15.350 13.075	Coarse-Fine Coarse Job Mix Formula
СС	12.850 11.550	Fine Fine-Coarse

Means with the same T Grouping letter are not significantly different.

Table B-12. Analysis of Flow Data from Gravel Mixes.

-74-

ANALYSIS OF VARIANCE

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square	F	Prob > F
Gradation	4	68350.498	17087.625	4.40	0.0149
Error	15	58226.570	3881.771		
Total	19	126577.068			

T-TEST GROUPINGS

Grouping	Mean	Gradation Variation
A	677.83	Coarse
A & B	632.50	Job Mix Formula
B & C	579.23	Fine-Coarse
B & C	558.82	Coarse-Fine
C	509.43	Fine

Means with the same T Grouping letter are not significantly different.

BINDER MIX

ANALYSIS OF VARIANCE

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square	F	Prob > F
Gradation	4	66001.860	16500.465	0.62	0.6572
Error	15	401249.070	26749.938		
Total	19	467250.930			

T-TEST GROUPINGS

T Grouping	Mean	Gradation Variation
А	1139.0	Fine-Coarse
A	1064.1	Coarse-Fine
A	1026.0	Job Mix Formula
A	1004.5	Coarse
A	971.6	Fine

Means with the same T Grouping letter are not significantly different.

Table B-13. Analysis of Resilient Modulus Data from Limestone Mixes.

ANALYSIS OF VARIANCE

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square	F	Prob > F
Gradation	4	32759.528	8189.882	4.86	0.0103
Error	15	25289.240	1685.949		
Total	19	58048.768			

T-TEST GROUPINGS

T Grouping	Mean	Gradation Variation
А	637.80	Fine
A & B	593.05	Coarse
A & B	588.55	Job Mix Formula
B & C	538.85	Coarse-Fine
С	525.55	Fine-Coarse

Means with the same T Grouping letter are not significantly different.

BINDER MIX

ANALYSIS OF VARIANCE

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square	F	Prob > F
Gradation	4	65320.372	16330.093	2.39	0.0974
Error	15	102642.230	6842.815		
Total	19	167962.602			

T-TEST GROUPINGS

T Grouping	Mean	Gradation Variation
A	871.52	Job Mix Formula
A	864.80	Fine
A	856.73	Coarse
A & B	819.58	Fine-Coarse
В	717.53	Coarse-Fine

Means with the same T Grouping letter are not significantly different.

Table B-14. Analysis of Resilient Modulus Data from Syenite Mixes.

ANALYSIS OF VARIANCE

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square	F	Prob > F
Gradation	4	181542.197	45385.549	29.16	0.0001
Error	15	23345.925	1556.395		
Total	19	204888.122			

T-TEST GROUPINGS

T Grouping	Mean	Gradation Variation
A B C C C	787.60 686.50 579.55 565.28 526.92	Coarse-Fine Fine Job Mix Formula Fine-Coarse Coarse

Means with the same T Grouping letter are not significantly different.

BINDER MIX

ANALYSIS OF VARIANCE

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square	F	Prob > F
Gradation	4	242467.923	60616.981	3.64	0.0290
Error	15	249849.055	16656.604		
Total	19	492316.978			

T-TEST GROUPINGS

T Grouping	Mean	Gradation Variation
А	1180.7	Fine
A	1172.1	Job Mix Formula
А	1156.2	Coarse
A & B	1015.5	Coarse-Fine
В	900.6	Fine-Coarse

Means with the same T Grouping letter are not significantly different.

Table B-15. Analysis of Resilient Modulus Data from Gravel Mixes.

APPENDIX C

.

SPLIT TENSILE AND CREEP DATA

Table C-1. Split Tensile Strength Data - Surface Mixes.

GRADATION	SPLIT TENSIL	E STRENGTH, psi	AIR V	OIDS, %
VARIATION	TOP HALF	BOTTOM HALF	TOP	BOTTOM
***	LIMESTONE	GIDENCE MTV	مات مات	
TOP MIY FORMULA		SURFACE MIX	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	7 60
JOB MIX FORMULA	138.9	111.6	5.72	7.60
COARSE	133.7	113.6	5.28	6.75
	130.1	110.6	5.40	6.95
FINE	154.2	134.7	5.34	6.88
	152.4	114.1	5.29	7.59
COARSE-FINE	147.9	137.6	5.08	6.70
	158.4	123.9	4.75	6.79
FINE-COARSE	144.7	112.4	5.60	7.02
	141.5	112.0	5.60	7.48
***	SVENTTE S	UPFACE MTY	***	
TOB MTX FORMULA	142.6	131 3	6 10	7 66
SOD HIM FORMULA	145.2	136 6	6.10	7.00
COARSE	130 3	110.0	6.05 E 04	7.03
COARDE	140 1	117 4	5.94	7.72
FINE	140.1	140 6	5.30	7.43
FINE	100.9	140.0	6.22	8.15
CONDER FINE	145.0	133.0	6.26	7.74
COARSE-FINE	135.2	122.6	6.00	7.93
	149.6	130.9	5.59	7.40
FINE-COARSE	142.4	120.1	6.43	8.12
	132.3	114.3	6.30	8.57
***	GRAVEL S	URFACE MIX	* * *	
JOB MIX FORMULA	142.2	122.4	6.39	8.09
	148.8	114.1	5.89	8.38
COARSE	126.4	105.2	6.71	8.66
	113.2	98.6	6.29	8.00
FINE	118.5	104.5	8.65	10.72
	119.3	94.6	8.94	11.55
COARSE-FINE	133.0	106.4	6.62	8.85
	128.8	112.1	6.50	8.94
FINE-COARSE	131.1	100.5	7.03	9.02
	123.6	101.8	7.11	9.23

Table C-2. Split Tensile Strength Data - Binder Mixes.

* * *	LIMESTON	NE BINDER MIX	* * *	
JOB MIX FORMULA	187.3	133.2	3.92	5.24
	205.3	162.4	4.62	5.36
COARSE	164.7	140.4	5.21	6.00
	140.1	115.0	4.39	5.83
FINE	179.4	148.9	5.09	7.02
	170.2	150.1	5.05	6.65
COARSE-FINE	205.1	143.9	3.54	3.99
	173.3	144.3	4.24	4.53
FINE-COARSE	165.5	140.5	5.45	7.27
	157.3	137.9	6.44	7.39
* * *	SYENITE	BINDER MIX	* * *	
JOB MIX FORMULA	157.1	120.1	5.07	7.32
7	146.9	124.1	5.15	7.12
COARSE	123.3	108.0	5.20	6.96
	137.7	99.1	4.79	6.47
FINE	151.2	124.2	6.38	8.54
	125.4	102.8	7.44	9.32
COARSE-FINE	158.7	114.2	. 4.70	7.11
	149.4	98.0	5.11	7.24
FINE-COARSE	136.9	110.4	5.97	8.10
	142.9	111.9	6.01	8.26
***	GRAVEL	BINDER MIX	* * *	
JOB MIX FORMULA	161.6	134.1	5.11	7.07
	185.8	119.1	4.62	6.90
COARSE	126.7	107.9	5.25	6.16
	108.2	119.3	4.87	6.41
FINE	130.0	134.6	6.55	8.05
	131.7	123.7	6.14	7.88
COARSE-FINE	146.4	111.0	4.77	7.68
	179.3	126.4	4.48	6.89
FINE-COARSE	147.1	118.5	5.66	7.48
	148.1	114.8	6.03	8.03

Table C-3. Creep Stiffness Data - Surface Mixes.

GRADATION	CREEP	STIFFNESS	(IN PSI)	MEASURED	AT :	AIR VOIDS %
VARIATION	5 sec	30 sec	2 min	30 min	60 min	
JOB MIX FORMULA	13380.9 12150.7	LIMESTONE 11472.3 10623.2	SURFACE N 10230.2 9428.0	4IX 7521.6 8417.5	6515.4 7612.3	5.80 5.80
COARSE	13599.3	11801.7	10668.6	7788.2	6623.3	5.28
	13611.6	11776.3	10672.4	8140.0	7647.2	5.79
FINE	12401.8	10706.6	9572.4	6865.8	6032.0	5.75
	13106.2	11509.7	10312.8	7238.5	6233.8	5.84
COARSE-FINE	11614.4	9783.1	8688.1	5914.8	5338.1	5.45
	12275.0	10431.2	9245.0	6494.9	5735.0	5.16
FINE-COARSE	11693.6	9772.0	8714.6	6454.4	5787.6	5.85
	11848.3	9803.9	8688.1	6394.5	5715.4	6.14
JOB MIX FORMULA	7598.8 7367.4	SYENITE SU 6741.6 6543.8	JRFACE MIX 6079.0 6330.5	4832.1 6060.6	4518.8 6049.6	6.51 6.38
COARSE	8068.9	6950.1	6400.0	5712.1	5494.0	6.11
	8498.6	7071.3	6339.8	4883.2	4537.9	5.98
FINE	7853.4	6533.1	6012.0	5467.5	5318.7	6.55
	7410.2	6953.3	6646.7	5909.0	5698.0	6.55
COARSE-FINE	7934.4	6804.3	6200.3	5452.6	5184.9	6.21
	8698.2	7479.4	6788.9	5657.2	5434.8	5.96
FINE-COARSE	8427.0	6861.9	6118.7	4987.5	4834.4	6.26
	8011.8	6653.4	5913.7	4807.7	4345.9	6.76
JOB MIX FORMULA	8581.2 9322.6	GRAVEL SUR 7286.0 8015.0	RFACE MIX 6579.0 7248.1	5511.2 6123.7	5358.6 5970.2	6.51 6.59
COARSE	8510.6	7112.4	6271.6	4878.8	4265.3	6.75
	8379.9	7029.9	6237.0	4765.7	4296.5	6.62
FINE	8440.0	7078.8	6269.6	5245.7	4909.2	7.37
	8112.5	6954.1	6743.1	6194.5	5670.0	7.48
CUARSE-FINE	8915.3	7609.4	6755.2	5660.9	5633.8	6.99
	8473.4	7187.4	6413.0	5141.8	4847.7	6.99
FINE-COARSE	7580.5	6402.7	6003.6	5811.1	5805.0	7.36
	8187.8	6969.5	6227.9	5424.0	5336.2	7.57

...

Table C-4. Creep Stiffness Data - Binder Mixes.

GRADATION	CREEP	STIFFNESS	(IN PSI)	MEASURED	AT :	AIR VOIDS
VARIATION	5 sec	30 sec	2 min	30 min	60 min	%
JOB MIX FORMULA	10737.3 10387.8	LIMESTONE 9516.3 9215.2	BINDER M2 8849.6 8520.3	IX 7708.1 6988.1	7392.8 6731.7	4.13 4.62
COARSE	9715.0	8613.3	8068.9	7214.1	7026.6	4.47
	8658.0	7808.4	7337.7	6924.4	6888.6	4.59
FINE	8738.7	7657.0	7213.3	6790.4	6680.8	6.04
	10822.5	9066.2	8250.8	6885.5	6547.4	5.83
COARSE-FINE	8533.6	7762.0	7276.3	6494.9	6309.2	3.77
	9099.2	7936.5	7369.2	6437.1	6203.5	4.20
FINE-COARSE	10080.7	8867.9	8227.1	7231.5	7024.1	5.87
	9927.2	8894.2	8178.8	6996.3	6730.2	6.46
JOB MIX FORMULA	7561.4 7394.6	SYENITE BI 6575.3 6424.0	INDER MIX 6230.5 5891.6	5779.8 5108.1	5657.2 5002.5	6.05 5.89
COARSE	8645.5	7380.1	6639.4	5188.5	4906.8	5.94
	7335.0	6257.8	5695.3	4573.5	4283.9	5.41
FINE	8235.0	7194.2	7012.6	6581.8	6450.9	6.70
	8759.1	7345.7	6460.0	4725.9	4292.5	7.52
COARSE-FINE	8121.3	6958.9	6265.0	5039.5	4686.0	5.45
	7741.9	6597.8	5923.0	5099.4	4595.6	6.10
FINE-COARSE	8086.3	6726.5	5994.0	5248.0	5115.1	6.46
	7725.0	6380.3	5708.9	5208.3	5075.3	6.70
JOB MIX FORMULA	8192.2 8282.7	GRAVEL BIN 6809.7 7067.1	IDER MIX 6211.8 6399.3	5921.8 5427.9	5836.6 5284.5	5.65 5.45
COARSE	7064.6	6738.5	6563.1	6157.6	5989.2	5.67
	7389.2	7043.9	6816.6	6331.8	6203.5	5.62
FINE	8253.1	7125.9	6472.5	5413.2	5173.3	6.49
	7416.6	6402.1	6037.4	5547.9	5417.1	6.55
COARSE-FINE	7914.5	6790.4	6161 ⁻ .4	5242.0	5017.6	5.67
	7420.2	7069.6	6872.9	6435.7	6319.1	5.51
FINE-COARSE	7575.8	6400.0	5758.2	4695.9	4362.1	5.91
	5782.6	5479.5	5278.0	4574.2	4275.0	6.52

APPENDIX D

ANALYSES OF SPLIT TENSILE AND CREEP DATA

Table D-1. Split Tensile Strength Analyses for Limestone Mixes.

SURFACE MIX

ANALYSIS OF VARIANCE

Source of Variation	Degrees Freedom	of Sum of Squares	Mean Square	F	Prob. > F
Gradation	4	1151.723425	287.930856	14.08	0.0002
Air Voids	1	3194.143626	3194.143626	156.24	0.0001
Error	12	245.332549	20.444379		
Total	17	4591.199600			

The level of significance is indicated by the probability of greater F. Probabilities less than 0.05 are generally judged as being indicative of a significant effect.

T-TEST GROUPINGS

T Grouping	Mean, psi	Gradation Variation
A	141.9	COARSE-FINE
А	138.9	FINE
В	127.6	FINE-COARSE
В	125.2	JOB MIX FORMULA
В	122.5	COARSE

Means in the same T Grouping are not significantly different at alpha equal to 0.05.

BINDER MIX

ANALYSIS OF VARIANCE

Source of Variation	Degrees Freedom	of Sum of Squares	Mean Square	F	Prob. > F
Gradation	4	2687.148270	671.787067	1.90	0.1656
Air Voids	1	2994.627649	2994.627649	8.49	0.0113
Error	14	4937.360501	352.668607		
Total	19	10619.136420			

The level of significance is indicated by the probability of greater F. Probabilities less than 0.05 are generally judged as being indicative of a significant effect.

T-TEST GROUPINGS

Т	Grouping	Mean, psi	Gradation Variation
	Â	172.04	JOB MIX FORMULA
	A & B	166.66	COARSE-FINE
	A & B	162.14	FINE
	A & B	150.28	FINE-COARSE
	В	140.02	COARSE

Table D-2. Split Tensile Strength Analyses for Syenite Mixes.

SURFACE MIX

ANALYSIS OF VARIANCE

Source of Variation	Degrees o Freedom	of Sum of Squares	Mean Square	F	Prob. > F
Gradation	4	783.036930	195.759232	7.86	0.0015
Air Voids	1	1446.918279	1446.918279	58.06	0.0001
Error	14	348.897571	24.921255		
Total	19	2578.852780			

The level of significance is indicated by the probability of greater F. Probabilities less than 0.05 are generally judged as being indicative of a significant effect.

T-TEST GROUPINGS

T Grouping	Mean, psi	Gradation Variation
A	142.510	FINE
A & B	138.918	JOB MIX FORMULA
B & C	134.565	COARSE-FINE
C & D	127.270	FINE-COARSE
D	126.683	COARSE

Means in the same T Grouping are not significantly different at alpha equal to 0.05.

BINDER MIX

ANALYSIS OF VARIANCE

Source of Variation	Degrees Freedom	of Sum of Squares	Mean Square	F	Prob. > F
Gradation	4	846.157150	211.539287	4.36	0.0170
Air Voids	1	5628.245495	5628.245495	115.92	0.0001
Error	14	679.721055	48.551504	115.92	0.0001
Total	19	7154.123700			

The level of significance is indicated by the probability of greater F. Probabilities less than 0.05 are generally judged as being indicative of a significant effect.

T-TEST GROUPINGS

T Grouping	Mean, psi	Gradation Variation
A	137.050	JOB MIX FORMULA
A & B	130.060	COARSE-FINE
B & C	125.893	FINE
B & C	125.512	FINE-COARSE
С	117.110	COARSE

Table D-3. Split Tensile Strength Analyses for Gravel Mixes.

SURFACE MIX

ANALYSIS OF VARIANCE

Source of Variation	Degrees Freedom	of Sum of Squares	Mean Square	F	Prob. > F
Gradation	4	1342.293000	335.573250	11.21	0.0003
Air Voids	1	2440.661385	2440.661385	81.55	0.0001
Error	14	418.982115	29.927294		
Total	19	4201.936500			

The level of significance is indicated by the probability of greater F. Probabilities less than 0.05 are generally judged as being indicative of a significant effect.

T-TEST GROUPINGS

T Grouping	Mean, psi	Gradation Variation
A	131.867	JOB MIX FORMULA
В	120.048	COARSE
B & C	114.278	FINE
C .	110.850	COARSE.
С	109.232	FINE

Means in the same T Grouping are not significantly different at alpha equal to 0.05.

BINDER MIX

ANALYSIS OF VARIANCE

Source of Variation	Degrees o Freedom	f Sum of Squares	Mean Square	F	Prob. > F
Gradation	4	2667.334300	666.833575	4.22	0.0191
Air Voids	1	4291.486743	4291.486743	27.13	0.0001
Error	14	2214.802532	158.200181		
Total	19	9173.623575			

The level of significance is indicated by the probability of greater F. Probabilities less than 0.05 are generally judged as being indicative of a significant effect.

T-TEST GROUPINGS

T Grouping	Mean, psi	Gradation Variation
A	150.160	JOB MIX FORMULA
A & B	140.770	COARSE-FINE
A,B & C	132.112	FINE-COARSE
B & C	130.035	FINE
С	115.535	COARSE

Table D-4. Analyses of 30 Minute Creep Data from All Mixes.

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square	F	Prob. > F
Gradation (G) Aggregate (A) Mix Type (M) G*A G*M A*M G*A*M Error Total	4 2 1 8 4 2 8 30 59	3127727.76 35617088.99 53157.31 3551038.22 241811.49 191573.85 5067343.05 6129705.54 53979446.22	781931.94 17808544.50 53157.31 443879.78 60452.87 95786.93 633417.88 204323.52	3.83 87.16 0.26 2.17 0.30 0.47 3.10	0.0125 0.0001 0.6137 0.0593 0.8783 0.6303 0.0113

ANALYSIS OF VARIANCE

The level of significance is indicated by the probability of greater F. Probabilities less than 0.05 are generally judged as being indicative of a significant effect.

T-TEST GROUPINGS

	T Grouping	Mean, psi	Gradation Variation
1	А	6283.4	JOB MIX FORMULA
	A & B	6072.1	FINE
	A & B	6046.5	COARSE
	B & C	5755.9	COARSE-FINE
	С	5652.8	FINE-COARSE
	+ 7	Constration and	stantficently differen

Table D-5. Analyses of 2 Minute Creep Data from All Mixes.

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square	F	Prob. > F
Gradation (G) Aggregate (A) Mix Type (M) G*A G*M A*M G*A*M Error	4 2 1 8 4 2 8 30	3145237.26 81944247.80 6743151.46 2887821.34 370360.99 7872925.31 4363074.62 3733539.6	786309.31 40972123.90 6743151.46 360977.67 92590.25 3936462.66 545384.33 124451.3	6.32 329.22 54.18 2.90 0.74 31.63 4.38	0.0008 0.0001 0.0001 0.0161 0.5697 0.0001 0.0014
Total	59	111060358.4			

ANALYSIS OF VARIANCE

The level of significance is indicated by the probability of greater F. Probabilities less than 0.05 are generally judged as being indicative of a significant effect.

T-TEST GROUPINGS

T Grouping	Mean, psi	Gradation Variation
A	7333.2	JOB MIX FORMULA
А	7309.2	COARSE
A & B	7250.3	FINE
B & C	6996.5	COARSE-FINE
С	6734.3	FINE-COARSE

Means in the same T Grouping are not significantly different at alpha equal to 0.05.

.

Table D-6. Analyses of 30 Second Creep Data from All Mixes.

Source of Variation	Degrees o Freedom	of Sum of Squares	Mean Square	F	Prob. > F
Gradation (G) Aggregate (A) Mix Type (M) G*A G*M A*M G*A*M Error	4 2 1 8 4 2 8 30	2724962.8 102843605.9 12892808.9 4137046.2 823069.6 13209130.8 4059572.6 4745119.4	681240.7 51421802.9 12892808.9 517130.8 205767.4 6604565.4 507446.6 158170.6	4.31 325.10 81.51 3.27 1.30 41.76 3.21	0.0072 0.0001 0.0001 0.0085 0.2921 0.0001 0.0094
IOTAI	27	145435316.2			

ANALYSIS OF VARIANCE

The level of significance is indicated by the probability of greater F. Probabilities less than 0.05 are generally judged as being indicative of a significant effect.

T-TEST GROUPINGS

T Grouping	Mean, psi	Gradation Variation
A A A & B B	8024.1 7965.3 7877.2 7700.8 7434.3	JOB MIX FORMULA COARSE FINE COARSE-FINE FINE-COARSE

Table D-7. Analyses of 5 Second Creep Data from All Mixes.

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square	F	Prob. > F
Gradation (G) Aggregate (A) Mix Type (M) G*A G*M A*M G*A*M Error	4 2 1 8 4 2 8 30	1984253.5 131243163.5 24649911.5 6956453.2 2558347.9 21594122.9 3106246.8 8695606.8	496063.4 65621581.7 24649911.5 869556.6 639587.0 10797061.4 388280.9 289853.6	1.71 226.40 85.04 3.00 2.21 37.25 1.34	0.1735 0.0001 0.0001 0.0135 0.0921 0.0001 0.2627
Total	59	200788106.1			

ANALYSIS OF VARIANCE

The level of significance is indicated by the probability of greater F. Probabilities less than 0.05 are generally judged as being indicative of a significant effect.

T-TEST GROUPINGS

Т	Grouping	Mean, psi	Gradation Variation
	A A & B A & B A & B B	9246.5 9129.1 9123.0 8895.1 8743.9	JOB MIX FORMULA FINE COARSE COARSE-FINE FINE-COARSE

Table D-8. T Groupings of Creep Stiffnesses of Limestone Mixes.

	LIMESTONE SURFACE					LIMESTONE BINDER					
Т	Group	ing Mean,	psi	Gradation		ТС	Group	ing Mear	n, psi	Gradation	
	5 A & B A & B B B B	Second Cre 13605 12765 12754 11944 11771	ep Stiff .5 .8 .0 .7 .0	fness COARSE JMF FINE CRSE-FINE FINE-CRSE		·	5 A A A A A	Second Cr 105 100 97 91 88	reep Stif 562.5 004.0 780.6 186.5 316.4	fness JMF FINE-CRSE FINE COARSE CRSE-FINE	
Α,	30 A A & B B & C C	Second Cre 11789 11108 C 11047 10107 9788	ep Stiff .0 .2 .7 .2 .0	Fness COARSE FINE JMF CRSE-FINE FINE-CRSE			30 A A A A A	Second Cr 93 88 83 82 82 78	reep Stif 365.7 381.0 361.6 210.8 349.3	fness JMF FINE-CRSE FINE COARSE CRSE-FINE	
Α,	2 A & B B & C C	Minute Cre 10670 9942 C 9829 8966 8701	ep Stiff .5 .6 .1 .5 .3	ness COARSE FINE JMF CRSE-FINE FINE-CRSE		F F F	2 A & B & B & B B B	Minute Cr 868 820 773 770 732	reep Stif 35.0 33.0 32.0 33.3 22.8	fness JMF FINE-CRSE FINE COARSE CRSE-FINE	
	30 A A & B B B	Minute Cre 7969 7964 7052 6424 6204	ep Stiff .6 .1 .1 .5 .9	ness JMF COARSE FINE FINE-CRSE CRSE-FINE		Þ	30 A A A & B B	Minute Cr 734 711 706 683 646	reep Stif 18.1 13.9 59.3 38.0 56.0	fness JMF FINE-CRSE COARSE FINE CRSE-FINE	
	60 A A & B A & B B	Minute Cre 7135 7063 6132 5751 5536	ep Stiff .3 .9 .9 .5 .6	ness COARSE JMF FINE FINE-CRSE CRSE-FINE		P	60 A A A & B B	Minute Cr 706 695 687 661 625	reep Stif 52.3 57.6 77.1 14.1 56.4	fness JMF COARSE FINE-CRSE FINE CRSE-FINE	

-91-

Table D-9. T Groupings of Creep Stiffnesses of Syenite Mixes.

SYENITE SURFACE

SYENITE BINDER

Т	Group	ing Mean, p	si Gradation	T Grouping	Mean, psi	Gradation
	5 A & B A & B A & B A & B B	Second Creep 8316.3 8283.7 8219.4 7631.8 7483.1	Stiffness CRSE-FINE COARSE FINE-CRSE FINE JMF	5 Sec A A A A A A	ond Creep Sti 8497.0 7990.3 7931.6 7905.6 7478.0	ffness FINE COARSE CRSE-FINE FINE-CRSE JMF
	30 A A A A A	Second Creep 7141.9 7010.7 6757.6 6743.2 6642.7	Stiffness CRSE-FINE COARSE FINE-CRSE FINE JMF	30 Sec A A A A A A	ond Creep Stit 7270.0 6819.0 6778.4 6553.4 6499.6	ffness FINE COARSE CRSE-FINE FINE-CRSE JMF
	2	Minute Creep	Stiffness	2 Min	ute Creep Stin	ffness
	A	6494.6	CRSE-FINE	A	6736.3	FINE
	A	6369.9	COARSE	A	6167.4	COARSE
	A	6329.4	FINE	A	6094.0	CRSE-FINE
	A	6204.8	JMF	A	6061.1	JMF
	A	6016.2	FINE-CRSE	A	5851.5	FINE-CRSE
	30	Minute Creep	Stiffness	30 Min	ute Creep Stif	Ffness
	A	5688.3	FINE	A	5653.9	FINE
	A	5554.9	CRSE-FINE	A	5444.0	JMF
	A	5446.4	JMF	A	5228.1	FINE-CRSE
	A	5297.6	COARSE	A	5069.5	CRSE-FINE
	A	4897.6	FINE-CRSE	A	4881.0	COARSE
	60	Minute Creep	Stiffness	60 Minu	ute Creep Stif	Ffness
	A	5508.4	FINE	A	5371.7	FINE
	A	5309.9	CRSE-FINE	A	5329.9	JMF
	A	5284.2	JMF	A	5095.2	FINE-CRSE
	A	5016.0	COARSE	A	4640.8	CRSE-FINE
	A	4590.1	FINE-CRSE	A	4595.4	COARSE

Table D-10. T Groupings of Creep Stiffnesses of Gravel Mixes.

ŧ

	GRAVEL SURFACE						GRAVEL BINDER						
Т	Grou	ıping	Mean,	psi	Gradation	Т	Gı	roup	ing l	Mean, p	si	Gradation	l
	A & & A & A & B	5 Sec B B B	ond Cre 8951 8694 8445 8276 7884	ep Stif [*] .9 .3 .2 .2 .1	fness JMF CRSE-FINE COARSE FINE FINE-CRSE		A A A	5 A & B & B & B A	Secon	d Creep 8237. 7834. 7667. 7226. 6679.	Stif [.] 5 9 4 9 2	fness JMF FINE CRSE-FIN COARSE FINE-COA	IE .RSE
	3 A& A& A& A& B	B B B B B	ond Cre 7650 7398 7071 7016 6686	ep Stif .5 .4 .1 .5 .1	fness JMF CRSE-FINE COARSE FINE FINE-CRSE			30 A A A B	Secon	d Creep 6938.4 6930.0 6891.2 6764.0 5939.8	Stif	fness JMF CRSE-FINE COARSE FINE FINE-CRSE	с с с
	A & & A & A & B	2 Min B B B	ute Cre 6913 6584 6506 6254 6115	ep Stif .6 .1 .4 .3 .8	fness JMF CRSE-FINE FINE COARSE FINE-CRSE			2 A A A A B	Minuto	e Creep 6689.9 6517.1 6305.6 6255.0 5518.1	Stif	fness COARSE CRSE-FINE JMF FINE FINE-CRSE	
	3 A A A A A	0 Min	ute Cre 5817 5720 5617 5401 4822	ep Stif .5 .1 .6 .4 .3	fness JMF FINE FINE-CRSE 2 XFC COARSE		A A A	30 A & B & B & B B	Minuto	e Creep 6244.7 5838.9 5674.9 5480.5 4635.0	Stif	fness COARSE CRSE-FINE JMF FINE FINE-CRSE	
	6 A A & A & A & B	60 Min B B B	ute Cre 5664 5570 5289 5240 4280	ep Stif [.] .4 .6 .6 .8 .9	fness JMF FINE-CRSE FINE CRSE-FINE COARSE		A A A	60 A & B & B & B B	Minute	e Creep 6096.4 5668.4 5560.6 5295.2 4318.6	Stif	fness COARSE CRSE-FINE JMF FINE FINE-CRSE	

-93-

c