TRANSPORTATION RESEARCH COMMITTEE

TRC9703

Evaluation of the Muffle Furnace Method

T. L. Hardison

Final Report

31.50

Final Report

EVALUATION OF THE MUFFLE FURNACE METHOD

26527 EVALUATION OF THE

31.50

ARKANSAS HWY DEPT - RESEARCH

January 2000

Planning and Research Division Arkansas State Highway and Transportation Department in cooperation with Federal Highway Administration

	1		Technical Report Docume	ntation Page	
1. Report No.	2. Governmen	t Accession No.	3. Recipient's Catalog	No.	
FHWA/AR-00/002					
4. Title and Subtitle "Evaluation of the Muffle Furnace Method"			5. Report Date January 2000		
			6. Performing Organiza	tion Code	
7. Author(s) T. L. Hardison			8. Performing Organiza	tion Report	
9. Performing Organization Nar	me and Address		10. Work Unit No. (TRA	IS)	
Arkansas State Highway & Trans 10324 Interstate 30	portation Department				
Little Rock, AR 72209			τ.		
			11. Contract or Grant No		
			13. Type of Report and	Period cove	
12. Sponsoring Agency Name a	and Address		Final Report (2 yr.)		
FHWA U.S. DOT					
Washington, D.C. 20590					
			14. Sponsoring Agency	Code	
15. Supplementary Notes					
This in-house research study was	performed by the Resear	rch Section.			
16. Abstract					
The ignition method was evaluate	d an an alternative weether	1 2 41 1			
methods for determining asphalt o	content. A Troxler Model	4155 Asphalt Qualit	y Analyzer was used in the	e study.	
methods for determining asphalt on the study focused on determining	content. A Troxler Model what aggregates commo	4155 Asphalt Qualit	y Analyzer was used in the s HMA mixes would be ad	e study. versely effec	
methods for determining asphalt on The study focused on determining by the method. Also, mixes with p	content. A Troxler Model what aggregates commo polymer modified asphalt	4155 Asphalt Qualit only used in Arkansa cements were comp	y Analyzer was used in the s HMA mixes would be ad	e study. versely effec	
methods for determining asphalt on The study focused on determining by the method. Also, mixes with p	content. A Troxler Model what aggregates commo polymer modified asphalt	4155 Asphalt Qualit only used in Arkansa cements were comp	y Analyzer was used in the s HMA mixes would be ad	e study. versely effec	
methods for determining asphalt on the study focused on determining by the method. Also, mixes with p	content. A Troxler Model what aggregates commo polymer modified asphalt	4155 Asphalt Qualit only used in Arkansa cements were comp	y Analyzer was used in the s HMA mixes would be ad	e study. versely effec	
methods for determining asphalt on the study focused on determining by the method. Also, mixes with p	content. A Troxler Model what aggregates commo polymer modified asphalt	4155 Asphalt Qualit only used in Arkansa cements were comp	y Analyzer was used in the s HMA mixes would be ad	e study. versely effec	
methods for determining asphalt of The study focused on determining by the method. Also, mixes with p ignition oven was compared with t	content. A Troxler Model what aggregates commo polymer modified asphalt	4155 Asphalt Qualit only used in Arkansa cements were comp nt gauge.	y Analyzer was used in the s HMA mixes would be ad- ared with traditional mixes	e study. versely effec	
methods for determining asphalt of The study focused on determining by the method. Also, mixes with p ignition oven was compared with t	content. A Troxler Model what aggregates commo polymer modified asphalt the nuclear asphalt content	4155 Asphalt Qualit only used in Arkansa cements were comp	y Analyzer was used in the s HMA mixes would be ad- ared with traditional mixes	e study. versely effect	
The ignition method was evaluate methods for determining asphalt of The study focused on determining by the method. Also, mixes with p ignition oven was compared with t	content. A Troxler Model y what aggregates commo polymer modified asphalt the nuclear asphalt conten	4155 Asphalt Qualit only used in Arkansa cements were comp nt gauge.	y Analyzer was used in the s HMA mixes would be ad ared with traditional mixes n Statement	e study. versely effect	
methods for determining asphalt of The study focused on determining by the method. Also, mixes with p ignition oven was compared with t 17. Key Words	content. A Troxler Model y what aggregates commo polymer modified asphalt the nuclear asphalt content furnace	4155 Asphalt Qualit only used in Arkansa cements were comp nt gauge.	y Analyzer was used in the s HMA mixes would be ad ared with traditional mixes n Statement No Restriction	e study. versely effect	

•

TRC 9703 EVALUATION OF THE MUFFLE FURNACE METHOD

by

T. L. Hardison

Planning and Research Division

Arkansas State Highway and Transportation Department

January 2000

INTRODUCTION

Asphalt content and aggregate gradation have been important measures used in the process of evaluating hot mix asphalt (HMA) since the introduction of solvent extraction. The solvent method of extraction involves the use of chlorinated hydrocarbon solvents which are classified as carcinogenic compounds and considered to be toxic.

Another alternative, the nuclear asphalt content gauge, requires the operator / user to obtain a license and maintain stringent records due to the nuclear source. This method delivers reliable asphalt content results when the unit is calibrated properly but offers no gradation analysis.

Recent research at the National Center for Asphalt Technology (NCAT) at Auburn University has indicated accuracy of the ignition method (muffle furnace) in determining asphalt cement content and aggregate gradations of asphalt concrete hot mix samples (HMA). The method is a potential alternate to the extraction method (AHTD 450 or AHTD 451 and AASHTO T30) and to the nuclear gauge/wash method (AHTD 449/449A and AHTD 460).

The ignition method incinerates the asphalt cement in the HMA by the high temperatures ($538^{\circ}C / 1000^{\circ}F$) of the oven, leaving only the aggregate. Asphalt cement content is determined by comparing the weight difference before and after incineration of the asphalt cement.

OBJECTIVES

The objective of this study was to determine the capabilities of the ignition method. This objective was subdivided into three categories:

1. Identify aggregates commonly used in HMA in Arkansas that would be adversely effected by the extreme heat.

2. Determine if the method can be utilized in testing mixes containing polymer modified asphalt cements.

3. Compare the ignition method with the nuclear asphalt content gauge, (NACG).

TESTING METHODOLOGY

Initially, mix designs were chosen from various parts of the state that would provide different types of aggregates (syenite, limestone, sandstone, gravel) for ignition testing. The aggregates were sampled, dried and batched according to the mix design.

A correction factor was established to allow for the percentage of mass loss attributable to the aggregate when testing at such extreme temperatures. A correction factor was determined for each specific mix by burning off two samples with the same "true" asphalt content ("true" asphalt content is defined as the exact percentage of asphalt cement contained in the sample after correcting for the residue remaining on the mixing tools). The percent loss for each sample was recorded and subtracted from the "true" asphalt content. Each sample yielded a number and, when averaged, equaled the correction factor for the mix.

Specimens were made at the mix design asphalt content, 0.5% above, and 0.5% below. The "true" asphalt content was determined by burning off any residue from the mixing utensils and deducting this percentage from the target asphalt content. This step provided a more precise evaluation of the ignition oven's results.

In addition, specimens were made with modified and unmodified asphalt cements (i.e. PG 64-22 and PG 76-22).

DISCUSSION OF RESULTS

The results from this initial testing are in Table I in Appendix A.

The accuracy proved to be + or - 0.077% for the 52 tests run. One aggregate source, a gravel from RazorRock at White Hall, fractured from the extreme temperatures during testing. The use of modified asphalt cements (as compared to unmodified) in this initial testing presented no problems in determining the asphalt content by the ignition method.

The next phase of this project involved comparison testing between the ignition oven and the nuclear asphalt content gauge.

Initially, an eighteen to nineteen pound HMA sample was mixed in the lab at the design asphalt content. This sample was split and one part tested in the ignition oven and the other part delivered to an asphalt plant to be tested in the nuclear asphalt content

gauge. Additionally, an HMA sample of equal size was obtained at the asphalt plant and split to be tested in the same way.

This testing was done in conjunction with two asphalt plants, McClinton-Anchor at Avoca and E. C. Rowlett at North Little Rock. The results from this testing are in Table II in Appendix A.

The first round of testing with McClinton-Anchor at Avoca indicated nuclear asphalt content gauge results to be very close (0.5 - 0.6%) to the mix design asphalt content, both for lab and field samples. The ignition method results varied more from the mix design asphalt content (0.10 - 0.15%), but collectively the results were favorable.

The second round of testing with E. C. Rowlett at North Little Rock indicated less favorable results with differences from the mix design asphalt content as much as 0.33%. As a result, additional samples were blended and rerun. Results improved for the nuclear asphalt content gauge (0.07%), but again varied (0.29%) for the ignition method.

It was determined at this time to alter the approach to the ignition method / nuclear asphalt content gauge comparison. This was due to the difficulties associated with determining the "true" asphalt content from the eighteen to nineteen pound HMA sample prepared in the lab. The new approach consisted of requesting several asphalt plants to hold their NACG sample after testing for this research. The "pretested" samples were delivered to the Materials Division for ignition method testing. Due to the nature of this testing, an exact correction factor for each mix was not determined. Previous ignition testing correction factors were averaged to supply this data. The asphalt content results from both methods were then compared.

The results from this testing are in Table III in Appendix A. Again, results were varied. General guidelines were applied to this data. Guidelines were derived from data analysis and discussion of the results with AHTD personnel. Any comparison testing with results not differing more than 0.14% was considered acceptable. Marginal was considered 0.21% to 0.31%. A difference of more than 0.42% was considered poor.

CONCLUSIONS AND RECOMMENDATIONS

As defined previously, the objectives of this research were: identify aggregates commonly used in HMA in Arkansas that would be adversely effected by the extreme heat; determine if the ignition method can be utilized in testing mixes containing polymer modified asphalt cements; and compare the ignition method with the nuclear asphalt content gauge.

With the exception of one aggregate, all aggregates tested showed no adverse effects from the extreme temperatures.

Both polymer modified and unmodified asphalt cements were included in the testing. The HMA samples mixed with polymer modified asphalt cement showed no significant differences from the unmodified HMA samples.

Achieving a good comparison between the ignition method with the nuclear asphalt content gauge proved to be more difficult than anticipated. Results were inconclusive. This may have been due to the initial size of the sample, calibration of the NACG in the field, or a combination of the two. However, when the approach was altered to include actual field samples, results were again mixed.

Inconsistent results between the NACG and the ignition oven limits the recommendation that can be made from this research concerning the effectiveness of the ignition oven in determining asphalt content. However, this study did conclude gradation results after ignition oven testing to be reliable.

As a result, this study can only recommend the ignition oven be allowed for determining aggregate gradation for quality control purposes.

		·)C/1022F			
	Actual AC	Calibrated	Difference		Actual AC	Calibrated	Difference
[]	Content	AC Content			Content	AC Content	
Hogan/GMQ	2022200475 1243	3.90	-0.20	McClinton/	4.90	5.09	0.19
CD102-93	4.48	4.58	0.10	Anchor/Avoca	5.48	5.48	0
PG76-22	4.93	4.99	0.06	CD036-95	4.60	4.82	0.22
	4.92	4.73	-0.19	PG76-22	5.79	5.91	0.12
	4.92	4.92	0		5.22	5.48	0.26
	4.96	4.97	0.01		5.24	5.16	-0.08
	5.37	5.34	-0.03		5.25	5.28	0.03
	5.78	5.64	-0.14		5.20	5.27	0.07
avg.+ or -			0.091	avg.+ or -			0.121
std. dev.			0.114	std. dev.			0.118
variance			0.013	variance			0.014
							0.014
Hogan/GMQ	4.54	4.39	-0.15	McClinton/	4.98	4.75	-0.23
CD102-93	4.12	4.02	-0.10	Anchor/Avoca	5.50	5.32	-0.18
AC30	5.34	5.24	-0.10	CD036-95	4.60	4.49	-0.11
	5.71	5.71	0	AC 20	5.83	5.78	-0.05
	4.91	4.92	0.01		5.30	5.25	-0.05
	4.94	4.92	-0.02		5.23	5.27	0.04
avg.+ or -			0.063	avg.+ or -		0.27	0.110
std. dev.			0.065	std. dev.			0.098
ariance			0.004	variance			0.038
							0.010
Rowlett/NLR	5.93	5.97	0.04	RzrRck/WhtHI	5.71	5.76	0.05
CD049-91	5.89	5.84	0.05	CD186-95	5.71	5.80	0.09
PG 76-22	5.54	5.56	0.02	PG 76-22	5.29	5.37	0.08
	6.36	6.42	0.06	aggr. fractured	6.03	6.05	0.02
	5.18	5.18	0		4.98	4.97	-0.01
	4.87	4.74	-0.13	2	4.70	4.74	0.04
avg.+ or -			0.050	avg.+ or -			0.048
std. dev.			0.070	std. dev.			0.048
variance			0.005	variance			0.001
							0.001
Rowlett/NLR	5.92	5.84	-0.08	RzrRck/WhtHI	5.74	5.79	0.05
CD049-91	5.99	6.07	0.08	CD186-95	5.76	5.70	
AC30	5.59	5.65	0.06	AC30	5.40	5.39	-0.06 -0.01
	6.43	6.42	-0.01	aggr. fractured	6.07	6.05	
	5.19	5.34	0.15		5.03	4.78	-0.02
	4.86	4.86	0		4.76		-0.25
avg.+ or -			0.063	avg.+ or -	4.10	4.77	0.01
std. dev.			0.080	std. dev.			0.067
variance			0.006	variance			0.106
			0.000	vallalice			0.011

Table I Ignition Method Results

precision = + or - 0.077 for the above 52 tests value for 95% reliability = + or - 0.25 value for 90% reliability = + or - 0.20

			Difference from		Difference from	
		Nuclear Gauge	Design	Ignition Method		Difference
MaOlistant	% AC	AC Content		AC Content	g	in Tests
McClinton/	5.30	5.38*	0.08	5.44*	0.14	0.06
Anchor/Avoca		5.34*	0.04	5.41*	0.11	0.00
CD036-95	5.30	5.36*	0.06	5.25*	-0.05	0.11
FRONK		Average from		Average from		0.11
ERGON 20		Design	0.06	Design	0.10	
	5.30 5.30 5.30	5.27** 5.23** 5.26**	-0.03 -0.07 -0.04	5.48** 5.22** 5.12**	0.18 -0.08 -0.18	0.21 0.01 0.14
		Average from Design	0.05	Average from Design	0.15	
	*sampled from	m Dist. 9 Maint. Jol ended in lab	b		0.10	

TABLE II Ignition Method vs. Nuclear Asphalt Content Gauge I

Ignition Method vs. Nuclear Asphalt Content Gauge II

			Difference from		Difference from	T
		Nuclear Gauge	Design	Ignition Method		Difference
Devidett/All D	% AC	AC Content		AC Content	. . .	in Tests
Rowlett/NLR	5.30	5.58*	0.28	5.56*	0.26	0.02
	5.30	5.53*	0.23	5.31*	0.01	0.22
CMD038-97	5.30	5.79*	0.49	5.70*	0.4	0.22
	· ·	Average from		Average from	0.4	0.09
Lion PG64-22		Design	0.33	Design	0.22	
	5.30 5.30	5.04** 5.12**	-0.26 -0.18	5.44** 5.39**	0.14 0.09	0.40
	5.30	4.83**	-0.47	5.34**	0.09	0.27
		Average from		Average from	0.04	0.51
		Design	0.30	Design	0.09	1
	5.30 5.30 5.30	5.28** 5.26** 5.15** Average from Design	-0.02 -0.04 -0.15 0.07	5.26** 4.75** 5.02** Average from Design	-0.04 -0.55 -0.28 0.29	0.02 0.51 0.13
1*	*samples ble	n State Job 060835 nded in lab lata is rerun of la t			0.29	

TABLE III

Source			ar Asphalt Content Ga	uge
Source	Mix Design (%)	Asphalt Content %		Difference
		N. A. C. G.	Muffle Furnace	
T&T-Clinton	SP27-97 (5.1)	5.24	5.80	0.56
T&T-Clinton	SP27-97 (5.1)	5.21	5.67	
T&T-Clinton	SP27-97 (5.1)			0.46
T&T-Clinton	SP27-97 (5.1)		5.68	0.60
T&T-Clinton			5.62	0.47
T&T-CIINION	SP27-97 (5.1)	4.93	5.50	0.57

Comments: muffle furnace indicates more asphalt content than the nuclear gauge. These samples rec'd 10/8/98.

Source	Mix Design (%)	Asph	Asphalt Content %	
		N. A. C. G.	Muffle Furnace	Difference
Rowlet NLR	SP167-98 (5.4)	5.61	5.11	0.50
RowlettNLR	SP167-98 (5.4)	5.53	5.39	0.14
RowlettNLR	SP037-98 (4.3)	4.59	4.46	0.13

Comments: muffle furnace indicates less asphalt content than the nuclear gauge. These samples rec'd 10/27/98.

Mix Design (%)	Asph	Difference	
		Muffle Furnace	
	4.68		0.42
	5.64		0.02
MD073-96(6.0)	6.04		0.42
	MD068-96(4.6) MD072-96(5.6)	N. A. C. G. MD068-96(4.6) 4.68 MD072-96(5.6) 5.64	N. A. C. G. Muffle Furnace MD068-96(4.6) 4.68 4.26(4.49,4.23*) MD072-96(5.6) 5.64 5.66(5.40,5.44*)

Comments: muffle furnace indicates less asphalt content than the nuclear gauge (in 2 of 3 tests). *These results indicate add'l. testing on same material.

These samples rec'd 12/2/98.

Source	Mix Design (%)	Asphalt Content %		Difference
		N. A. C. G.	Muffle Furnace	
Rowlet NLR	SP167-98 (5.4)	5.69	5.48(5.26,5.38*)	0.21
RowlettNLR	SP167-98 (5.4)		5.37(5.48,5.22*)	0.01
RowlettNLR	SP037-98 (4.3)	5.49	5.45(5.59,5.48*)	0.04

Comments: muffle furnace indicates less asphalt content than the nuclear gauge. *These results indicate add'l. testing on same material.

These samples rec'd 12/11/98.

Source	Mix Design (%)	Asp	halt Content %	Difference
		N. A. C. G.	Muffle Furnace	
Rowlett NLR	SP167-98 (5.4)		5.07(5.12)	0.31
Rowlett NLR	SP037-98 (4.3)	3.95	3 98(4 06)	0.00
Comments: th	ese samples rec'o	1/5&1/12/99	and were check sam	ples blended by D. Cra
Source	Mix Design (%)	Asphalt Content %		Difference
		N. A. C. G.	Muffle Furnace	
CranfordNLR	MD068-96 (4.6	4.56	4.48(4.57)	0.03
CranfordNLR	MD072-96 (5.6	5.58	5 77(5 86)	0.24
Comments: the	ese samples rec'd	1/8/99 and v	vere check samples bl	ended by G. Tomboli
Source	Mix Design (%)	Asphalt Content %		Difference
		N. A. C. G.	Muffle Furnace	2
T&T-Clinton	SP27-97 (5.1)	5.06	5.50(5.60)	0.49

Comments: these samples rec'd 1/19/99 and were check samples blended by K. Lowrance.

